BOSTON UNIVERSITY
COLLEGE OF ENGINEERING

Thesis

SPEECH EVENT DETECTION
USING STRICTLY TEMPORAL INFORMATION

ARIEL SALOMON

S.B., Massachusetts Institute of Technology, 1996

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science

2000

Approved by:

First Reader:

Dr. Carol Espy-Wilson, Associate Professor,
Department of Electrical and Computer Engineering,

Boston University

Second Reader:

Dr. Laurel Carney, Associate Professor,
Department of Biomedical Engineering,

Boston University

Third Reader:

Dr. W. C. Karl, Assistant Professor,
Department of Electrical and Computer Engineering,

Boston University

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Carol Espy-Wilson for providing direction
and support in pursuing this research, and helping me to direct my course of
study at Boston University. 1 would also like to thank my parents Michael
and Alyza Lee Salomon for encouraging me to reach this point in my studies
and my life, providing moral support, as well as for passing along the wisdom

that “the most important quality of a thesis is that it’s done”.

This work was supported by NSF grant #SBR-9729688.

il

SPEECH EVENT DETECTION
USING STRICTLY TEMPORAL INFORMATION

ARIEL SALOMON
Boston University, College of Engineering, 2000

Major Professor: Carol Espy-Wilson Associate Professor of Electrical Engineering

ABSTRACT

A major problem in the development of speech recognition systems is the under-
standing of speech in noise, or from reduced spectral information. The problem
of speech perception in noise has a long history, and the particular spectral con-
tributions to speech intelligibility are well understood. Recent studies show that,
particularly in degraded environments, another source of information that may be
of use is that of temporal cues—i.e. the temporal structure of components of the
speech signal. These cues are not primarily targeted by traditional speech recogni-
tion systems, but the auditory system is sensitive to subtle temporal effects which
suggests that this information is available and is used in human speech recognition.

In light of these facts, this thesis addresses the development of algorithms that
specifically target temporal structure. This study analyzes how much information
about important events (toward detection of linguistically-motivated landmarks) in
a speech signal can be detected using a set of temporal cues. Specific parameters
that have been developed include an adaptive energy difference measure for onset
and offset detection, as well as periodicity (and pitch) detection to segregate periodic
and aperiodic components of the speech signal.

In order to evaluate the detector, an automated system was developed which

iv

posited events based on labels from sentences in the TIMIT corpus. The resulting
comparison showed that 70.8% of expected events were detected, in particular 87.1%
of the most perceptually salient events (77.2% and 89.6% on the training set), with
over 90% success for particular event classes. It is expected that future improve-
ments can be attained, especially when temporal cues are integrated with spectral

information.

TABLE OF CONTENTS

List of Tables ix
List of Figures X
Chapter 1: Introduction 1
1.1 Background: Speech production and perception 2
1.1.1 Landmarks and irregular sampling 6

1.1.2 Acousticevents 7

1.2 Motivation: Temporal information in the auditory system 9
1.3 Previous work in temporal parameter extraction 13
1.4 Goals of the thesis L oL 14
Chapter 2: Signal Analysis 15
2.1 Defining temporal information 19
2.2 Filterbank and envelope processing 20
2.3 Periodicity analysiso oL 25
2.4 Energy difference operator 30
Chapter 3: Event Detection 36
3.1 Defining the problem 0L 37
3.2 Landmark extraction algorithm 37
3.3 Positing landmarks from phoneme labels 39
3.4 Scoringo 41

vi

Chapter 4: Procedure 44

4.1 Database 44
4.2 Training procedureo 45
4.3 Implementation 47
Chapter 5: Results 48
5.1 Periodicity detector performance L. 48
5.2 Event detection performance L. 50
5.2.1 Major sources of error 52

5.2.2 Generalissues o8
Chapter 6: Conclusions 61
Chapter T7: Areas for Further Work 63
7.1 Improving detector 63
7.2 Integration with spectral information 65
7.3 Completing the system L. 66
7.4 Development of a real-time system 66
Appendix A: Auditory filter bank 68
Appendix B: Matlab source (signal analysis, etc.) 83
B.1 High-level signal analysiscode 83
B.2 Event detection 91
B.3 Subroutines used in signal analysis 95
B.4 Pitch scoring 99
Appendix C: Tools for positing events and scoring 100
C.1 Positing landmarks (phn2lm program). 106

vii

C.2 DP Scoring (compare program)
Bibliography

Vita

viil

1.1

2.1

3.1
3.2
3.3

4.1

5.1
5.2
5.3
5.4

LIST OF TABLES

Manner classes of speech 5
CFs of auditory filter bank channels 24
Event types 38
Dynamic Programming (DP) cost structure 41
Sample scoring results oo oL 43
Trained parameters 46
Match rates, strongly expected event types o1
Summary of results: Major sources of error 53
Detailed results (training set) 54
Detailed results (test set) 55

X

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

5.1

LIST OF FIGURES

Source-filter model of speech production 4
Example landmark-labeled utterance 8
High-level representations in the primary auditory cortex 12
Evolution of the energy difference operator 17
A temporal modulation transfer function 20
Output channels from envelope processing 22
Average Magnitude Difference Function (vs. autocorrelation) 27
Selection of pitch estimates., 28
Pitch estimate histogram processing 29
Parameter extraction results (male speaker) 32
Parameter extraction results (female speaker) 34
Sample of pitch analysis, compared with reference get_fO detector . . 49

Chapter 1

INTRODUCTION

This thesis investigates the use of temporal information for extraction of lin-
guistically relevant details from a speech signal, in the context of a larger project
building a knowledge-based speech recognition system based on distinctive features.
The larger project is the development of a structured method for analysis of speech
signals based on knowledge of the nature of those signals, as understood from studies
of the acoustical properties of speech production (refer to [1] for exhaustive cover-
age of this body of knowledge). Goals of this thesis include extending theoretical
understanding of the extent and type of temporal information in a speech signal
and its correspondence to linguistic details. More directly, the goal is a prototype
system for extraction of temporal cues which could be used as a component of an
automated speech recognition system.

The motivations for this work come from studies of speech perception. A major
problem in the development of speech recognition systems is the understanding of
speech in noise, or from reduced spectral information. The study of speech per-
ception in noise has a long history, and the effects of spectral degradation (such
as adding noise) on speech intelligibility are well understood, note for example the
work of Miller & Nicely [2]. However, recent studies show that another source of
information that may be of use, particularly in degraded environments, is from tem-
poral cues—information derived from the temporal structure of components of the

speech signal. These cues are not targeted by traditional speech recognition systems,

which generally focus on spectral features using data-derived spectral templates. As
the auditory system is sensitive to subtle temporal effects, such as phase locking of
auditory nerve firing to periodic signals, it suggests that this information should be
available for use in human speech recognition. This is shown to be the case in studies
by Van Tasell et al. [3, 4], Shannon et al. [5], and Turner et al. [6] (among others)
which demonstrate the ability of human listeners to recognize speech—particularly
consonant manner, nasality, and voicing—from primarily temporal cues.

The goals of this work are algorithms which can be integrated into the front
end of a knowledge-based speech recognition system. The system developed in this
thesis locates acoustically abrupt events in a speech signal, toward the discovery
of landmarks in speech, or linguistically important points of analysis in the signal.
Landmarks are a phonologically motivated set of locations in the signal at which
further feature extraction is required, for the purpose of classifying adjacent or sur-
rounding regions. Locating a set of landmarks in the speech signal is intended to
direct an efficient analysis of linguistically-relevant information in the signal, as well
as to provide a first-order analysis of the signal content.

To introduce the linguistically motivated nature of this research, background
regarding the production and perception of speech, and correspondingly about the
definition of landmarks as understood in this study, is presented in Section 1.1.
Further discussion of the motivation for this work from research on perception of
speech from temporal cues is in Section 1.2. Some previous work on the use of
temporal parameters is discussed in Section 1.3. Finally, the specific goals of this

work are considered in Section 1.4.

1.1 Background: Speech production and perception

In the human speech production system, a sequence of discrete elements are trans-

lated into an analog, continuous acoustic signal by the vocal apparatus [7]. The

process of understanding speech can be considered to be a reconstruction of the
discrete stream of symbols (whether phonemes, words, etc.) from the speech signal.
In other words, speech understanding is the process of trying to determine the set
of symbols that were intended to be transmitted, based on the acoustical signal

L. To perform the task of speech recognition from

received by the auditory system
the acoustic signal, knowledge of the production mechanisms must be understood:
both the functional apparatus, and the ways in which it is used (particularly with
respect to representations in the brain).

Speech is produced by a source (air from the lungs, forced through the glottis)
exciting a complex adaptive filter (the vocal tract), which changes as the articulators
(tongue, lips, etc.) move to produce different sounds. The source includes the vocal
folds, which have the capability to produce voicing, a regular periodic excitation at
a rate referred to as the fundamental frequency (F0). The vocal tract can also be
adjusted to produce a turbulent source further forward in the vocal tract, such as
for a fricative consonant (e.g. /s/). This forward source can be generated in the
presence of voicing (e.g. /z/). Further, the articulators can be moved in more subtle
ways to modify the vocal tract filter, most importantly characterized by the major
poles of the system, referred to as formants. The filter stage produces a number of
important phonetic distinctions, most importantly the movement of the body of the
tongue during vocalic regions which adjusts the positions of the first two formants
to produce different vowel sounds.

Through implicit knowledge of the way in which this vocal apparatus works in
general, and information about the language such as the types of distinctions that
are expected (the phonetic dictionary of the particular language being spoken), a

machine or human listener tries to recover a discrete sequence from the signal. Use of

1 Of course, the acoustical information will be combined with other types of information, including
knowledge of the language, discourse context, and other modalities such as visual cues (e.g. lip-

reading).

