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Speech inversion is a well-known ill-posed problem and addition of speaker differences typically

makes it even harder. Normalizing the speaker differences is essential to effectively using multi-

speaker articulatory data for training a speaker independent speech inversion system. This paper

explores a vocal tract length normalization (VTLN) technique to transform the acoustic features of

different speakers to a target speaker acoustic space such that speaker specific details are mini-

mized. The speaker normalized features are then used to train a deep feed-forward neural network

based speech inversion system. The acoustic features are parameterized as time-contextualized

mel-frequency cepstral coefficients. The articulatory features are represented by six tract-variable

(TV) trajectories, which are relatively speaker invariant compared to flesh point data. Experiments

are performed with ten speakers from the University of Wisconsin X-ray microbeam database.

Results show that the proposed speaker normalization approach provides an 8.15% relative

improvement in correlation between actual and estimated TVs as compared to the system

where speaker normalization was not performed. To determine the efficacy of the method across

datasets, cross speaker evaluations were performed across speakers from the Multichannel

Articulatory-TIMIT and EMA-IEEE datasets. Results prove that the VTLN approach provides

improvement in performance even across datasets. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Speech inversion or acoustic-to-articulatory inversion of

speech has been a widely researched topic in the last

40 years. Speech Inversion is the process of mapping the

acoustic signal into articulatory parameters. If estimated

accurately, articulatory information can be applied to speech

accent conversion (Aryal and Gutierrez-Osuna, 2014),

speech therapy (Cavin, 2015; Preston et al., 2014), language

learning, Automatic Speech Recognition (ASR) (Kirchhoff

et al., 2002; Mitra, 2010; Mitra et al., 2014b), and detection

of depression from speech (Helfer et al., 2013; Mitra et al.,
2014a). Real articulatory data is obtained from subjects

using techniques like Electromagnetic Articulometry (EMA)

(Sch€onle et al., 1987), X-ray microbeam (Westbury, 1994),

and real-time Magnetic Resonance Imaging (rt-MRI)

(Narayanan et al., 2004). However, these techniques require

sophisticated devices and are expensive and time consuming.

Obtaining real articulatory data is not practically feasible for

real world applications like ASR. Only the acoustic data is

available from the speaker. Hence, it is essential to develop

speech inversion systems that are speaker independent and

can accurately estimate articulatory features for any unseen

test speaker. The mapping from acoustics to articulations is

known to be highly non-linear and non-unique (Qin and

Carreira-Perpi~n�an, 2007). Adding speaker variability to the

already challenging problem makes it even more difficult.

Most research in speech inversion has been focused on devel-

oping accurate speaker dependent systems. Based on a compre-

hensive study of the speech inversion techniques, the speaker

dependent techniques can be classified into three categories:

(1) codebook based approaches (Atal et al., 1978; Ouni and

Laprie, 2005) in which a codebook of acoustic and correspond-

ing articulatory patterns is constructed from the training data,

(2) analytical approaches involving articulatory models such as

Maeda’s model (Krstulović, 2001; Laprie and Mathieu, 1998),

and (3) statistical modeling (parametric and non-parametric) of

acoustic to articulatory mapping like Gaussian Mixture Model

(GMM) (Toda et al., 2004), Mixture density networks (MDN)

(Richmond, 2006), multilinear regression and principal compo-

nents analysis (Mokhtari et al., 2007), Hidden Markov models

(HMM) (Hiroya and Honda, 2004), generalized smoothness

criteria (Ghosh and Narayanan, 2010), and neural networks

(King and Taylor, 2000; Kirchhoff, 1999; Mitra et al., 2010,

2014b).

There have been a few attempts to perform speaker

independent speech inversion (Afshan and Ghosh, 2015;

Ghosh and Narayanan, 2011; Ji, 2014), which have been lim-

ited to two speakers from the Multichannel Articulatory-

TIMIT (MOCHA-TIMIT) dataset (Wrench, 2000). In Ghosh

and Narayanan (2011), a subject independent speech inver-

sion system is developed by representing acoustic featuresa)Electronic mail: ganesa90@gmail.com
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with respect to a generic acoustic space trained on a dataset

containing multiple speakers. While testing, the test speaker’s

acoustic features are matched with the training speaker’s

acoustic features with respect to the generic acoustic space.

The generic acoustic space normalizes the mismatch between

the training and test speakers. Afshan and Ghosh (2015)

extended the subject independent inversion system by incorpo-

rating speaker adaptation techniques. They proposed super-

vised and unsupervised ways of clustering the generic acoustic

space to perform speaker normalization. They performed adap-

tation of the GMM based generic acoustic space using maxi-

mum likelihood linear regression (MLLR) that is commonly

used in speaker adaptation of ASR acoustic models. They

found that availability of phone transcriptions of the adaptation

data improves the performance of the speaker adaptation. In Ji

(2014), an unseen speaker’s acoustic feature space is approxi-

mated with a weighted combination of the acoustic spaces of

the training speakers by a maximum likelihood based weight-

ing scheme. This method is unsupervised and does not assume

availability of phone transcriptions. Hueber et al. (2015)

presents a Gaussian mixture regression based speaker adapta-

tion scheme for a GMM based speech inversion system. To the

best of our knowledge, there has not to date been any effort in

performing speaker adaptation for artificial neural network

(ANN) based speech inversion systems. Modeling speaker var-

iability and training speaker independent speech inversion

models has been a challenge facing acoustic-to-articulatory

speech inversion. Mokhtari et al. (2000) modeled inter-speaker

variability in acoustic-to-articulatory mapping in terms of three

components: structure, setting, and strategy. Their objective

was to model the speaker variability in vocal tract area func-

tions estimated using linear prediction based methods. They

defined the “structure” component of speaker variability as the

mean vocal tract length of each speaker.

This paper aims to minimize the speaker variability in the

acoustic space attributed to the vocal tract length differences

between speakers for performing acoustic-to-articulatory inver-

sion. This paper presents a Vocal Tract Length Normalization

(VTLN) based approach to speaker adaptation for speech

inversion. The VTLN is approximated as a non-linear warping

of the frequency axis in the filterbank analysis to adapt a test

speaker’s acoustic space to a target speaker. The non-linear

warping function of VTLN is optimized to increase the acous-

tic similarity between two speakers. The objective of the warp-

ing function is to normalize the variations in the formant

frequencies arising due to varying lengths of vocal tract.

VTLN does not necessarily normalize the differences in vocal

tract lengths. The technique also does not explicitly compute

the vocal tract lengths of the speakers. It was commonly used

as a speaker adaptation technique in HMM based ASR. To our

knowledge, this paper is the first ever to perform VTLN for

speaker adaptation in speech inversion. This method does not

assume availability of any phonetic transcripts or a supervised

acoustic model for performing the adaptation.

The objective of this paper is to normalize acoustic

data from multiple speakers towards the acoustic space of a

target speaker. Diagonal covariance GMMs are trained for

each speaker. Given a test speaker’s utterance, a piecewise

linear frequency warping is applied to the frequency axis of

the mel-filterbank to adapt the acoustic space of the test

speaker towards that of the target speaker. The parameter of

the piece-wise linear warping function is determined such

that the warping maximizes the likelihood of the test

speaker in the target speaker’s acoustic space (GMM).