ISl

)

10dB

T

I

0

2

ﬂj Tﬂzrm

5

IT ()l
(dB) 20

IR

l0d8

le, (0]
n

10dB

T

]

+

Bt

/1N

|

1

n

[‘rm’[r it

o

Figure 3.1 Sketches indicating components of the output spectrum |p,(f)| for a vowel and a
fricative consonant. The output spectrum is the product of a source spectrum 5(f), a transfer
function T(f), and a radiation characteristic R(f). The source spectra are similar to those derived
in figures 2.10 and 2.33 in chapter 2. For the periodic source, 5(f) represents the amplitudes of
spectral components; for the noise source, S(f) is amplitude in a specified bandwidth. See text.

Figure 1.1:

signal is produced by exciting the vocal tract with an excitation signal, either with

the periodic source of the vocal folds, or by generating a turbulent source further

2

(a)

forward in the vocal tract.

FREQUENCY (kHz)

ISl
4

1048 |

T

TeI

10d8 |

Tt

Ny -

IR(£)
4|

10d8

e

o

=

lp, [

'
1048
°F

1

0o

2

3

FREQUENCY (kHz)

(b)

1
4

Source-filter model of speech production, taken from [1].

The speech

knowledge-based representations in speech recognition involves explicit application
of knowledge of speech production and linguistics, and corresponding implications
for speech perception, to the recognition problem:.

When considering the initial analysis of the acoustic signal, an important level
of representation is at the phonological level: as a sequence of phonemes (speech
sounds). These phonemes are segments (which may be overlapping) that can be
thought of as being made up of bundles of features describing how they are pro-
duced. Features can be divided into two types: manner features and place features.
Manner features describe the overall mode of articulation of a speech segment, e.g.
the distinction between /sh/ and /y/, though both are produced with roughly the
same part of the tongue. Place features describe more specific details of the artic-
ulators used, such as differentiating the stop consonant /b/, produced by the lips
against the upper teeth (labiodental) from /d/, produced with the tongue tip against

the alveolar ridge. A summary of major manner classes? is listed in Table 1.1. An-

2 Corresponding to the primary manner features, £sonorant, +syllabic, +nasal, £continuant.

Table 1.1: Manner classes of speech. Manner class of a phonetic segment is the

mode of production, in terms of classification of the configuration of the vocal tract.

Class Vocal tract configuration

vowels vocal tract open, excitation is periodic

semivowels | vocal tract slightly constricted, excitation is periodic

nasals vocal tract closed but with nasal coupling, excitation is periodic
fricatives vocal tract narrowly constricted to produce turbulent noise, primary
excitation is aperiodic

stops vocal tract completely closed to build up pressure (silence) and air

is suddenly released (transient), primary excitation is aperiodic

other important manner feature is voicing® (/s/ vs. /z/), which is the presence of

periodic excitation from the glottal source.

1.1.1 Landmarks and irregular sampling

Not all regions of a signal have the same information content: steady-state portions
can be sampled slowly to determine overall properties, while abrupt changes can
contain a significant number of linguistically important cues in a concentrated re-
gion. A useful concept is to consider speech segments in terms of the vocal tract
approaching a target position where the acoustical signal results in the most reli-
able information about the features of the segment being produced. The transition
regions between these points may contain information about the segment, but most
importantly in the type of transitions in and out of the target position. Landmarks
can be considered to be these points where a target position has been reached (in a
steady state region), and where a target results in an abrupt change in signal quality
(e.g. closure or release point of a consonant).

The placement and types of landmarks are strongly related to the manner fea-
tures of the corresponding segments [8]. As these locations are important places to
initiate further detailed analysis of the signal, this implies an early stage of process-
ing in a knowledge-based speech recognition system ought to be location of these
landmarks. This is a similar approach to those taken by Espy-Wilson [9, 10], and
Liu [11, 12]. Further analysis starting at the points where landmarks are located will
enable the system to identify the features of the segments that were produced. The
directed analysis in this model is intended both to decrease the overall processing

load, as well as to disregard less reliable information in the signal.

31.e. the feature tvoice.

1.1.2 Acoustic events

This study examines a method for extraction of abrupt acoustic events—locations
where abrupt changes occur in a speech signal. The specific parameters used to
determine these locations depend on changes in spectral energy or in the periodicity
content of the signal. This work relies on the assumption that a majority of the
landmarks, as well as related events which may not be landmarks in the most strictly
linguistically defined sense, will be locatable as events in the speech signal. These
events will be cues for the location of landmarks in the speech signal. It is proposed
that the abrupt events capture the ‘temporal dynamics’ of the speech signal. The
object of detecting these events is that they are related to a set of landmarks in the
speech signal.

Identification of events is the first stage leading toward location of landmarks in
the signal. This of course will be followed by higher-level composition for recognition
of segments, words, and any further interpretation by higher levels of processing.
These later stages of processing increasingly involve linguistic knowledge such as
the set of contrastive segments available in the language, a lexicon of words, etc.
However, at the level of the event detector only minimal knowledge about speech
production is applied.

Sample event-level labels for an utterance are shown in Figure 1.2 in panel (3)
below the corresponding TIMIT segment labels. Note in particular the event labeled
+c at 657ms, which is the stop burst for the consonant /p/, and the following —c
and +v events corresponding to the end of the initial burst and then the onset of
voicing. In the case of the stop consonant, the burst (between the +c and —c events)
has a significantly different spectral energy profile than the following vowel. Note
also the complexity of events near 1000ms corresponding to the glottal stop (labelled
/q/ in TIMIT); this segment is due to the word-initial vowel of the word ‘outage’,

and is common in this context. It can be seen in the spectrogram in panel (1) that

8000

6000

4000

Frequency

2000

0 1 15 2 25
(1) Spectrogram; Time (s)
T T T T
a huge power outage rarely occurs
T
h# ‘ax:hviy: @ ux dcljh pclp aw axr q aw dxixdcl jh - r > eh roliy tixkel k er z h#
I I 1 I
0 500 1000 1500 2000 2500
(2) Time—-domain signal
+C +v -\LC +C. *"C +s +C +V‘ +C +\‘I +C +C
v #C *C *V +s

-V -C

-C

Y

+s

-s -V —-C

1000

I
1500
(3) Parameter extraction

Figure 1.2: Example landmark-labeled utterance: Labels from utterance “A huge

power outage rarely occurs,’

)

spoken by a female speaker. Segment labels in (2) are

from TIMIT database; acoustic event labels in (3) are a set of events corresponding

to landmarks in the signal, note relations to parameter signals.

the spectrum of the irregular energy bursts are very similar to the following vowel,

unlike the case of the /p/ described above.

1.2 DMotivation: Temporal information in the auditory system

This project has been motivated by the study of temporal information used in speech
perception and recognition by human and machine. Understanding of spectral con-
tributions to speech perception are well understood. Miller and Nicely [2] showed
that low-pass filtering or adding noise in various frequency bands to a signal did
not significantly affect perception of gross manner distinctions (such as voicing and
nasality), but did severely affect perception of place of articulation. This is evi-
dence for the fact that spectral cues are very important for place, but may be less
important for manner features.

More recent research has shown that it is possible to recognize speech from an
impoverished signal which conveyed primarily temporal information [3, 4, 5, 6]. The
major thrust of this research has been in understanding the types of difficulties
that people with hearing deficits have with speech perception, in particular with
respect to cochlear implant technology. A variety of processing methods have been
employed to produce stimuli used in perceptual tests, but the general result has been
that spectrally degraded speech still contains information about manner features.
The two studies that will be examined in detail are those from Van Tasell et al. [3]
and Shannon et al. [5].

In the earlier study, Van Tasell et al. used speech low-pass filtered with cutoffs at
20Hz, 200Hz, or 2kHz to extract the envelope of the speech signal; this envelope was
used to modulate the amplitude of white noise. These degraded signals, which were
intended to model the hearing of users of a single-channel cochlear implant, do not
have any of the spectral structure of speech but do contain temporal modulations

that correspond to the speech signal. A group of 12 subjects listened to stimuli

10

consisting of /aCa/ syllables (where C is a consonant, e.g. /aba/) containing 19
medial consonants in each of 4 conditions: the 3 degraded versions and a clean
version. In each trial, subjects made a decision about which of the 19 consonants in
the stimuli set they heard.

Multidimensional scaling analysis applied to the decisions showed that three ma-
jor distinctions were made by the listeners: 1) a “voicing envelope” parameter, which
distinguished voiced consonants /b,d,g,v,dh,z,zh,mn,rlyy/ from the unvoiced con-
sonants /p,t,k.fith,s;sh/; an “amplitude envelope” parameter, which distinguished
the sonorant consonants /m,n,r,l;y/ — which have a relatively strong energy profile
in this context — from the rest of the consonants; and a “burst envelope” parame-
ter, which distinguished the voiceless stops /p,t,k/ from the rest of the consonants.
These parameters correspond to a breakdown of consonants by classes of manner
and voicing, although manner distinctions were less strong among the voiced conso-
nants. It was also noted that performance in the task improved significantly from
the 20Hz condition to the 200Hz condition, but did not improve significantly from
the 200Hz condition to the 2000Hz condition suggesting that the most important
temporal information for this task was at fluctuation rates below 200Hz. More de-
tailed analysis with stimuli from multiple speakers, and across both listeners with
normal hearing and users of cochlear implants are discussed in [4].

Shannon et al. [5] have also shown that manner classes of speech sounds can be
recognized by human listeners based on spectrally degraded speech. In this case, the
degraded signal was produced by computing envelope functions over several bands
of the speech signal, and then using these envelopes to modulate white noise (filtered
by the original bandpass filter used for analysis) in the corresponding bands. Prior to
modulation, the envelopes were low-pass filtered at various rates to produce several
conditions with different maximum modulation rates. In the multi-band cases (2
bands with cutoff at 800Hz, 3 bands with cutoffs at 800Hz and 1500Hz, or 4 bands
with cutoffs at 800Hz, 1500Hz, and 2500Hz), some high-level spectral information

11

has been preserved; this is intended to model a multi-channel cochlear implant.
As before, this processing generates a reconstructed version of the signal where
all fine spectral structure in the signal has been removed but information about
temporal structure is preserved. Although performance significantly improved from
the single channel case to the 2-channel case, there was no significant improvement
in recognition of manner and voicing from the 2-channel case to 3 or 4 channels,
with the results consistently around 90% information transfer.