More details about this adaptation procedure are provided

in Sec. V.

The key contributions of this paper are as follows:

(1) Estimating articulatory constriction variables instead of

flesh point trajectories or EMA sensor trajectories. Most

works in the speech inversion literature have focused on

estimating actual X-Y positions of EMA sensors or the

X-ray Microbeam (XRMB) pellets from acoustics. In

this paper, we present methods to convert the raw articu-

latory measurements to tract variables (TVs) and train

systems to estimate the TVs from speech. This is signifi-

cant because tract variables represent goal-directed syn-

ergies among the articulators, which are thus inherently

more stable than the articulatory positions themselves,

subject as they are to coarticulatory pressures.

(2) Speaker independent speech inversion system trained on

large number of speakers (46 speakers) from the Wisconsin

XRMB database (Westbury, 1994). To the best of our

knowledge, this is the first time a speaker independent

speech inversion system has been trained on such a large

number of speakers.

(3) A novel unsupervised speaker adaptation technique

based on VTLN to adapt a test speaker towards a target

speaker for speech inversion.

(4) Cross speaker evaluation of speaker dependent speech

inversion systems. The proposed VTLN speaker adapta-

tion improved the performance of the speech inversion

systems in mismatched speaker and gender scenario.

(5) Cross-corpus speech inversion experiments. The pro-

posed VTLN based speaker adaptation improved the per-

formance of speech inversion even in the highly

challenging cross-corpus experiments. To the best of our

knowledge, this is the first time cross-corpus speech

inversion experiments have been performed.

We perform experiments on three different datasets:

(1) Wisconsin XRMB database (Westbury, 1994), (2) EMA-

IEEE dataset (Tiede et al., 2017), and (3) MOCHA-TIMIT

dataset (Wrench, 2000).

Our speech inversion system is a neural network based

system that maps contextualized acoustic features to vocal

tract constriction variables (TVs). The architecture of the

speech inversion system is fixed across all our experiments,

except for the number of hidden layers and nodes in the neu-

ral networks. We describe the architecture of the speech

inversion system in Sec. III.

We first train a speaker independent speech inversion

system using all the data from the University of Wisconsin

XRMB database (Westbury, 1994) dataset (46 speakers). We

use a deep neural network with 5-hidden layers to map con-

textualized Mel Frequency Cepstral Coefficients (MFCCs)

to TVs. The details of the speaker independent speech inver-

sion and the results are presented in Sec. IV.

J. Acoust. Soc. Am. 146 (1), July 2019 Sivaraman et al. 317



Section VI presents cross-speaker speech inversion

experiments on the XRMB dataset. Due to the complexity of

the experiment and the large number of mismatched speaker

trials, we performed the experiments on a randomly selected

subset of the XRMB dataset consisting of ten speakers. We

trained speaker dependent speech inversion systems with

single hidden layer neural networks for all the ten speakers

and then evaluated the mismatched speaker performance of

the systems. In the mismatched speaker tests, we also

applied the VTLN based speaker adaptation to adapt test

speakers to the target speaker. We present the cross-speaker

experiments and their results in Sec. VI.

We performed leave-one-speaker-out experiments on

the ten-speaker subset of the XRMB dataset. In this experi-

ment too, due to the small amount of data available per

speaker, we used shallow single-hidden-layer neural net-

works for training the speech inversion systems. Separate

experiments were performed for each speaker in which the

acoustic features from the other nine speakers were trans-

formed using the VTLN approach. The transformed acoustic

features were then used to train a speech inversion system.

The performance of the system trained on VTLN adapted

acoustic features was compared to the performance of

speaker dependent systems. More details of the leave-one-

speaker-out experiments speech inversion system training

and the experiments are provided in Sec. VII.

In most studies in the literature, speech inversion systems

are trained and evaluated on the same dataset. However, for all

practical purposes speech inversion systems are used on speech

utterances previously unseen by the inversion system. This paper

recognizes this as a necessary challenge to address and performs

cross-corpus speech inversion experiments and evaluates the

strength of the VTLN adaptation for cross corpus evaluation.

We perform the cross-corpus speech inversion experiments on

the MOCHA-TIMIT and EMA-IEEE datasets. It is observed

that the VTLN adaptation procedure provides a 8.15% relative

improvement in correlation on average compared to the perfor-

mance without speaker adaptation in a multi-speaker cross-cor-

pus evaluation.

A summary of all the experiments and their results are

presented in Sec. IX.

II. ARTICULATORY DATASETS

This section describes the articulatory datasets used in

the experiments performed in this paper.

A. XRMB

The Wisconsin XRMB database (Westbury, 1994) con-

sists of naturally spoken utterances: isolated sentences and

short read paragraphs. Speech audio was collected from 32

males and 25 females along with X-ray microbeam cinematog-

raphy of the mid-sagittal plane of the vocal tract with tracked

pellets placed at four points on the tongue, upper, and lower

lips. Figure 5.2 in Westbury (1994) shows the placement of the

pellets on the articulators as a midsiggital view of the vocal

tract. Trajectory data were recorded for pellets placed mid-

sagittally on these articulators: upper (UL) and lower (LL) lip,

tongue tip (T1), tongue blade (T2), tongue dorsum (T3), tongue

root (T4), mandible incisor (MANi), and (parasagittally placed)

mandible molar (MANm).

A common problem with articulatory recordings of this

type is the mistracking of pellets or the pellets falling off

while recording, which are marked as mistracked samples in

the XRMB database. These samples were removed from the

database before using it for our analysis.

1. Converting XRMB pellets to TVs

The X-Y positions of the pellets are closely tied to the

anatomy of the speakers and can therefore vary considerably

across speakers for the same sound and may also vary con-

siderably due to small differences in the pellet placement.

Speech production involves the shaping of the supra-

laryngeal vocal tract filter by producing constrictions at dif-

ferent places along the vocal tract using the articulators.

Hence, the quantification of the vocal tract shape is better

performed by the location and degree of these constrictions,

which are relative measures compared to the absolute mea-

sures of X-Y positions of the pellets. Moreover, the absolute

positions of the articulators are dependent on the anatomy of

the speaker’s vocal tract. The TVs specify the salient fea-

tures of the vocal tract area function more directly than the

pellet trajectories (McGowan, 1994) and provide a relatively

speaker independent representation of speech articulation.

Developed within the context of Articulatory Phonology

(Browman and Goldstein, 1992), they also provide a useful

theoretical framework for the analysis of speech production

with the theoretical framework of articulatory phonology.

TVs characterize the location and degree of vocal tract con-

strictions without reference to the specific synergies that

achieve them; for example, the “lip aperture” (LA) tract vari-

able represents the degree of occlusion at the acoustic termi-

nus, without the need to specify the individual contributions

of the jaw, upper and lower lips. Because of these advan-

tages, the XRMB trajectories were converted to TV trajecto-

ries using geometric transformations as outlined in Mitra

et al. (2012). As defined in the Task Dynamic model

(TADA) of speech production, the hard palate was approxi-

mated with a large circle using curve fitting through the palate

trace. The TADA model also approximates the tongue body as

a smaller circle within the larger circle approximating the pal-

ate. Hence, the tongue body was approximated with a circle

passing through the pellets T2, T3, and T4 at each time step.