This study also noted that decreasing the envelope filter cutoff from 500Hz or
160Hz down to 50Hz caused no significant degradation in recognition performance,
though some decrease in performance was seen with an envelope filter at 16Hz;
suggesting that temporal accuracy in the range of 20-62.5ms (16-50Hz) and above
is critical for speech recognition. Manner and voicing were strongly present in the
degraded signal, which suggests that humans can use dynamic temporal information
to recognize manner class of speech, and therefore that temporal cues are relevant
and robust for detection of manner and voicing.

Considering these results, it should be possible to build a detector for acoustic
events that is both largely independent of detailed spectral information and resistant
to noise. Further, addition of temporal parameters should also improve performance

and increase noise resistance for a system based on spectral information.

As speech perception in humans relies on the information available in the audi-
tory perception system, it is important to consider the types of information available
in neurophysiological representations. Two important results have bearing on the
work in this thesis. The first relates to the use of bandpass envelope structure as a cue
in the auditory system. It has been shown that envelope representations are present
in the higher level auditory system, note for instance work by Joris [15, 16, 17] which
discusses the use of an envelope model in the process of extracting intra-aural level

differences and intra-aural time differences in the task of sound localization. There

12

onse type:
Lol Ll 1l response P
@) T 1t ~ excitatory
L1 2 L 1 Ill.}lL !:_:

(®) i T U0 F L inhibitory
© H | M on

e -
@ |RIBRLAN ‘off

—_—— -

i T
(e) _m*“ ‘on-off’
tone 055

sinusoidal frequency modulation L“

ra——]
®_-_-_-_-_1_J A\

upward frequency ramp downward frequency 2 time
ramp

Figure 9. Variety of response types of cells in primary auditory cortex. (a-¢) Types of response to steady tones. (f; g
Cell responding to frequency-modulated, not steady tones. Note response selectivity to direction of frequency sweep:

in the downward direction, not to upward sweeps. Black envelope indicates excursions of frequencies illustrated by
the waveforms to the right. (From Evans 1968, 1982.)

Figure 1.3: High-level representations in the primary auditory cortex. Note partic-

ular responses to onsets (c, e) and offsets (d, e) of tones. Reprinted from Evans [13],

originally from [14].

13

is also evidence of higher-level cortical representations of onset and offset responses
in the brain. Note Figure 1.3 from Evans [13, 14] which shows sample responses of

a number of cells in the primary auditory cortex.

1.3 Previous work in temporal parameter extraction

In the Speech Communication Laboratory, we have studied another version of the
problem of temporal parameter extraction. Our previous work [18] involved extract-
ing a set of temporal parameters for use in a classification task for consonants in
intervocalic context. This study involved use of an energy difference operator to
extract acoustically abrupt locations in the speech signal, as described in Chapter 2
using a short-time Fourier transform (STFT) for spectral analysis. The events were
matched to a standard consonant template via a heuristic algorithm, within a region
defined by the transcribed location of the consonant in the signal. The parameters
extracted included the strength and time differences among the events. In this study,
87.2% correct manner and 93.8% correct voicing was achieved across a database of
382 sentences containing 1564 intervocalic consonants. Error analysis showed that
a more detailed study of the temporal structure of speech and robust algorithms to
extract relevant information were needed.

Further work [19] showed that a consonant manner classifier based on event
detection from temporal cues can be resistant to spectral degradation (of the same
sort used by Shannon et al.) In particular, the classification mechanism was resistant
to noise and performed as well as the best human listeners on the same dataset?*, as
long as a hand-labeled event extraction was performed. This work again suggested
that an event extraction approach could be successful in speech analysis, though

focusing on the requirement for accurate underlying detectors.

4 Experiments with human listeners performed by M. Matthies and L. Davis in the Boston

University department of Communication Disorders.

14

Another approach to use of temporal parameters in speech recognition has been
suggested by Sharma and Hermansky [20]. In this method, features are extracted
by taking a rather long temporal trajectory in a single frequency band, referred to
as a TRAP (TempoRAIl Pattern). Both a simple linear correlation classifier, and a
multi-layer perceptron (MLP) classifier, applied to the TRAPs showed performance

comparable to a baseline classifier based on spectral parameters.

1.4 Goals of the thesis

The major goal of this thesis is reliable extraction of temporal parameters for use
in a speech recognition system. In the context of the knowledge-based recognition
paradigm, it is proposed that these parameters are important for location of speech
landmarks. As such, the system constructed in this thesis uses strictly temporal
parameters for location of landmarks in the speech signal. The expected output of
the system is a set of potential landmark locations, with some degree of classification
as possible from temporal information, such as voicing which is cued by periodicity.
Comparison with a set of landmark labels (in the case of this thesis, generated from

a transcribed database of speech) will allow judging how well this has been done.

Chapter 2

SIGNAL ANALYSIS

The major algorithm used for event location in this project is an onset/offset
detector based on a first difference measure, that was originally derived from the
stop burst onset detector by Bitar [21], also used for abrupt event detection by
Espy-Wilson [9, 10]. The onset/offset measure is constructed from first differences
in each channel output from a spectral analyzer, originally a short-time Fourier
transform (STFT), implemented with an FFT. The first difference is computed as a
log difference between the sum amplitude of two adjacent non-overlapping windows

of the signal in a particular channel, as per the equation

D, x(n) = 201log Z zi(n + m)w;(m) — 20 log Z zi(n+m — k)wy(m — k)

m=—oQ m=—oQ

(2.1)

where x;(n) is an individual channel input signal, k is the time difference between
the two windows, and the windows wj2(n) are (usually, rectangular) windows of
length < k. The computed difference is scaled in decibels (dB). This first difference
operation is essentially the same as the rate-of-rise (ROR) detector used by Liu [11].

From these per-channel differences, two measures are computed: the positive
differences (increasing levels) are summed to produce an ‘onset’ signal, and the neg-
ative differences (decreasing levels) are summed to produce an ‘offset’ signal. The
offset parameter is usually inverted for analysis to make it positive, allowing gener-
alization of all further computations; note that the non-inverted negative version of

the parameter is the one shown in all figures. A scaling by %, where N is the total

16

number of channels, produces values on a dB scale:

o)== Y Disln) (2.2)

i€{i:D; 1 (n)>0}

= Dix(n) (2.3)
ie{i:D; (n)<0}

It was observed that by increasing the window sizes (and correspondingly in-
creasing k, referred to as difference time), for the first difference computation, noise
in the measurement over the utterance is reduced. This modification of the detec-
tor targets slower rates of fluctuation in the temporal envelopes of the signal. This
allows a wider range of events to be detected: the full set of abrupt events that we
are interested in, rather than just stop bursts. Events are located at peaks (dips)
in the onset (offset) parameter. The detector was also modified to produce greater
temporal resolution by decreasing the step size from 5ms to 1ms. An unfortunate
side effect of lengthening the window sizes was a decrease in the strength of peaks
in the onset signal associated with stop bursts, resulting in the development in this
thesis of a dynamic method of adjusting difference length based on features of the
signal. Several versions of these parameters are shown in Figure 2.1.

In this thesis, the parameter set was increased to include periodicity measure-
ments, as well as improvements to the energy difference operator to sharpen its
response in a number of ways, in particular by adapting the difference time ac-
cording to periodicity information. This enables targeting more of the temporal
information in the signal. These two types of parameters—periodicity and energy
differences—are then integrated to locate a set of events in the signal, a procedure
that is discussed in detail in Chapter 3. The times of these events are derived both
from peaks in the onset and offset waveforms, and from additional events generated
by the beginning and end of confidently periodic or aperiodic components in the

signal.

17

8000

6000

4000

Frequency

2000 -

6

2.4 2.

NG}

(1) Spectrogram (time in s)

clamp : solves ‘the: ! problem

roaabclhl axm: hi#

1400 1600 1800 2000 2200 2400 2600 2800
(2) Original onset/offset operator based on STFT, 18ms diff time

-20gel ko 1: ae pclp s ao 1 :v. z :dhixpel p

claﬁ1p : solves “the ! problem

"0l - k 1 ae mlpcp s ao l:v: z dhixpcl: p .r: aa bclblaxm: h#]

1400 1600 1800 2000 2200 2400 2600 2800
(3) Onset/offset operator based on auditory filter bank, 15ms constant diff time

clarhp : solves “the - " ‘problem

@
©
20kl k1 ae m¥pcl P s a0 | v z dhixpcl p r aa bclblaxm: h#]|
_40 - .
1 1 1 1 1 1
1400 1600 1800 2000 2200 2400 2600 2800

(4) Onset/offset operator based on auditory filter bank, adaptive diff time

Figure 2.1a: Evolution of the energy difference operator. Top panel is the spectro-

[43

gram of the utterance clamp solves the problem,” spoken by a female speaker.
Panel (2) shows the original STFT difference operator; panel (3) is a modified ver-
sion of the above based on an auditory filter bank front end; and panel (4) is the

present dynamic auditory version of the detector.

18

8000 o <
! 1)'*‘

6000 ; -
>
Q
)
3 4000 f .
9 {
£ .

2000

(1) Spectrogram (time in s)

30 glot[él ‘ etiqu tte f mandates cbmpliance 1
201 ﬂuctqiltions |
10 :

h# g ehdxih kel k:ih itcl: m . ae ndd ey fclt s'kcl k. em pcl p:l: ay

0 200 400 600 800 1000 1200 1400 1600
(2) Original onset/offset operator based on STFT, 18ms diff time

30l etiquette mandates : compliance |
20+ pitch rippliné .
o 10f / : N
©
0
-10| : B
—20F h# [qiehdxih¥cl k:ih ‘tcl: m | ae ndd ey fclts'kel k. em pcl p 1. ay
0 200 400 600 800 1000 1200 1400 1600
(3) Onset/offset operator based on auditory filter bank, 15ms constant diff time
30F - T : T - T T - =
improved etiquette : mandates compliance
20 rglottal reponse oversensitivity 7
o -/ -
g o 1

-10
-20

h# g .ehdxih kel kK ih | , ndd ey fclts kel k: em pcl p 1. ay

0 200 400 600 800 1000 1200 1400 1600
(4) Onset/offset operator based on auditory filter bank, adaptive diff time

-30

Figure 2.1b: Evolution of the energy difference operator. Difference operators for the

b

utterance “Etiquette mandates compli(ance..),” spoken by a male speaker. Panels
as in (a). Note pitch rippling effect due to misalignment of windows with pitch
periods, and glottal effects of fluctuation on the onset and offset waveform which is

largely absent in the adaptive version in panel (4).

19

A discussion of the range of temporal information available in the signal is dis-
cussed in Section 2.1. Generation of temporal envelopes to be analyzed (filterbank
and envelope processing) is discussed in Section 2.2. Computation of pitch and pe-
riodicity measurements and corresponding information about aperiodic excitation
are developed in Section 2.3. Finally, the current version of the energy difference
operation, which includes adaptation to context information from the periodicity

subsystem, is described in Section 2.4.

2.1 Defining temporal information

For the purpose of this study, it is helpful to specify exactly what is meant by the
“temporal information” in the signal. In this study, we define temporal information
as the structure of envelopes of bandpass components of the speech signal. This
is especially important in terms of characterizing the results of the previous work,
which suggested that not all temporal information we were interested in targeting
was being captured. A productive system of categorization for temporal informa-
tion has been suggested by Rosen [22], who proposes three categories of temporal
information in speech: (1) “envelope information” (with fluctuations at rates from 2
to 50Hz) which contains amplitude and duration cues to manner of articulation and
voicing, as well as information about vowel identity (e.g. vowel length) and prosodic
cues; (2) “periodicity information” (fluctuations at rates from approximately 50 to
500Hz) provides cues to voicing which can aid in manner identification, as well as
marking stress locations by changes in pitch; and (3) “fine structure” (fluctuations at
higher rates) which provides information about spectral shape which is most useful
for identifying place of articulation for consonants and vowel quality, though there
are some cues for manner such as the high-frequency content of many obstruents.
These categories imply that use of temporal information for a recognizer (partic-

ularly when combined with spectral cues) should concentrate on two major types

20

25 i
20} 4
“10k .

1 ! L |
2 10 100 1000
MODULATION FREQUENCY (Hz)

20 LOG m
o

FIG. 4.1 A temporal modulation transfer function (TMTF). A broadband white
noise was sinusoidally amplitude modulated, and the threshold amount of
modulation required for detection is plotted as a function of modulation rate.
The amount of modulation is specified as 20 log(m), where m is the modulation
index (see Chapter 3, section 2E). The higher the sensitivity to modulation, the
more negative is this quantity. Adapted from Bacon and Viemeister (1985b).

Figure 2.2: A temporal modulation transfer function [23], adapted from [24].

of information: low-frequency envelope, and periodicity associated with pitch. The
low-frequency amplitude envelope (or more specifically, the sharpest changes in this
envelope) are captured in this work by an energy difference measure.

Note that according to Viemeister [25, 24], normal-hearing subjects cannot de-
tect amplitude fluctuations above about 1000Hz; and that response to modulation
degrades rapidly above 100Hz (see figure 2.2). This suggests that at most human
listeners can only derive first-formant information from the temporal fine structure,
and possibly that no information regarding fluctuations above the rate of pitch mod-
ulations are perceptually significant. Further, there is evidence [26] which suggests
that particular ranges of low-frequency envelope information are relevant for par-
ticular types of distinctions, in particular with respect to energy fluctuation rates

below 30Hz.

2.2 Filterbank and envelope processing

A number of options exist for spectral analysis and envelope processing. The version
of the energy difference method used in earlier work [18, 19] used a STFT which has
characteristics of linear scaling in frequency, and constant bandwidths among chan-

nels. Smoothing in this system was provided by the windows (6ms Hamming) used

21

prior to the Fourier transform. Due to the pre-STFT windowing (6ms Hamming),
the windows in Equation 2.1 (applied over the per-ms STFT samples) were chosen
to be slightly shorter (15ms) than the difference length of 18ms. This processing
method was determined to be less than optimal, noting two specific problems: fre-
quency scaling and the level of smoothing. In terms of frequency scaling, the human
auditory system is much more sensitive in the range of speech to low frequencies
(near the first formant and fundamental) than higher frequencies due to the ap-
proximately logarithmic scaling of frequency along the cochlea (particularly for high
frequencies), whereas the STFT difference measure was overly sensitive to high fre-
quency information. Additionally, in the time domain, the windowing method in
the earlier work was overly smoothed, as each window in the difference measure
was computed from approximately 20ms of the input signal between the hamming
window and rectangular averaging over the window.

The particular envelopes which are used in this work are generated from the
outputs of an auditory vy-tone filterbank with characteristic frequencies (CFs) based
on physiological data as per Carney [27, 28]. Note that the CFs, which are listed in
Table 2.1 for the 60-channel version of the model used in this thesis, are roughly lin-
early spaced at low frequencies and logarithmically spaced at higher frequencies; and
also that the bandwidths are approximately constant-Q. An auditory filter bank was
chosen for spectral analysis in order to provide an accurate weighting of frequency
components, most importantly in terms of the strength of events corresponding to
voicing excitation of speech relative to their unvoiced counterparts. A sample set of
envelope outputs for an utterance are shown in Figure 2.3a; note detailed views of
a voiced region and an unvoiced region in Figure 2.3b.

As a particular example of the weighting issue, note the example of a vowel as
compared with a fricative. The original STFT linear filterbank was overly sensitive
to unvoiced sounds such as the fricative /sh/ or the africate /j/, which can be seen

at an offset of 550ms in Figure 2.3a. These segments usually exhibit a strong energy

22

Envelope Outputs
T T

30 o 7531
- TN st

CF (Hz)

5908
5231
4629

\
—
/

3620
3199

2824
I USRI . M P N v A \ / 2492

1935

1702
L e —— A Ao A1 1405

1311

1148

1003
875
761

\
)
10 ‘ 569

489
418
355
299
5 249
205
166
131
100

O — —
—MW—HWW—HMWW—‘——W Stimulus

1 1 1 I
0 500 1000 1500 2000 2500
Time (ms)

Figure 2.3a: Output channels from envelope processing, for the utterance “A huge
power outage rarely occurs,” spoken by a female speaker (note that only every second

channel is shown). Close-ups of the marked regions are shown in Figure 2.3b.

22

20

18

16

14

12

10

@

CF (Hz)

. T 453
- 1 418
- 386
- - - - - 355

A 326
299
O L pmassi bt finfisif bttty ietondrtenditodivted] Stimulus
| | | |
700 750 800 850 900 950
Time (ms)
(b)
22 : CF (H2)
20 8000
7531
18 A e e e A A e 7088
6671
16 6279
5908

10

T e o & o T e W et

Stimulus

2200

|
2250 2300 2350
Time (ms)

2400

23

Figure 2.3b: Output channels from envelope processing for two regions in the utter-

ance. Part (a) shows the explicit voicing in low frequency channels during a vowel;

part (b) shows unvoiced excitation in high frequencies which is clearly aperiodic.

24

Table 2.1: CFs of auditory filter bank channels

CF| #|CF | #| CF | #| CF || # | CF || #| CF
100 || 11 [299 || 21 | 659 | 31 | 1311 || 41 | 2492 | 51 | 4629
115 | 12 | 326 || 22 | 708 || 32 | 1400 || 42 | 2653 || 52 | 4921
131 || 13 | 355 || 23 | 761 | 33 | 1495 || 43 | 2824 || 53 | 5231
148 || 14 | 386 || 24 | 816 | 34 | 1595 || 44 | 3006 || 54 | 5560
166 || 15 | 418 || 25 | 875 || 35 | 1702 || 45 | 3199 || 55 | 5908
185 || 16 | 453 || 26 | 937 || 36 | 1815 || 46 | 3403 || 56 | 6279
205 || 17 | 489 || 27 | 1003 || 37 | 1935 || 47 | 3620 || 57 | 6671
226 || 18 | 528 || 28 | 1074 || 38 | 2062 || 48 | 3850 || 58 | 7088
249 || 19 | 569 || 29 | 1148 || 39 | 2197 || 49 | 4095 || 59 | 7531
10 | 273 || 20 | 613 || 30 | 1227 || 40 | 2340 || 50 | 4354 || 60 | 8000

© 0 ~ O ot e w o o~ | Tk

Characteristic frequencies (CF) are in Hz.

profile over more than half of the spectrum under consideration, from approximately
2500Hz up to the Nyquist rate of 8kHz (as the sampling rate in the TIMIT corpus
is 16kHz). Note that the onset of such a segment is certainly not more and likely
somewhat less perceptually significant than a vowel which may be strong in less
than half as much of the linear spectrum, e.g. from 100Hz up to 2500Hz (a range
which will usually contain the excitation frequency and the first three formants).
The auditory filter bank, on the other hand, contains twice as many channels from
100-2400Hz (40 channels) as from 2400-8000Hz (20 channels). It is also worth noting
that most vowels will have sharp dips in the spectrum between formant frequencies,
and will exhibit most energy near harmonic frequencies (and essentially no energy
between them and below the fundamental pitch); as such, a number of channels

among these 40 will not be strongly excited.

25

In order to avoid excessive smoothing in the time domain, the simple linear
smoothing (spectrum averaging implicit in the windowing operation for the difference
operator) was replaced by an envelope operator based on the Hilbert information.

The envelopes e;(t) of the individual channels are obtained by the function

ei(t) = |zi(t) + 5 - H{zi()}| (2.4)

where z;(t) is the input signal, and H{z;(¢)} is the Hilbert transform [29] of the
input signal. Given a real bandpass signal as input, the Hilbert transform produces
a version of its input signal that is precisely 90° out of phase, such that the amplitude
of the complex sum of these two signals is an estimate of the low-frequency amplitude
modulation applied to the signal (it is also possible to obtain the instantaneous
frequency, i.e. the frequency modulation applied to the narrowband signal, by looking
at the phase component of the complex sum).