The tongue tip was modeled separately by the segment T2-T1.

In this manner, at each time step, the pellet X-Y positions were

converted to TVs. Out of the total of 57 speakers in the XRMB

dataset, 46 were successfully converted to TVs. The remaining

speakers could not be transformed due to a higher proportion

of mis-tracked segments in the pellet trajectories. The trans-

formed XRMB database consists of 21 males and 25 females,

with a total of 4 h of speech data with corresponding six TV

trajectories. The TVs obtained from the seven pellet trajectories

were: LA, Lip Protrusion (LP), Tongue Body Constriction

Location (TBCL), Tongue Body Constriction Degree (TBCD),

Tongue Tip Constriction Location (TTCL), and Tongue Tip

Constriction Degree (TTCD). A rough schematic of the trans-

formation is shown in Fig. 1.
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B. EMA-IEEE dataset

A five-dimensional (5 D) EMA system (WAVE;

Northern Digital) was used to record the 720 phonetically

balanced IEEE sentences (Rothauser et al., 1969) from eight

speakers (four males, and four females) at normal and fast

production rates (Tiede et al., 2017). Participants produced

each sentence twice, first at their preferred “normal” speak-

ing rate followed by a “fast” production (for a subset of the

sentences two normal rate productions were elicited). They

were instructed to produce the “fast” repetition as quickly as

possible without making errors. EMA trajectories were

obtained at 100 Hz from sensors placed on the tongue [tip

(TT), body (TB), root (TR)], lips [upper (UL) and lower

(LL)] and mandible, together with reference sensors on the

left and right mastoids, and upper and lower incisors (UI,

LI). The data were low-pass filtered at 5 Hz for references

and 20 Hz for articulator sensors, corrected for head move-

ment and aligned to the occlusal plane. Synchronized audio

was recorded at 22050 Hz, using a directional shotgun

microphone placed 50 cm from the speaker’s mouth. In this

paper, we have used only the normal rate utterances from the

EMA-IEEE dataset for cross-corpus speech inversion experi-

ments detailed in Sec. VIII.

1. Conversion of EMA sensor positions to TVs

The EMA sensor trajectory data was converted to nine

TVs using geometric transformations. The nine TVs were:

LA, LP, JA, TTCL, TTCD, Tongue Middle Constriction

Location (TMCL), Tongue Middle Constriction Degree

(TMCD), Tongue Root Constriction Location (TRCL), and

Tongue Root Constriction Degree (TRCD).

LA was defined as the Euclidean distance between the

UL and the LL sensors as shown in Eq. (1)

LA n½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLLx n½ � � ULx n½ �Þ2 þ ðLLz n½ � � ULz n½ �Þ2

q
:

(1)

LP was defined as the displacement along the x axis of

the LL sensor from its median position as shown in Eq. (2)

LP n½ � ¼ LLx n½ � � median
m2allutterances

fLLx m½ �g: (2)

JA was defined as the Euclidean distance between the

UL sensor and the LI sensor as shown in Eq. (3)

JA n½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLIx n½ � � ULx n½ �Þ2 þ ðLIz n½ � � ULz n½ �Þ2

q
: (3)

Two TVs were computed for each tongue sensor–con-

striction degree and location. Constriction degree for a

tongue sensor was defined as the minimum distance between

the sensor and the palate trace as shown in Eq. (4). The pal-

ate trace was one of the measurements taken as part of the

data collection for each subject. The palate trace provides

only the height (z-coordinate) of the hard palate along the

anterior-posterior axis (x axis). The function pal(x) shown in

Eq. (4) gives the z-coordinate of the palate for 100 points

within the range x 2 (�50, 0). Computationally, pal(x) is just

an array of z-coordinates of the hard palate for different val-

ues of x.

FIG. 1. Schematic of transformation of XRMB database from pellets to TV trajectories. Parts of the figure are taken from Saltzman and Munhall (1989) and

Westbury (1994).
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TTCD n½ � ¼ Min
x2ð�50;0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTTx n½ � � xÞ2 þ ðTTz n½ � � palðxÞÞ2

q� �
:

(4)

The same way the TMCD, and TBCD TVs were computed

from the TT, TM, and TB sensor positions and the palate

trace.

The constriction location for a tongue sensor was

defined as the displacement of the sensor along the x-direc-

tion from its median position as shown in Eq. (5).

TTCL n½ � ¼ median
m2allutterances

fTTx m½ �g � TTx n½ �: (5)

The same way, TTCL, TMCL, and TBCL were computed

from the TT, TM, and TB sensor positions.

C. MOCHA-TIMIT dataset

The Multichannel Articulatory (MOCHA) database

(Wrench, 2000) contains acoustic and simultaneous EMA data

from one male and one female speaker of British English. The

EMA data from the MOCHA database was smoothed and

downsampled from 500 to 100 Hz as described in Richmond

et al. (2003). We converted the EMA sensor position data to

nine TVs using the same approach described in Sec. II B 1

(Fig. 2).

III. SPEECH INVERSION SYSTEM DESCRIPTION

Mitra et al. (2010) explored various machine learning

approaches to acoustic-to-articulatory speech inversion.

Based on the comparison of the different machine learning

algorithms (Mitra et al., 2010), we chose ANNs to be the

best suited approach for estimating TVs from speech. This is

a function mapping approach to speech inversion where the

frame wise input acoustic features are mapped to frame wise

measurements of TVs which represent the instantaneous

configuration of the vocal tract. With the advent of Deep

Neural Networks (DNN), faster learning strategies and

higher computational power, it has been shown that deep

architectures can represent certain families of functions

more efficiently than shallow ones (Bengio and Lecun,

2007). Hence, we explore feedforward DNNs for learning

the mapping from acoustics to TVs. This section describes

the acoustic-to-articulatory speech inversion system archi-

tecture that has been used throughout this work.

A DNN can have M inputs and N outputs; hence, a non-

linear complex mapping of M vectors into N different func-

tions can be achieved. In such an architecture, the same

hidden layers are shared by all N outputs, giving the DNN

the implicit capability to exploit any correlation that the N

outputs may have amongst themselves. The feed-forward

DNN used in our study to estimate the TVs from speech

were trained with back propagation using a stochastic gradi-

ent descent algorithm.

The system shown in Fig. 3 outlines the blocks involved

in the speech inversion system design. The details of the speech

inversion system are given in Secs. III A and III B.

A. Feature extraction

The utterances were downsampled to 8 kHz. The input

features to the neural network were varied and compared.

We experimented with different acoustic features: MFCC,

Perceptual Linear Prediction (PLP) and mel-spectrum

(MELSPECT). Single hidden layer neural networks to esti-

mate TVs were trained for each feature type and the best per-

forming feature was chosen for fine tuning. For MFCCs, 13

cepstral coefficients were extracted using a Hamming analy-

sis window of 20 ms with an inter-frame interval of 10 ms.