This transform is an improvement over a simple smoothing or filtering because
abrupt changes are preserved, at the maximum rate that can be captured by the
particular channel given its CF. It also has the advantage of preserving periodicity
of amplitude modulation, especially when that rate is significantly slower than the
CF—for example the fundamental frequency of voiced speech as compared with
much of the spectrum in the range of the formant frequencies (especially above the
first formant, which can be close to the fundamental). It is important to be able to

detect periodicity in these higher frequency channels.

2.3 Periodicity analysis

An estimate of the pitch, the fundamental frequency of vibration corresponding to
voiced excitation, of the speech signal is computed by producing estimates of the
fundamental period in every individual channel and combining by way of a modified
histogram. By producing estimates independently in all channels, the degree of

periodic excitation can be determined by counting the number of channels that

26

agree with the determined pitch, weighted by confidence. The degree of aperiodic
excitation is computed by counting the number of non-silent channels (above a
silence threshold, as discussed below) that either do not appear to be periodic, or
do not agree with the primary pitch estimate.

The measure used to generate raw estimates of pitch period, and a corresponding
confidence of periodicity, is the short-time Average Magnitude Difference Function

(AMDF), as defined in Rabiner & Schafer [30]:

(k) = Y |x(n+m)w(m) — x(n+m — k)w(m — k)| (2.5)

m=—o0
where z(n) is the input signal, and w(m) in this case is a 20ms rectangular window.
This function looks roughly like an inverted autocorrelation function, as shown in
Figure 2.4. The pitch period estimate is produced by choosing the sharpest dip in
the function, which is the point where windowed segments are most similar.

In each channel, periodicity estimates are made approximately once every pitch
period using the AMDF measure. At each estimate location, a window of roughly
the length of the current pitch period is first tested for silence by comparing the
maximum value in the region with a constant threshold (approximately 66dB below
the maximum signal level!). If this region is below the silence threshold, no AMDF
measure is taken as the channel is considered silent at that point. Otherwise, an
AMDF measure v,(k) is taken and the pitch estimate is extracted by finding the
maximum dip in the AMDF using a convex hull A(k) (from left to right, i.e. low & to
high k). The confidence of a pitch estimate is taken as the depth of the dip relative
to the hull (W), as shown by the dotted lines in Figure 2.4. The chosen pitch
period is the most confident dip according to this measure.

Periodicity estimates are combined across channels using a modified histogram

L Sample values from —32768-32767 are scaled by a factor of 107%, giving a dynamic range
of —29.7dB; the threshold used at this stage in the trained system was —90dB relative to the

reference value of 1.0, giving a silence threshold of roughly 60.3dB from the theoretical maximum.

27

AMDF Autocorrelation
x10™ (@) x10°° (b)
5 1.4
1.2 M
4
— 1
3 E
33 £08
3 S
&2 W 0.6
= <
< 0.4
1
pp = 5.38ms 0.2 pp =5.31ms
conf=0.88 conf =1.02
0 0
0 5 10 15 20 0 5 10 15 20
x10°° (d)
5
4
© P
8 g
S £3
c >
3 5
5 w2
O _
= < pp =6.81ms
< 1 conf=0.17
pp = 15.5ms
conf=0.18
0 0
0 5 10 15 20 0 5 10 15 20
Time (ms) Time (ms)

Figure 2.4: Average Magnitude Difference Function (vs. autocorrelation). The
Average Magnitude Difference Function (AMDF) and Autocorrelation (ACF) for
the same segments of voiced and unvoiced speech in an individual channel. Note
that the functions are shaped similarly but with an inverted sense of the vertical
axis. AMDF measurements are augmented with a dotted line showing the convex
hull where it is different from the function, and a vertical line at the chosen pitch
period. Note also the confidence metrics and pitch estimates below. In the AMDF,
the pitch estimate is the most confident dip, measured by (depth of dip) / (hull
height). In the autocorrelation function, the pitch estimate is the first peak, with
the voicing confidence measure (peak height) /| ACF(1), i.e. peak height scaled by

lag-1 autocorrelation.

28

L/ N I VLA
n-k n n+N Channel i-1——= I/| \\II [AN [1) |

W,) I | | | |
Channel i %I | | [|

|
Ch litl—=_ | T VT a7 1
NAVAVAVAVAVARSY et AN A | N \\l/{ |
\(
n

relevant time period n) n,

(2) (b)

Figure 2.5: Selection of pitch estimates. In (a), note that the relevant time period
for a pitch estimate starts at the beginning of wy (which is at time n — k) and ends
at the end of wy (which is at time n + N, where N is the length of the window). In
(b), each pair of windows denotes a pitch estimate (perhaps all in a single channel).
Note that by the definition above multiple relevant pitch estimates are available at

each point labeled with an 1 in (b).

across all relevant estimates. This set is defined by considering each estimate as
relevant for a period from one pitch period back from the estimate time (the lag in
the AMDF used to produce the estimate), to a distance of the length of the window
(20ms) forward, illustrated by Figure 2.5a). As such the set of relevant estimates at
time step n contains all estimates such that the time under analysis is present in this
region of relevance for the estimate, as shown in Figure 2.5b. Each contribution to
the histogram is scaled by the confidence value of the AMDF measurement and only
values with a confidence greater than 0.3 are considered. The histogram over sample
increment values is smoothed with a 15-sample wide (0.94ms) Hamming window,
as shown for both voiced and unvoiced speech in Figure 2.6. Note that often most

estimates in the voiced case were within 2 samples of the chosen peak, along with

29

(1) Pitch histogram for voiced region

50 T T T
— 40 B
c
o
S 30 B
o
€20 _
@
AN ’
0 ! ! ! ! ///’\\ |
0 50 100 150 200 250 300
(2) Pitch histogram on boundary of unvoiced region
50 T T T T
« 40 1
c
o
o 30 B
(]
€20 B
@
tor A\ I
0 | A 1 1 | e SN |
0 50 100 150 200 250 300
(3) Pitch histogram for unvoiced region (note adjusted scale)
5 T T T T
o 4r b
c
o
O 3+ 4
©
E2r _
@
1 - —
0 Ay AN MMW«(N\ mﬁ\ﬂ‘\ﬂm !
0 50 100 150 200 250 300

Pitch period est (samples)

Figure 2.6: Pitch estimate histogram processing. Pitch period estimates are com-
bined using a modified histogram. Plotted here are the raw histogram (sum of con-
fidence measures at each sample delay), with a superimposed Hamming-smoothed
version that is used for the decision. Note that confidence measures are computed

separately after this decision has been made.

30

minor peaks at multiples of the pitch period corresponding to channels where an
AMDF dip corresponding to a subharmonic was chosen.

A summary periodicity confidence measure P, is generated by summing the
confidence measures of channels near the chosen pitch (or at a multiple of 2). Corre-
spondingly, the summary aperiodicity measure AP,..¢ is a simple count of channels
that are not silent, but either have a very low confidence of periodicity (< 0.3) or
are not in agreement with the selected pitch period. These are shown in panel (2) of
Figures 2.7 and 2.8. The cleaner region-oriented measures in panel (3) are produced
by median smoothing and applying thresholds, along with a pruning procedure that
requires a maximum peak value for each confident region (discussed in more detail

in Chapter 3).

2.4 Energy difference operator

The spectral energy difference operator computes a rate of spectral change. The
version used in this thesis has been improved by modifying it such that rather than
a constant difference time, the difference time (and corresponding window lengths)
are adapted dynamically according to information extracted by the periodicity and
silence detection systems. The energy difference detector is adapted in each channel
independently, with difference length targets based on the existence of silence or pe-
riodic/aperiodic excitation, and according to the pitch estimate in periodic regions.

Rules are as follows:

e Difference time is shortened (5ms) for silence, to sharpen response to onsets

from silence (for example stop bursts).

e Difference time is lengthened (30ms) in aperiodic regions, to maximally smooth

the first difference output in fricated regions.

e Difference time is tuned to exactly twice the pitch period in periodic regions,

31

to prevent detection of spurious energy fluctuation due to misalignment with

the pitch period (what is referred to as pitch ripple in Figure 2.1).

There is also a slew rate control of 0.5ms per millisecond (the difference operator is
sampled every ms) to prevent discontinuities.

This set of parameters in combination over a speech signal visibly provide useful
information about the content of the signal, as can be seen in Figures 2.7 and 2.8.
Note that the periodicity and aperiodicity confidence measures provide a decompo-
sition of the signal into periodic (roughly, voiced) and aperiodic pieces. Also note
that the onset and offset measures have peaks at many of the important events in the
signal. The next stage of processing is automated extraction of events, a procedure

that is discussed in the following chapter.

8000

6000

4000

Frequency

2000

50

conf

Hz / conf
[
o
o

T
|
' I kl
-]
W q.l..»..nrl“lll"" U i
i il ((f{A
mmu |
0 0.2 0.4 0. 6 1.2
1) Spectrogram (time in s)
T
0 800 1000 1200
T T
0 400 600 800 1000 1200
2) Raw summary perlodl(:lty and aperlodlcny (3) smoothed pitch, aperlodlcny confidence
T T T
i broken

h# fdhax‘; s , ao ;ix Z bclhr ow

. the saw : |s

kel kix n

-30 Jpau
0 200 400 600 800 1000 1200
(4) Chosen peaks with reference transcription
30 +C e +v +c +C +v
20 +v +v +s

‘—V —C | _S‘ -V | -=v =C —S‘ -V

200 400 600 800 1000
(5) Chosen peaks with generated events

1200

32

+&C

—-C

Figure 2.7a: Parameter extraction results (male speaker). Panel (1) is the spectro-

gram of the utterance, “The saw is broken,

.” Vertical lines mark labeled phoneme

boundaries. Panel (2) shows raw summary periodicity and aperiodicity confidence

scores (marked with ‘x’).

Panel (3) shows smoothed pitch in confidently periodic

regions, aperiodicity confidence (‘x’) in confidently aperiodic regions. (cont.)

33

8000 ' T
i
6000 - i ° : b §
2 i
S qoool kb
5 N
i
2000 -
£
0— !
14 1.6 .
(1) Spectrogram (time in s)
T T
50 T
E ;MA @K:il m
Q
(5]
oL x&& QM ‘
1400 1600 1800 2000 2200 2400 2600 2800
T T T T T T T
€
8 1001 .
5
0 | ﬁ | f\ | | | | |
1400 1600 1800 2000 2200 2400 2600 2800
(2) Raw summary periodicity and aperiodicity; (3) smoothed pitch, aperiodicity confidence
30 so chop “the © wood' . " inQead C A
20 : : : :
10
g 0
-10
-20 : : d - ® :
pau -30F = s ow :tcl i ch: aa pclpdhyax w :uhdciix: n @ s tcft: eh dcld H#
1400 1600 1800 2000 2200 2400 2600 2800
(4) Chosen peaks with reference transcription
—30F - < | v “c., -V -=C =S -v -y ¢ e i
1400 1600 1800 2000 2200 2400 2600 2800

(5) Chosen peaks with generated events
Figure 2.7b: Parameter extraction results (male speaker, cont.) Continuation of
utterance, “ ... so chop the wood instead.” Panels (1)-(3) as in 2.7a. Panel (4)
contains the onset and offset signals with chosen peaks labeled with stems. Labels
are superimposed on the detector output signals, both the words (top) and phonemes

(bottom). Panel (5) contains detected events.

8000

34

6000

4000

Frequency

2000

0 0.2 0.4 0.6 0.8 1
(1) Spectrogram (time in s)

i m&/\ Mm(\

0 1000

1200 1400

Hz / conf
N
o
=)
T

0 ﬂﬁf\ﬁ 1.

0 400 1000

) Raw summary periodicity and apenodlcny, 3) smoothed pitch, aperiodicity confidence

1200 1400

o' thomas ‘ thinks a |

_aok h# . aa :m: ah S ,dh ih nkdk s ax: |

aa r_.dcljhiaxr: kel

0 200 400 600 800 1000
(4) Chosen peaks with reference transcription

1200 1400

o) T T T T T

0 200 400 600 800 1000
(5) Chosen peaks with generated events

Figure 2.8a: Parameter extraction results (female speaker).

trogram of the utterance, “Thomas thinks a larger clamp ..

speaker. Panels as in Figure 2.7.

Panel (1) is the spec-

.,” spoken by a female

8000
6000
>
(8]
c
S 4000
2
L
2000
1.4 1.6 1.8 2 2.2 24 2.6 2.8
(1) Spectrogram (time in s)
T T T
50 B
E
Q
o
m \N\/ﬂ\m et p&/x mﬁr/_w
1400 1600 1800 2000 2200 2400 2600 2800
T T T T T T
€
Q
2 200 i
N
EIn b] 10
0 | 1 | | 1 |
1400 1600 1800 2000 2200 2400 2600 2800

(2) Raw summary periodicity and aperiodicity; (3) smoothed pitch, aperiodicity confidence

clarhp solves "the ‘ problem
N 0

20
m 0
©
-20
_407cl k ;1. a8 mpclp s ao :|l:v: z _dhixpel: p r:aa:bclhlaxxm: h#]
1400 1600 1800 2000 2200 2400 2600 2800

(4) Chosen peaks with reference transcription

-40&

—=C

-c ¢ —C -C “c —C @ —C -V =g -V TC

1400

| 1 -
1600 1800 2000 2200 2400 2600 2800
(5) Chosen peaks with generated events

35

Figure 2.8b: Parameter extraction results (female speaker, cont.) Continuation of

the utterance,

4]

solves the problem.” Panels as in Figure 2.7.

Chapter 3

EVENT DETECTION

The goal of event detection is to generate a set of proto-landmarks—referred
to as events—that will direct further analysis of the speech signal. To ensure the
success of further levels of processing (outside the scope of this thesis), this set
should be reasonably complete with respect to the perceptually sharpest events,
for example events corresponding to stop consonant bursts, strident fricatives, and
stressed vowels. Note that insertions will be discarded by further analysis. On
the other hand, it is likely that some weaker events are going to be captured less
often: semivowels (particularly the glides /w/ and /y/), for which the primary cues
consist of formant movement; weak fricatives which have become sonorant, such as
a common pronunciation of the /v/ in “everyday” [31]; and other cases of events
that do not involve a significant degree of energy fluctuation. In cases of heavily
coarticulated segments, it is expected that the output of the system will reflect
the type of events that actually occurred rather than the canonical events expected
from segment-based labels (e.g. sonorant events rather than onset and offset of
frication for the /v/ above). Some unusual cases that are hoped to be detectable are
boundaries between segments with the same manner, particularly adjacent fricatives
or adjacent vowels, though they are most often unlikely to have strong events of the

types targeted by the signal analysis.

37

3.1 Defining the problem

For the purpose of detection, a set of event types based on acoustic parameters
have been defined, and are listed in Table 3.1. The categories correspond to the
polarity (onset or offset of energy) of the event, and their correlation with periodic
and/or aperiodic excitation. Events are labelled based on their occurrence either at
a boundary where periodic content begins or ends (+v, correlated with voicing onset
or offset), surrounded by periodic excitation (+s, correlated with sonorant conso-
nant boundaries), or occurrence at a boundary of aperiodic excitation or at least
occurring outside of periodic excitation (+c, correlated with obstruent consonants).
The output of the event detector consists of this set of event labels. The example
utterance in Figure 1.2 shows a sample use of these labels as applied to a real speech

signal.

3.2 Landmark extraction algorithm

The two types of low-level information discussed in Chapter 2, periodicity and on-
set/offset, are combined to locate events. Summary periodicity and aperiodicity
confidence measures are analyzed (after median smoothing) to locate potential con-
fident regions and their boundaries. In the first pass, these boundaries are associated
with peaks in the onset or offset parameters (depending on the type of boundary)
to locate a subset of events that are indicated from both information sources. A
second pass generates event labels for those events that are only evident from a
single source.

The set of confidently periodic/aperiodic regions is determined by applying a
minimum threshold for the maximum P,.,,; or AP, for a region. Following this, a
lower threshold is used to find the boundaries of each region. These thresholds have
been trained, and there is a separate pair of thresholds for the two types of regions.

There is also some pruning of regions to clean up the output of the periodicity

38

Table 3.1: Event types

Label Name Description (examples)

+v voicing onset | onset corresponding to beginning of periodicity
(beginning of a vowel or sonorant consonant)
—v voicing offset | offset corresponding to end of periodicity

(end of a vowel or sonorant consonant)

+s sonorant onset | onset within periodic region
(onset at release of nasal or semivowel)
—s sonorant offset | offset within periodic region

(offset at closure for nasal or semivowel)

+c | obstruent onset | onset corresponding to beginning of aperiodicity
(stop consonant burst, affricate or fricative onset)

—c | obstruent offset | offset corresponding to end of aperiodicity

(stop, affricate or fricative offset)

detector. Periodic regions are discarded if the pitch within the region doesn’t agree
with the median pitch of the utterance (off by more than a factor of 2). Aperiodic
regions are discarded unless at least one end of the region is associated with an
onset /offset event, i.e. the beginning of the region near an onset event or the end
of the region near an offset event. They are also discarded if the surrounding region
is completely periodic (as there is often a spurious aperiodic response at abrupt
boundaries within sonorant regions, e.g. nasal closures and releases), or if the region
is shorter than 10ms.

The onset and offset parameters are converted into a sequence of potential events
by use of a convex hull-based peak-picking algorithm. There are thresholds for
minimum peak height, and a required minimum dip between two adjacent peaks.

These thresholds were also trained; there were two independent sets for peaks in the

39

onset and offset parameters, for a total of 4 parameters.

Onset and offset peaks are associated with boundaries of periodic/aperiodic re-
gions in order to classify event types. Onset/offset peaks located near the begin-
ning/end of a periodic region are labeled as +v. Correspondingly, onset/offset peaks
located near the beginning/end of an aperiodic region are labeled as +c. The crite-
rion for this locality is determined by another set of trained thresholds. Remaining
boundaries of confidently periodic/aperiodic regions are labeled as landmarks of the
same types but the times are less accurate, as the periodicity results are compiled
only every 2.5ms (and the underlying AMDF measurements are made even less of-
ten, roughly once per pitch period), whereas onset/offset parameters are computed
with a 1ms frame rate and are a type of measure that is inherently more accurate in
time. Remaining onset/offset peaks are labeled as +s if they are within a periodic
region, or +c if they are outside of any periodic region. The full set of trained

parameters used in this process are listed in detail in Table 4.1.

3.3 Positing landmarks from phoneme labels

For the purpose of comparing with the reference transcription, a set of expected
landmarks was generated from the phoneme-labeled transcriptions available in the
TIMIT database. These were generated using a simple rule-based algorithm based
on manner class of adjacent segments at each boundary, and are expected to have
some inherent error due to the decreased level of information available from the
phonetically-labelled level of representation available in the TIMIT corpus. Some
of this underspecification is accounted for by inserting events which are labeled as
‘non-required’ because they are possible, and should be caught by the matching

algorithm, but not necessarily strongly expected. The rules are as follows:

e At a boundary between a sonorant (vowel or sonorant consonant) segment

and a nonsonorant (including silence such as a stop closure; or a stop, frica-

40

tive or africate): the system posits a —v event if the sonorant is before the
nonsonorant, or a +v event if the sonorant segment follows the nonsonorant

segment.

e At a boundary between a sonorant consonant and a vowel, the system posits a
+s event if the consonant is before the vowel, and a —s event if the consonant

follows the vowel.

e Obstruent consonants generate posited +c events: for every obstruent conso-
nant a +c is posited at the beginning and a —c at the end. However, in the
case of obstruents adjacent to other obstruents, these events are considered

non-required.