The TVs and MFCCs were mean and variance normalized to

have zero mean and a variance of 0.25. As described in Sec.

IV, two different methods of mean and variance normaliza-

tion were performed and compared. The mean and variance

normalization was performed separately for every speaker in

the database. This ensured some normalization of inter-

speaker variations in measurements of acoustics and articu-

lations. The MFCCs were then contextualized by concatenat-

ing every other feature frame within a 350 ms window. Since

the articulatory movements are smooth and slow varying

compared to acoustics, concatenation of adjacent MFCC

frames is essential to learn a mapping from acoustics to TVs.

After performing experiments by varying the feature splicing

FIG. 2. (Color online) Transformation of EMA sensor positions to TVs.

FIG. 3. Block diagram of the speech inversion system.
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widths from 60 to 500 ms, the splicing width of 350 ms was

found to be the best performing splicing width. This

amounted to eight frames of MFCCs on either side of each

frame being concatenated to form the contextualized MFCC

features. While splicing the frames, we skipped two frames,

thus concatenating every other frame within a 35 frame win-

dow centered at the current analysis frame. The experiments

with other features were performed by adding the same

amount of context as for MFCCs.

B. DNN Training

The dimension of the input to the neural network was

221 for MFCC features (¼13 MFCCs � 17 frames) and the

output dimension was 6 (¼ 6 TVs). The speakers in the data-

set were split into train, validation, and test sets. Thirty-six

speakers were assigned for training, and five each for valida-

tion and test sets. The splitting of speakers was random such

that the training set consisted of no more than 80% of the

utterances and the test and validation sets contained nearly

an equal number of utterances. Note that the number of utter-

ances from each speaker is not the same due to mistracked

segments. A 3 hidden layer neural network was trained.

First, a DNN with 1024 neurons in each hidden layer was

trained with different acoustic features as inputs. The best

performing feature on the XRMB validation set was selected

and then the network parameters like number of hidden

layers and number of neurons in each layer were tuned.

Networks with different numbers of hidden-layer neurons

(128–1024) were trained, and among them the best perform-

ing network on the validation set was chosen. It was

observed that the outputs of the neural network were not as

smooth as the original TVs. TVs being vocal tract move-

ments are necessarily smooth signals (Hogden, 1996).

Hence, a low-pass Kalman smoothing was performed to

remove estimation noise by the neural network. The perfor-

mance of the TV estimator was measured by computing the

Pearson Product Moment Correlations (PPMC) of the esti-

mated TVs with the groundtruth TVs on the test set

r ¼

Xn

1

ðxi � �xÞðyi � �yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

1

ðxi � �xÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðyi � �yÞ2
q : (6)

The Kalman smoothed TVs showed high correlation with

the original TVs and lower mean squared error (MSE).

IV. SPEAKER INDEPENDENT SPEECH INVERSION
EXPERIMENT ON MULTI-SPEAKER XRMB DATASET

To begin with, we experimented with different types of

acoustic features for the speech inversion system in order to

figure out the best feature representation. We performed this

experiment to select the best feature by fixing the neural

network architecture to a 3-hidden-layer network. Later,

once we select the best acoustic feature, we fine tune the

number of hidden-layers in the neural network. As described

in Sec. III, 3-hidden-layer neural networks with 1024

neurons each were trained to estimate TVs using three different

types of acoustic features. The acoustic features we considered

for our experiment were MFCC, PLP, and MELSPECT fea-

tures. The MFCC and PLP features were 13 dimensional ceps-

tral coefficients per frame. The MELSPECT feature contained

40 mel-filterbank energies for every frame. For each of these

features, the analysis frame width was 20 ms and the shift was

10 ms. The input features were contextualized by concatenating

eight frames on either side. The results on the XRMB cross

validation set from these experiments are presented in Fig. 4.

The results are Pearson correlations between actual and esti-

mated TVs.

Based on the results shown in Fig. 4, the TV estimator

performed best with MFCCs. As a result, MFCCs were used

for all further experimentation. We next focused on tuning

the DNN parameters for the MFCC feature based speech

inversion system. We trained DNNs with 1, 2, 3, 4, and 5

hidden layers with 128, 256, 512, 1024, and 2048 neurons in

each layer. Thus, we trained 25 such DNNs for mapping

contextualized MFCCs to TVs. We computed the correlation

between actual and estimated TVs for the validation set and

selected the best performing configuration. Figure 5 shows

the plot of the correlations for different network configura-

tions. Based on the plot, we can see that a 5 hidden-layer

DNN with 512 nodes in each layer performed the best. The 5

hidden layer model with 2048 nodes in each layer failed to

train due to limited data. The performance of the networks

beyond 5 hidden layers saturated, and hence we limited our

DNN to 5 hidden layers.

We experimented with two different types of feature and

target normalizations: global normalization and speaker

FIG. 4. (Color online) Average correlation results across six TVs for differ-

ent input features (MFCC, PLP, and MELFB).

FIG. 5. (Color online) Results of varying DNN parameter (number of hidden

layers and number of nodes per hidden layer) on XRMB validation set.
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specific normalization. In the global mean and variance nor-

malization scheme, all the MFCCs and TVs from the XRMB

database were normalized with the global mean and variance

estimated from all the utterances. In the speaker-specific nor-

malization approach, the MFCCs and TVs were mean and vari-

ance normalized separately for each speaker. We found that

the correlations on development set were 12.75% better with

speaker specific normalization relative to the global normaliza-

tion. Hence, for all of our experiments henceforth, we normal-

ize the MFCCs and TVs in a speaker specific manner.

After performing the fine tuning of the speech inversion

system, the final best performing neural network architecture

was a 5 hidden layer DNN with 512 nodes in each layer. The

feature and target normalization chosen was SPKNORM.

We will call this speech inversion system XRMB TV estima-

tor (alternatively, as XRMB speech inversion system) and it

will be used for various other experiments in the upcoming

sections. The Pearson correlation results of the XRMB

speech inversion system are shown in Table I. Figure 6

shows example plots of the estimated and actual TVs for

three utterances from the XRMB test set.

V. SPEAKER NORMALIZATION TO COMBAT
ACOUSTIC VARIABILITY

There is a significant amount of speaker specific compo-

nent in the acoustic as well as the articulatory domains. The

representation of articulatory features as TVs reduces the

dependence of articulatory domain on speaker anatomy, but

the acoustic features still contain speaker differences arising

due to differences in pitch, vocal tract length, speaking rate,

and prosody. This section presents a VTLN based approach

to speaker adaptation for speech inversion. VTLN is a popu-

lar speaker adaptation technique in ASR which has so far not

been applied to speech inversion.

VTLN (Eide and Gish, 1996) uses a piecewise linear

warping function applied to the frequency axis in the filter-

bank analysis. The warping of the frequency axis is aimed at

reducing the cross-speaker differences in the range of for-

mant frequencies (of phonemes) arising due to differences in

vocal tract length. The technique does not explicitly involve

the estimation of a speaker’s vocal tract length. The objec-

tive of VTLN is to maximize the “similarity” (in a probabil-

istic sense) between the acoustic features of two speakers.