This means that there will be a —c at a stop closure following a fricative or other
obstruent consonant, and a —v at a stop closure following a sonorant segment.
Note that these rules often result in two events (+c¢ and —v, or +v and —c)
co-occurring at a boundary between two segments with no clear order. For example,
either order is possible between the +c and —v events at a boundary where a vowel
is followed by a fricative, though there is some correlation with voicing as there
is more likely to be overlap between the segments if the fricative is voiced. This
problem required modifications to the scoring algorithm for increased flexibility, as

discussed below. There are also some special cases:

e An extra non-required —c event is inserted halfway through a stop burst, as
many bursts (particularly those for unvoiced stops) will have an offset of energy
both at the point where the fricated noise source stops and aspiration begins,

and again at the end of the aspiration entering a following segment.

e An extra non-required +c event is inserted after the first one for a velar (/k/

or /g/) stop burst, because these stops often generate a double burst on release

41

Table 3.2: Dynamic Programming (DP) cost structure

Type Cost
Match 1/ms distance
Insertion 20
Deletion 50
Deletion (non-required event) 0
Substitution (same polarity) 50 4+ 1/ms distance
Substitution (opp. polarity) | 100 + 1/ms distance

due to the larger area of the closure region between the tongue dorsum and

the palate.

e A non-required +s event pair is generated between adjacent vowels or adjacent
sonorant, consonants, as it is expected that some energy change may occur at

these points and this allows them to be matched with a posited event.

3.4 Scoring

A standard algorithm used for scoring speech recognizer performance at the phonetic
level was modified to support scoring landmark results. The algorithm was derived
from the DARPA speech recognizer performance evaluation tools [32], a standard
set of code for scoring results of speech recognition systems. This code aligns a rec-
ognized token string with reference labels using a dynamic programming algorithm.
The original code supported scoring costs for insertions, deletions, and substitutions
in a stream of labels. Modifications were made to perform the task of landmark
scoring: a) a cost was added for the difference in time (in ms) from the posited

label (as per Section 3.3) to the detected label, to ensure that label matches and

42

substitutions were close in time (insertion/deletion costs are equivalent to the cost of
a matching label off by 50ms); b) support for non-required events with zero deletion
cost was added; ¢) support for pairs of co-occurring events which could be found in
either order was added, for example the onset of a fricative at the same point as
the offset of the preceding vowel; and d) substitution cost was doubled in the case
that the polarity was incorrect, such that 4+c for —c was a more costly substitution
than —v for —c, as it was more likely in the polarity mismatch cases that there
was actually both an insertion and a deletion, rather than just a substitution. Due
to inclusion of a cost for the distance in time between the posited and generated
events, this type of substitution would never be chosen by the scoring algorithm, as
the cost structure makes it cheaper for the system to count it as an insertion plus a
deletion.

Additional adjustments in the final score were made to ignore insertions before
the beginning and after the end of the labelled speech, under the assumption that
integrating an endpoint detector in the system would prevent positing events at
these locations. A sample of the results of the scoring process over an utterance is
shown in Table 3.3 for the sentence “A huge power outage rarely occurs.” (the same
utterance shown in Figure 1.2), spoken by a female speaker. Note that the deletions

only occurred for sonorant +s events at times 356.0ms, 1607.44ms, and 1712.75m:s.

43

Table 3.3: Sample scoring results. A * in the recognized column indicates a deletion;
a * in the reference (posited event) column indicates an insertion (with the label
of the region in which it was inserted). A question mark (7) in the reference label

indicates a non-required event.

Time Recog. Ref. Label(s) Time Recog. Ref. Label(s)
145.00 +c * o h# 1184.00 -S -s aw;dx
155.00 +v +v h#ax 1209.00 +s +s dx;ix
190.00 -C * ax 1282.00 -V -V ix;dcl
20750 +c¢ +c axhv 1323.00 +c +c deljh
210.00 -V -v ax;hv 1384.00 -C -C jhir
310.00 +v +v hv;y 1445.00 -C * r
310.00 -C -¢c hwvyy 1467.50 +v +v jhir
356.00 * 4s yux 1479.00 +s +s reh
483.00 -v -v ux;dcl 1607.44 * -s eh;r
514.00 +c +c dcljh 1663.12 * 45787 1l
606.00 -¢c -c jh:pcl 171275 * +s Liy
657.00 +c +c pclip 1855.00 -V -V ix;kel
664.00 -C -¢? pclp 1903.00 +c +c kel;k
682.00 +c * p 1957.00 -C -c? kel;k
707.50 +v +v p;aw 1940.91 * +c? kel;k
720.00 -C -¢? p;aw 1992.00 +v +v k;er
978.00 -v -V axr;q 1992.50 -C -c? k;er
1007.00 +c +c axryq 2212.00 -V -V er:z
1025.00 +v +v qaw 2233.00 +c +c er;z
1037.00 +s * o q 2379.00 -C -C z:h#
1060.00 -c -c? qaw 2493.00 -c * h#
Insertions: 4 (4 2 beyond endpoints)
Deletions: 3 (+ 3 neutral deletions of non-required labels)
Substitutions: 0
Net errors: 7 (+ 5 accounted for)

Chapter 4

PROCEDURE

This chapter describes details of the implementation and testing of the temporal
event extraction system. Section 4.1 describes the database used for training and
test; Section 4.2 discusses the parameter training procedure; and Section 4.3 is a
list of the tools used in implementing the system (with references to code in the

Appendix).

4.1 Database

The TIMIT database [33] was used as a corpora of labelled speech data. This is
a widely available database of speech labelled at the level of words and phoneme
strings. Although it would have been more useful to use a database labelled at the
landmark level (e.g. a database currently under development at the Massachusetts
Institute of Technology [34]), a large enough database of this type was not yet
available.

The TIMIT database consists of 6300 utterances spoken by 630 speakers, of
which 4620 utterances make up the suggested training set and 1680 are in the test

set. These include three types of sentences:

e sx (5 sentences per speaker) — phonetically compact sentences, a set of sen-
tences designed to have a full set of phonetic contexts, in terms of co-occurring

pairs of phones

e si (3 unique sentences per speaker) — phonetically diverse sentences, a set of

sentences from existing text (including the Brown corpus)

45

e sa (2 sentences, spoken by every speaker) — “shibboleth” sentences designed

to expose interesting variations across dialect types (not useful for this task)

Training was performed using a set of 20 of the sx sentences (spoken by 10 males, 10
females) randomly drawn from the TIMIT training set. Testing was performed using
all 120 sx sentences from a subset of the TIMIT test set referred to as the TIMIT
core test set, which (including an additional 3 si sentences per speaker) contains a
well balanced and complete set of phonetic contexts and includes 40 sx (and 24 si)
sentences spoken by 8 female speakers, and 80 sx (and 48 si) sentences spoken by

16 male speakers evenly distributed over all 8 dialect regions.

4.2 'Training procedure

Some adjustment and training was performed on a number of the time, energy,
and confidence level thresholds involved in pitch detector interpretation and event
extraction.

The training procedure involved adjusting a set of 12 parameters, listed in Ta-
ble 4.1. The procedure was a somewhat ad hoc series of adjustment of sets of
thresholds considered to be related (the subgroups noted in the table). Each set was

trained over a matrix of specified values to maximize the score:
Sopt = (# req’d matches) — (# insertions) (4.1)

This is equivalent to minimizing the total error rate, as the base number of posited
required events will not change. This training process was iterated twice to ensure
some degree of convergence. Although minor improvements were made by adjusting
the thresholds, it is likely that they are too closely associated with particulars of
the database (recording characteristics, etc.) for general use. Note on the other
hand that in a number of cases, there were parameters (individual or pairs) that

could be chosen at a number of values with either no change or very minimal change

Table 4.1: Parameters with trained values.

46

Pon and Poff refer to the boundary

‘events’ of a periodic region; APon and APoff are the corresponding locations for an

aperiodic region.

Parameter Description Value
Sil_thres Silence threshold -75.0dB
Pon_before Maximum time between Pon and correspond- 20.0ms
ing onset peak, if peak precedes Pon

Pon_after Maximum time between Pon and correspond- 5.0ms
ing onset peak, if peak follows Pon

PER_thres_ RGN “Region threshold” on P,..,¢ to consider a re- 10.0
gion as periodic

PER_thres “Boundary threshold” on P, to located 5.0
ends of a periodic region

Poff_time Maximum time between Poff and correspond- 45.0ms
ing offset peak.

AP _time Maximum time between APon/APoff and | 30.0ms
corresponding onset/offset peak

APER _thres. RGN | “Region threshold” on AP..,s to consider a 12.0
region as aperiodic

APER_thres “Boundary threshold” on AP, to located 6.0
ends of an aperiodic region

On_peak_thres Minimum peak height in onset measure 5.0

On_dip_thres Minimum dip between peaks in onset measure 3.0

Off_peak_thres Minimum peak height in offset measure 4.0

Off dip_thres Minimum dip between peaks in offset measure 3.5

47

in performance according to the metric used, which implies a degree of general-
ity. For example, when training the thresholds for aperiodic regions, there were
a number of threshold pairs for APER_thres RGN and APER _thres (for example,
APER_thres RGN at 10.0 and APER _thres at 8.0) that caused no significant change
in the results. It is likely that a real system would use higher-level processes to ad-
just some of these thresholds dynamically. Note Sections 5.1 and 7.1 which discuss
ways that the pitch detection algorithm could be improved to minimize dependency

on thresholding.

4.3 Implementation

Several stages were involved in running the system. Initial data processing consisted
of the auditory filter bank, which is a C program modified slightly from a version
acquired from Michael Heinz and Laurel Carney [28].

The Hilbert envelope operation was computed using an FIR approximation in
Matlab™ (although a higher performance version was developed). All other com-
ponents described in Chapter 2 regarding the low-level detector (first difference,
onset /offset detector, and periodicity analysis) have been implemented in Matlab,
with some glue code written in Perl or as BASH shell scripts. This includes the
event detector, which is written in Matlab as well.