This is a commonly adopted approach for speaker adaptation

in speech recognition. We applied VTLN in a maximum

likelihood framework to adapt the acoustic features of the

mismatched speakers to the target speaker. In order to per-

form VTLN, a speaker dependent acoustic space using

GMM was trained on each of the ten speakers.

The experiments that follow are performed on a set of

ten speakers from the University of Wisconsin XRMB data-

base (Westbury, 1994). The articulatory features are repre-

sented by six TV trajectories as described earlier in Sec.

II A. Using a leave-one-out methodology, separate experi-

ments were performed for each speaker in which the acoustic

features from the other nine speakers were transformed using

the VTLN approach. The transformed acoustic features were

then used to train a speech inversion system. The perfor-

mance of the system trained on VTLN adapted acoustic fea-

tures was compared to the performance of speaker

dependent systems. The performances of the individual sys-

tems were compared using the correlation between the esti-

mated and the actual TVs on the target speaker’s test set.

TABLE I. Correlation results for the final XRMB speech inversion system.

LA LP TBCL TBCD TTCL TTCD Average

Crossval set 0.809 0.678 0.873 0.761 0.769 0.877 0.794

Test set 0.856 0.613 0.866 0.745 0.707 0.907 0.782

FIG. 6. (Color online) Example plots of estimated (dashed red line) and actual (solid blue line) TVs for three test set utterances. The average correlations

between estimated and actual TVs for the example in the left pane, middle pane, and right pane are 0.55, 0.79, and 0.90, respectively. The speakerID,

utteranceID and the sentence spoken are given on top of each pane.
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More details of the speech inversion system training and the

experiments are provided in the upcoming sections.

A. Speaker acoustic spaces

In this paper, we define speaker acoustic spaces as

probability distributions (Gaussian mixture) that approxi-

mately fit the acoustic features of a particular speaker. The

13 dimensional MFCCs with their slope and acceleration

were used as acoustic features for modeling the speaker

acoustic spaces. GMMs with 64 Gaussian components were

trained on the 39 dimensional MFCC þ D þ DD features.

While the speech inversion system accepts MFCC features

contextualized with eight frames on either side (221 dimen-

sional feature vector), the speaker acoustic space is mod-

eled on MFCC þ D þ DD features. This is because the

GMMs can be trained faster and efficiently on features with

uncorrelated components. With uncorrelated feature com-

ponents, we can also use the diagonal covariance matrix for

the Gaussians in the GMM which can be trained faster. The

diagonal covariance GMMs were trained iteratively by

increasing the number of Gaussians from 2 to 64 by dou-

bling the number of components in each stage. The GMM

training routines were obtained from the MSR Identity

Toolbox v1.0 (Sadjadi et al., 2013). Thus, such GMMs

were trained for each of the ten speakers chosen for the

cross-speaker evaluation. Figure 7 shows the block diagram

of the system used to train unsupervised speaker acoustic

spaces. The training is unsupervised because we do not use

any kind of phone alignments for training phone-wise

GMM like in HMM based ASR. Instead, we let the GMMs

fit the distribution of the acoustic features for each speaker.

Each model ki is a 64 component GMM modeling the distri-

bution of MFCCs for speaker Si.

B. Maximum likelihood based VTLN

VTLN aims to compensate the effects of different vocal

tract lengths by warping the frequency spectrum in the filter-

bank analysis before the computation of the cepstral coeffi-

cients. This warping can be implemented by a simple

piecewise linear warping function as shown in Fig. 8. The

warping factor a determines the nature of the warping func-

tion. The warping is implemented between the lower bound-

ary of frequency analysis (fL) and the upper boundary of

frequency analysis (fU). In all experiments, we fixed fL at

60 Hz and fU at 3200 Hz. The parameters were selected based

on the recommended default values for HTK’s implementa-

tion of VTLN. Varying fL and fU would provide a wider

range of non-linear warping function, however, the large

search space would make it intractable for a grid search.

Hence, we fixed fL at 60 Hz and fU at 3200 Hz. In order to

adapt the acoustic features of speaker Si to speaker Sj, a sin-

gle warping factor aij is used for all utterances from speaker

Si. The warping factor aij is determined by a maximum like-

lihood approach as outlined below.

Let the GMM acoustic model for speaker Sj be kj, and

the warped acoustic features for the tth time frame of an

utterance of speaker Si to the target speaker Sj be xij(t). Then,

the most likely warping factor aij is given by

aij ¼ arg max
a

XN

t¼1

log ðPðxijðtÞjkj; aÞÞ: (7)

In Eq. (7),
PN

t¼1log ðPðxijðtÞjkj; aÞÞ is the log likelihood

of the transformed features of speaker Si with respect to

speaker Sj’s acoustic model. The conditional probability

PðxijðtÞjkjÞ for a given a value is computed by converting as

follows:

• Apply the frequency warping function corresponding to

parameter a on speaker Si’s filterbank spectrum.
• Compute the cepstral coefficients xij from the warped fre-

quency spectrum of speaker Si.
• Compute the likelihood PðxijðtÞjkjÞ of the transformed

cepstral coefficients xij given speaker Sj’s GMM acoustic

model.

The optimal aij is obtained by sweeping the value of aij from

0.8 to 1.2 in steps of 0.025. As discussed in Zhan et al.
(1997), most of the VTLN warping factors lie between 0.8

and 1.2 for speaker adaptation in a large vocabulary ASR

task. This forms our basis for searching for the optimal warp-

ing factor in the range of 0.8 to 1.2. Using the optimal aij, we

compute the speaker adapted acoustic features for speaker Si

adapted to speaker Sj.

FIG. 7. Training of GMM speaker acoustic spaces.

FIG. 8. Frequency warping function implemented in HTK toolkit (Young

et al., 2009).
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VI. CROSS-SPEAKER EXPERIMENTS ON THE XRMB
DATASET

This section examines whether the acoustic and articula-

tory variability across speakers affects the performance of

the speaker independent speech inversion, and if so, what is

the impact on the performance. In order to explore the

speaker variability, speaker dependent systems were trained

on each of the ten speakers (five males and five females).

The correlation results for the speaker dependent systems for

the ten chosen speakers are shown in Table II. Comparing

the numbers from Tables I and II, we observe that a speaker

dependent speech inversion system is more accurate com-

pared to a speaker independent system. However, the perfor-

mance of the speaker dependent systems across speakers is

mediocre. We tested each speaker dependent system using

the test sets of the remaining nine speakers. Figure 9 shows

the average correlation across the six TVs for the cross

speaker tests performed on the speaker dependent systems.

The mismatched speaker test correlations highlight the inter-

speaker variability of the acoustic and articulatory spaces.

As shown in Fig. 9, the cross-speaker performance of the

speaker-dependent systems also showed a clear trend of gen-

der dependence where matched gender trials had a better

correlation by an absolute value of 0.2 than the mismatched

gender trials.

We also evaluated the VTLN based speaker adaptation

approach by applying the adaptation to cross-speaker trials.

We evaluated each speaker dependent (SD) speech inversion

system on the test sets of the other nine speakers. For each

cross-speaker trial, we adapted the test speaker’s evaluation

data to match the target speakers acoustic space using the

maximum likelihood based VTLN speaker adaptation proce-

dure explained in Sec. V B. The median optimal VTLN

warping factor for male target speakers was 0.925 (across all

trials for the five males in the ten speaker subset). The

median optimal warping factor for female target speakers

was 1.125. For the matched gender trials, the median warp-

ing factor was 1.0, indicating that the VTLN adaptation is

most effective in cross-gender trials.

We evaluated the speaker adapted MFCC features of the

test speakers with the target speaker’s inversion model. We

computed the correlation between the actual and estimated

TVs using the Pearson correlation. Figure 9 shows the aver-

age correlation across the six TVs for cross speaker trials

before and after VTLN adaptation. We have plotted the aver-

age correlations for the mismatched gender and matched

TABLE II. Correlation results for speaker dependent speech inversion systems.

Spk ID Gender LA LP TBCL TBCD TTCL TTCD Average

Spkr 1 JW12 M 0.837 0.821 0.908 0.828 0.792 0.905 0.848

Spkr 2 JW14 F 0.826 0.698 0.927 0.840 0.864 0.902 0.843

Spkr 3 JW24 M 0.824 0.769 0.907 0.773 0.764 0.827 0.811

Spkr 4 JW26 F 0.814 0.825 0.908 0.785 0.804 0.900 0.839

Spkr 5 JW27 F 0.795 0.796 0.878 0.774 0.733 0.893 0.811

Spkr 6 JW31 F 0.851 0.782 0.922 0.850 0.809 0.906 0.853

Spkr 7 JW40 M 0.779 0.551 0.906 0.749 0.833 0.869 0.781

Spkr 8 JW45 M 0.834 0.785 0.896 0.804 0.845 0.866 0.838

Spkr 9 JW54 F 0.758 0.529 0.879 0.760 0.884 0.848 0.776

Spkr 10 JW59 M 0.806 0.769 0.909 0.806 0.815 0.882 0.831

FIG. 9. (Color online) Average correlations of cross-speaker experiments on the XRMB dataset. Bars indicate average correlation across all trials (ten matched

speaker trials and 90 mismatched speaker trials).
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gender trials. We observe that, in the mismatched gender tri-

als, the VTLN based speaker adaptation improves the aver-

age correlation by 52.16% relative to the case when no

adaptation was performed, whereas the improvement due to

VTLN adaptation in the matched gender trials is 3.14% rela-

tive to the case where no adaptation was performed.

Figure 10 shows a detailed visualization of the average

correlations before and after VTLN adaptation for each trial

in the cross-speaker experiment. The bar plots in Fig. 9

shows the average of the correlations from the matched and

mismatched speaker trials shown in Fig. 10.

VII. LEAVE-ONE-SPEAKER-OUT EXPERIMENTS ON
THE XRMB DATASET

We trained speech inversion systems using a single

hidden layer feed-forward neural network. Since only

small amounts of data were available for each speaker, sin-

gle hidden layer networks were chosen as the architecture.

The inputs to the neural network were the 13 dimensional

MFCCs contextualized with MFCC features from eight

frames on either side. Thus, the input dimension was

13� 17¼ 221. The outputs of the network were six dimen-

sional TVs. We trained the neural networks with 300 nodes

in the hidden layer. The number of nodes was chosen based

on a pilot experiment conducted on a couple of speakers

by varying the number of nodes from 100 to 500. The net-

work with 300 nodes in the hidden layer performed best in

terms of correlation. We did not extend the parameter

sweep (of selecting optimal number of hidden layer nodes)

to all ten speakers because that would greatly complicate

the experiment. The outputs of the trained neural network

were found to be noisy. The outputs were smoothed using

a Kalman smoothing technique to obtain smooth TV esti-

mates. Figure 3 shows the block diagram of our speech

inversion system. Note that the speaker dependent experi-

ments were performed with a shallow single hidden layer

neural network and not a DNN, unlike what is shown in

the block diagram in Fig. 3 for the speaker independent

speech inversion system.

A. Speaker transformed datasets

Using the VTLN method described in Sec. V B, each

speaker’s data were transformed to each of the other nine

speakers’ data. Thus, for each speaker, we have ten sets of

data—one set which is the original data for the speaker, and

another nine sets obtained by transforming the remaining

nine speakers’ acoustic features to the target speaker using

VTLN. In this way, we created 90 transformed datasets tai-

lored to each of the ten speakers’ acoustic spaces.

B. Speech inversion systems trained on speaker
transformed datasets

We trained four types of speech inversion systems for

each speaker as described in Sec. III. The following are the

descriptions of the different inversion systems trained.

• SD: 10 SD speech inversion systems.
• Sys1: For each speaker, data from the other nine speakers

were randomly chosen to match the amount of data from

the target speaker and an inversion system was trained. In

total, ten such systems were trained. For example, for

speaker “a,” data from Sb,…,Sj was randomly sampled to

match the amount of data in Sa.
• Sys2: For each speaker, VTLN transformed data from the

other nine speakers were randomly chosen to match the

amount of data from the target speaker and an inversion

system was trained. In total, ten such systems were

trained. For example, for speaker “a,” data from Sba,…,Sja

was randomly sampled to match the amount of data in Sa.
• Sys3: For each speaker, data from the target speaker and

the VTLN transformed data from the other nine speakers

were randomly chosen to match the amount of data from

the target speaker and an inversion system was trained. In

total, ten such systems were trained. For example, for

speaker “a,” data from Sa, Sba,…,Sja was randomly sam-

pled to match the amount of data in Sa. The difference

between System3 and System2 is that System3 has some

of the target speaker’s data in the training set.

FIG. 10. Visualization of the cross speaker test correlations. Correlation of 1 corresponds to white and 0 corresponds to black.
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In total, 40 speech inversion systems were trained. In the

above described systems, the amount of training data for each

system was kept the same in order to have a fair comparison

with the SD system. However, the transformed data available

for each target speaker was about ten times more because of

the other nine speakers’ data put together. We created versions

of Systems 1, 2, and 3 using all the transformed data. We call

these systems Sys1_alldata, Sys2_alldata, and Sys3_alldata.

C. Results of leave-one-speaker-out experiments

For each speaker, a test set containing 10% of the

speaker’s data was created and which was kept separate

from all the speech inversion training and VTLN procedure.

Each of the systems SD, System1, 2, and 3, were evaluated

on each speaker’s test set. The PPMC was computed

between the actual and estimated TVs. Table III shows the

correlation results of all the speech inversion systems across

all speakers. The numbers show correlation values averaged

across all six TVs. The correlation for LP tract variable is

the least and that for TBCL is the highest. The performance

of Sys1 is very poor compared to SD because the training

dataset for this system consists of a small number of utteran-

ces from multiple speakers. Transforming the data from the

other nine speakers to the target speaker’s acoustic space

using the proposed VTLN approach provides an average of

9.2% relative improvement in correlation over Sys1. The

amount of improvement in correlation varies across all

speakers. Some speakers like JW14 and JW24 show mar-

ginal or no improvement in the performance, whereas for

JW31, we see a large 25% relative improvement. In order to

see the influence of speaker specific training data on the per-

formance, we created Sys3, which contained a part of the tar-

get speaker’s training set data. The overall amount of

training data for Sys3 was kept the same as the amount of

training data available for each target speaker. This provided

an average of 4.4% improvement in correlation compared

to Sys2. However, the correlations of Sys3 were still rela-

tively 15% below the average correlation of the SD systems.

Table IV shows the correlation results for the speech inver-

sion systems trained with all the available data from the

other nine speakers. These are the systems Sys1_alldata,

Sys2_alldata, and Sys3_alldata as described in Sec. VII. We

observe that the results are much better than those in Table

III. The performance gain obtained by performing the VTLN

adaptation is around 5.9% relative to the correlation results

of Sys1_alldata. It is interesting to observe that adding all

the training data of the target speaker, as done in the training

of Sys3_alldata provides a system that performs nearly as

well as the speaker dependent SD systems. This demon-

strates that adding VTLN adapted data from multiple speak-

ers does not degrade the performance relative to the speaker

dependent systems.

Based on the results shown in Tables III and IV, we can

conclude that the amount of training data plays a great role

in the accuracy of the speech inversion system. Even if the

data is from multiple speakers, more data is always good.

The VTLN speaker adaptation normalizes multiple speakers’

acoustic data to match a target speaker. VTLN provides an

average of 9.2% relative improvement of correlation (Sys1

to Sys2) on the speech inversion system trained on the 9

speakers’ dataset. Adding a small amount of the target

speaker’s data in the training set improves the correlation

further by 4.4% over Sys2. In spite of performing VTLN, the

correlation performance of Sys2 trained on the transformed

data is 16% poorer relative to the SD systems. The systems

trained with all data show that having more training data

from multiple speakers can make the speech inversion sys-

tem better. The accuracy of Sys1_alldata is 15.9% relatively

poorer than SD due to the mismatch between the acoustic

spaces of the training speakers and the test speakers. With

the VTLN based transformation of the training data, the

accuracy improves by 5.9% relative to Sys1_alldata. This

means our proposed adaptation technique helps reduce the

mismatch between the acoustic spaces. Adding all of the tar-

get speakers’ training data along with the transformed data

of the other nine speakers’ is almost as good as the speaker

TABLE III. Correlation results of SD, Sys1, Sys2, and Sys3 for all speakers.

Speech inversion

system

Average amount of

training data (min)

Spk 1 Spk 2 Spk 3 Spk 4 Spk 5 Spk 6 Spk 7 Spk 8 Spk 9 Spk 10

Average

JW12 JW14 JW24 JW26 JW27 JW31 JW40 JW45 JW54 JW59

M F M F F F M M F M

SD 5.68 0.848 0.843 0.811 0.839 0.811 0.853 0.781 0.838 0.776 0.831 0.823

Sys1 5.68 0.669 0.659 0.608 0.631 0.556 0.507 0.560 0.615 0.635 0.642 0.608

Sys2 5.68 0.714 0.656 0.630 0.708 0.627 0.635 0.648 0.668 0.656 0.697 0.664

Sys3 5.68 0.738 0.699 0.715 0.738 0.660 0.708 0.583 0.685 0.687 0.717 0.693

TABLE IV. Correlation results of SD, Sys1_alldata, Sys2_alldata, and Sys3_alldata for all speakers. The row in boldface corresponding to Sys2_alldata is the

speaker independent scenario where no speech data is available for the target speaker.

Speech inversion

system

Average amount of

training data (min)

Spk 1 Spk 2 Spk 3 Spk 4 Spk 5 Spk 6 Spk 7 Spk 8 Spk 9 Spk 10

Average

JW12 JW14 JW24 JW26 JW27 JW31 JW40 JW45 JW54 JW59

M F M F F F M M F M

SD 5.68 0.848 0.843 0.811 0.839 0.811 0.853 0.781 0.838 0.776 0.831 0.823

Sys1_alldata 51.13 0.712 0.731 0.703 0.716 0.676 0.611 0.652 0.706 0.691 0.718 0.692

Sys2_alldata 51.13 0.755 0.748 0.736 0.773 0.710 0.698 0.709 0.730 0.714 0.753 0.733

Sys3_alldata 56.81 0.819 0.803 0.793 0.830 0.776 0.809 0.790 0.806 0.782 0.817 0.802
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dependent performance. The performance of Sys3_alldata is

2.5% lower relative to the SD systems.

The XRMB dataset that we use in our experiments con-

tains 46 speakers. Instead of limiting our speaker adaptation

experiments to just the ten speaker subset, we extended the

experiment outlined in Sec. IV by performing VTLN based

speaker adaptation. In our experiments in Sec. IV, we had

used five speakers in the test set of the speaker independent

speech inversion, while the train and development splits con-

tained 36 and 5 speakers, respectively. We speaker adapted

the 41 speakers in the train and development set to each of

the five test set speakers using the VTLN adaptation as out-

lined in Sec. V B. We then trained a 5-hidden-layer DNN for

each of the speaker adapted set of the training data. Each test

speaker was then evaluated using the corresponding DNN

trained on the speaker adapted training data. We obtained an

average correlation of 0.791 on the test set. Note that this

result is comparable to the result shown in Table I. We

observe that the VTLN adaptation provides a 1.15% relative

improvement in correlation compared to the results without

speaker adaptation. Perhaps the model trained on 4 h of data

containing a diverse set of 36 speakers makes the model

robust to speaker variation, and hence the VTLN adaptation

only provides a small improvement.

VIII. CROSS CORPUS EXPERIMENTS

In order to evaluate the efficacy of the VTLN speaker

adaptation in a cross corpus setting, we performed cross corpus

experiments using the EMA-IEEE and MOCHA TIMIT data-

sets described in Sec. II. The MOCHA-TIMIT dataset contains

two British English speakers: “fseq0,” and “msak0.” The

EMA-IEEE dataset contains eight American English speakers

(four males “M01–M04” and four females “F01–F04”). We

used only the normal speaking rate utterances from the EMA-

IEEE dataset for our experiments. The audio in both the data-

sets were recorded at the same sampling rate of 16 kHz.

Although the datasets were collected with different instruments

by different researchers, the articulatory data were converted to

nine TVs as outlined in Sec. II B 1. Since both datasets were

transformed to TVs using the same procedure, they are appro-

priate for performing cross corpus experiments.

For each speaker in both datasets, we trained 64 compo-

nent GMMs using the same procedure described in Sec. V. An

SD speech inversion system was trained for each speaker in

both datasets. The architecture of the speech inversion system

was the same as described in Sec. III. For this experiment, we

fixed the architecture of the neural networks as 5 hidden layer

feedforward networks with 512 nodes in each layer. The same

network architecture was used for all the speaker dependent

speech inversion systems. For all the experiments, 80% of the

speaker’s data was used for training, while 10% each was used

for cross validation and testing.

The SD systems from the MOCHA database were

evaluated on the test utterances from the speakers in the

EMA-IEEE dataset and vice versa. VTLN based speaker

adaptation as described in Sec. V B was performed on each

speaker to adapt towards the target speaker in the other data-

base. The adaptation of a test speaker was performed with

only the acoustic features from the speaker’s test set. Since

the adaptation is unsupervised, it does not require the ground

truth TVs for adaptation. The cross corpus evaluations were

performed again on the speaker adapted features. Pearson

correlation between the actual and estimated TVs was used

as the evaluation metric.

Tables V and VI show the results of the cross corpus

evaluation. The correlations are considerably low compared

to the matched corpus speaker independent systems. This is

expected because of the mismatched speakers, accent, and

corpus. We observed that the VTLN adaptation significantly

improved performance for some speaker pairs like F03-
msak0 in Table V, where it improved the correlation by

47.57%, and fsew0-M02 in Table VI, where the correlation

improved by 49.85%. The performance across gender (aver-

age correlation ¼ 0.438) without adaptation was worse than

the performance for matched gender cases (average correla-

tion ¼ 0.525). The average improvement in correlation after

speaker adaptation was 15.0% for mismatched gender test,

while it was just 1.31% for matched gender test.

TABLE V. Cross corpus evaluation of systems trained on EMA-IEEE and

tested on MOCHA database. Numbers show average correlations for cross

corpus tests with and without VTLN adaptation.

Test!
fsew0 msak0

Train #
No

adapt

With

adapt

%

Change

No

adapt

With

adapt

%

Change

F01 0.563 0.559 �0.71% 0.446 0.526 18.03%

F02 0.519 0.528 1.80% 0.355 0.434 22.31%

F03 0.469 0.496 5.88% 0.280 0.413 47.57%

F04 0.540 0.544 0.80% 0.420 0.533 27.04%

M01 0.464 0.477 2.69% 0.463 0.503 8.66%

M02 0.414 0.468 13.08% 0.509 0.492 �3.36%

M03 0.531 0.494 �6.98% 0.440 0.504 14.42%

M04 0.409 0.430 5.12% 0.515 0.524 1.90%

TABLE VI. Cross corpus evaluation of systems trained on MOCHA and tested on EMA-IEEE database. Numbers show average correlations for cross corpus

tests with and without VTLN adaptation.

Train # j Test! F01 F02 F03 F04 M01 M02 M03 M04

fsew0 No adapt 0.571 0.491 0.516 0.612 0.465 0.386 0.475 0.422

With adapt 0.556 0.490 0.481 0.612 0.514 0.578 0.505 0.455

% Change �2.61% �0.15% �6.79% 0.00% 10.44% 49.85% 6.27% 7.76%

msak0 No adapt 0.524 0.439 0.390 0.594 0.542 0.580 0.550 0.515

With adapt 0.524 0.463 0.483 0.639 0.538 0.601 0.560 0.495

% Change 0.00% 5.48% 23.78% 7.54% �0.57% 3.60% 1.87% �3.76%
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IX. DISCUSSION & CONCLUSION

In this paper, we proposed a VTLN based speaker adapta-

tion technique for acoustic-to-articulatory-speech inversion.

We also performed several speech inversion experiments on

three different datasets.

We first developed a DNN based speaker independent

speech inversion system (Sec. IV) on the multi-speaker

XRMB dataset. We explored different acoustic feature repre-

sentations (MFCC, PLP, MELFB) and also tuned the net-

work parameters of the DNN. We found a 5-hidden-layer

DNN with 512 nodes in each layer, trained with contextual-

ized MFCC features (17 frame splicing) as input was best

suited for the speaker independent speech inversion system.

We obtained a correlation of 0.782 (Table I) on a held out

set of five speakers from the XRMB dataset. For the rest of

our experiments in the paper, we fixed the speech inversion

system architecture (as shown in Fig. 3, except the number

of hidden layers in the neural network) and the input feature

as contextualized MFCCs.

We then performed cross-speaker experiments on a ran-

domly selected subset of ten speakers from the XRMB dataset

(Sec. VI). We trained speaker dependent speech inversion sys-

tems for the ten selected speakers and performed mismatched

speaker experiments across the ten speakers. The results

showed that the VTLN based speaker adaptation improves the

average correlation by 52.16% relative to the case when no

adaptation was performed in mismatched gender trials,

whereas the improvement due to VTLN adaptation in the

matched gender trials was 3.14% (Fig. 9).

In Sec. VII, we performed leave-one-speaker-out experi-

ments on the random subset of ten speakers selected for the

cross-speaker experiments. Using the VTLN adaptation, we

created speaker transformed datasets for each of the ten

speakers by converting the remaining nine speaker’s data

using VTLN adaptation. We then performed a series of

leave-one-speaker-out experiments using the speaker trans-

formed datasets. We found that the VTLN provides an aver-

age of 9.2% relative improvement in correlation in the

leave-one-speaker-out experiments. We also observed that

the amount of training data plays a great role in the accuracy

of the speech inversion system.

Finally, we performed cross-corpus speech inversion

experiments (Sec. VIII) across the MOCHA-TIMIT and

EMA-IEEE datasets. The results of the cross corpus speech

inversion experiment highlight the gender dependence of the

speech inversion system. We observe that the average corre-

lation on mismatched gender (and in this case, mismatched

corpus and accent) test was 16.6% poorer relative to the

matched gender (but mismatched corpus and accent) test.

After performing our VTLN based adaptation, the relative

gap in performance between the mismatched and matched

gender tests reduced to 6.04%. It is also interesting to note

that the VTLN adaptation had a very small effect on the

matched gender performance. This is probably because the

unsupervised GMM speaker acoustic spaces overlap well

within each gender category. In other words, the speaker

acoustic spaces of male speakers overlap with each other

and the female acoustic spaces overlap with each other. The

male and female acoustic spaces are more separated due to

the difference between the male and female vocal tract

lengths. Thus, the VTLN adaptation makes more impact on

the mismatched gender test than the matched gender case.

In this paper, we have examined the variability of

speech and articulations across speakers and developed a

speaker adaptation approach to normalize the speaker differ-

ences. The experiments in this paper show that data from

multiple speakers can be normalized and combined to create

better speaker independent speech inversion systems. This

approach can be extended to combine data from different

articulatory datasets to create a single improved speech

inversion system. The VTLN approach of transforming the

training data from multiple speakers to create multiple

speaker adapted versions can be used as data augmentation

for training speech inversion systems. In the future, we plan

to explore this method to augment the limited amount of

articulatory data available to train bigger, and more accurate

speech inversion systems. The cross corpus experiment

offers mismatch in corpus as well as accents. In the future,

we plan to perform further experiments to isolate the effects

of the accent mismatch. We also plan to further explore the

VTLN based unsupervised adaptation to improve the perfor-

mance of matched gender scenario. In all experiments, we

have assumed that the TV representation is approximately

speaker invariant. We plan to study this assumption and esti-

mate the cross speaker variability of TVs for matching utter-

ances. Exploring methods to perform speaker adaptation in

the TV domain is part of our ongoing research. We believe

that a combination of acoustic and articulatory speaker nor-

malization would further improve the performance of

speaker independent speech inversion systems.
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