For scoring there are C++ programs for the positing of events from TIMIT labels,
and the matcher (described in Section 3.4, and derived from DARPA code [32]).
Again, there is a large amount of scripting involved in this process. Final analysis
of the data is mostly written in Perl.

Much of this code is available in the Appendices.

Chapter 5

RESULTS

The system works reasonably well for extracting events that are strongly present
and, for the purpose of scoring, consistently labeled. The pitch detector is a criti-
cal component, in particular regarding the temporal accuracy of the boundaries of
regions of periodic and aperiodic excitation; analysis of the performance of the pe-
riodicity detector is covered in Section 5.1. Overall, 70.8% of events were detected
including 87.4% of a set considered to be robust for temporal information (77.2%
and 90.7% on the training set), including over 90.0% for particular categories. De-
tailed performance results are discussed in Section 5.2, including the metrics used

and analysis of the major sources of error.

5.1 Periodicity detector performance

In order to optimally locate events that are indicated by the boundaries of regions
of periodic or aperiodic excitation, the periodicity detection system must perform
well. In particular, for accurate event detection, temporal accuracy of these region
boundaries must be acceptable—this is part of the reason for the various trained
time thresholds for integration of information from the two low-level detectors. The
modified two-level threshold used to detect boundaries was designed with this goal
in mind (though there may be further improvements that could be made).
Performance of the pitch detector was compared with the commercially available
Entropic ESPS [35] get_fO component as a reference. The voicing decisions agreed

88.7% of the time on the test set (89.1% on the training set). The temporal detector

49

- | _ i
2 N
9] | s
=) i i f
o] It
9 i !
iy 1 o
i
: u !mm- |
25
T
— get_fO
e temporal
i 200 y
ey
2
0 [P i ! : \
0 500 1000 1500 2500
(2) Pitch estimate (get_f0)
300 T T T
get_fO
— o : — temporal
207 B PO]
< 1] - N bR
2 R
a 100 Il‘ : C 7]
0 1 : 1 1 1 ! . H 1
0 500 1000 1500 2500

(3) Pitch estimate (temporal)

Figure 5.1: Sample of pitch analysis, compared with reference get_fO detector. The
utterance is the sentence “Barb’s gold bracelet was a graduation present,” spoken

by a female speaker.

is somewhat more conservative in deciding that a region is periodic; for example
the voice-bar region near 700ms in Figure 5.1, which is labeled as aperiodic by the
detector. Error in pitch decisions, scaled relative to median pitch for each utterance,
was 13.4% (12.0% training).

It was noted that a major type of error in both pitch detectors was occasional
choice of a pitch of approximately one half the correct pitch (twice the correct pitch
period). One example of this type of error is located at approximately 1800ms in
Figure 5.1. This type of error is due to the time-domain peak picking used in the

temporal detector system (get_f0 also involves some time-domain methods). This

20

error occurs more often in female speech because the male pitch period lengths are
often above one half the 20ms window length used (if pitch < 100Hz), implicitly
preventing this type of error. In order to determine how often this factor-of-2 error
occurred, frames were counted in which the error between the two detectors was
improved by multiplying one or the other by a factor of 2. For the test set, this
occurred in 0.55% (0.91% for female speech, 0.37% for male speech) of the frames for
the get_f0 detector, and in 1.62% (2.78% for female speech, 1.03% for male speech)
of the frames for the temporal detector. Performing the adjustments reduced pitch
error to 8.58% on the test set, concentrated in the male speech (and only 4.91% on

the training set).

5.2 [Event detection performance

A set of summary statistics was defined to analyze matching results. All are defined
in terms of the base rate Ty, the number of posited tokens not counting neutral
deletions (of tokens marked as non-required). Defining T as the total number of
posited tokens, D as the number of error deletions (of required tokens), Dy as the
number of neutral deletions, S as the number of substitutions, and I as the number

of insertions, the metrics are computed according to the following formulas:

base token count: Tr =Tp — Dy (base rate of matched tokens) (5.1)
TR —D—-S
detection rate: Ry = RTi (also called ‘match rate’) (5.2)
R
. D
deletion rate: Rp = — (5.3)
Tk
o S
substitution rate: Rg= — (5.4)
Tk

(collectively, deletion and substitution are referred to as ‘miss rate’)

1
insertion rate: R; = — (5.5)
Tr

o1

Table 5.1: Match rates, strongly expected event types

Event type Train Test
closure preceding stop consonant | 88.5% | 89.6%
stop burst 92.2% | 88.3%
voicing onset following stop 88.4% | 82.5%
africate 100.0% | 93.4%
africate — voicing 88.9% | 91.4%
strident fricative 93.5% | 90.3%
strident fricative — voicing 80.9% | 82.8%
Summary 89.6% | 87.1%

Events were detected with overall detection rate of 70.8% on the test data set
(77.2% on the training set), and an insertion rate of 12.0% (10.1%). Nearly half
of the error rate was due to missed boundaries between sonorant consonants and
vowels, an event type that was detected with only 41.6% (46.7%) accuracy. Note
that even in the transcription of the TIMIT database [33], an explicit rule was used
to insert these boundaries when they were not reliably locatable by a trained human
transcriber. The other major error source was from weak (non-strident) fricatives,
for a total of over 60% of misses from these two sources. Not counting the two
major sources of error (see Table 5.2), the detection rate was 83.2% (87.9%); and
the detection rate for a set of the most robustly expected event types was 87.1%
(89.6%). Most of the insertion rate was due to fluctuations in vowel, fricative or
closure regions.

Among robust event types that performed well were stop consonants and strident
fricatives, with an 89.6% match rate for stop closures, 88.3% for stop bursts, and

90.3% for strident fricative consonantal events for the test set. Even better results

02

were achieved for africate consonants (/ch/, /j/), with 93.4% match rate for the
consonantal events and 91.4% for corresponding voicing events (though note that
these were relatively infrequent segment types). For stop bursts, almost half of the
errors (46.4%, 6/13 of the deletions and 20/43 of the substitutions) were due to
/b/ bursts which tend to be relatively weak or hard to detect (discussed below).
Also, for strident fricatives a large proportion of deletions were due to the voiced
/z/ and /zh/ fricatives which can have a very difficult to locate boundary due to
overlap with neigboring segments; specifically, these stridents accounted for 76%
of the +c (consonantal) deletions and 64.0% of the £v (voicing) deletions among
strident fricatives.

Regarding boundaries between segments with the same manner, as mentioned
in Chapter 3, there were detections of events at 21 of 28 (75.0%) fricative-fricative
boundaries and 15 of 47 (31.9%) sonorant-sonorant boundaries (most likely located
at nasal-glide or vice versa) detected in the test set, and 5/7 (71.4%) and 2/7 (28.6%)
respectively in the training set. More results for robustly expected event types are
listed in Table 5.1, and detailed results for all common event types are detailed in

Tables 5.3 and 5.4.

5.2.1 Major sources of error

There were a number of error types that were responsible for the majority of the

error rate. These include the following:

Sonorant events The most difficult type of event to locate from strictly temporal
information, accounting for approximately 40% of the miss rate, were those associ-
ated with sonorant consonants. In previous work on abrupt landmark detection by
Liu [12], slightly better performance was obtained by adding some dependency on
spectral structure (in particular, sonorant events were associated with energy change

in midrange channels from 800-5000 Hz). However, it has been noted in previous

53

Table 5.2: Summary of results: Major sources of error (% of misses/insertions)

Misses: Context | Train | Test Insertions: Context | Train | Test
vowel-sonorant | 42.0% | 39.9% stop closure 24.5% | 20.2%
weak fricative 20.3% | 22.9% vowel 13.8% | 28.0%
stop events 15.6% | 13.8% fricative 25.5% | 23.2%
closures T1% | 4.5% strident fricative | 12.8% | 12.1%
bursts 3.9% | 3.8% weak fricative 12.8% | 11.2%
voicing onsets | 4.7% | 5.3% stop 9.6% | 9.2%
strident fricative | 8.8% | 9.4% sonorant consonant | 9.6% | 8.7%

work by Espy-Wilson [9, 10] that it is critical to include formant tracking to locate
these events, as the major cue for sonorant consonants is a decrease in the first for-
mant frequency in conjunction with a sharp change in the frequency of the 224 (/w/,
/y/) or 3 (/r/, /1/) formant. In a strictly temporal system (or when spectral in-
formation is unavailable), it would be necessary to posit likely insertion—especially
in pre-vocalic context—based on features such as vowel duration, that is positing a
potential missed sonorant consonant if a vowel is too long according to a high-level
duration model'. At these points, further analysis such as formant tracking would

be required to clarify the existence of a landmark.

Weak fricatives Another difficult to locate event class were those that signal the
existence of a weak (or non-strident) fricative, which include /f/, /v/, /th/ (as in
‘thin’), and /dh/ (as in ‘this’). In some cases, particularly for the voiced fricative
/v/, it is likely that the fricative has actually been produced as a sonorant. In

other cases the events associated with these segments are simply not very strong.

! though there may be other reasons for a long vowel, such as a pair of adjacent vowels

Table 5.3: Detailed results (training set)

Match Deletion Substitution | Total

Total tokens | 718 (57.6%) | 345% (27.7%) | 50 (4.0%) | 1246
Counted tokens (Tx) | 718 (77.2%) | 162 (17.4%) | 50 (5.4%) | 930
Stop closures | 115 (88.5%) 2 (1.5%) | 13 (10.0%) | 130

Stop bursts | 95 (92.2%) 0 (0.0%) | 8 (7.8%) | 103

Stop Von | 76 (88.4%) | 10 (11.6%)| 0 (0.0%) | 86

Africates | 24 (100.0%) 0 (0.0%) | 0 (0.0%) 24

Africate Von 8 (88.9%) 1 (11.1%) | 0 (0.0%) 9
Strident fr | 100 (93.5%) | 5 (47%)| 2 (1.9%) | 107

Str frvoic | 55 (80.9%)| 9 (13.2%)| 4 (5.9%)| 68
Summary robust | 447 (89.6%) 27 (5.4%) |25 (5.0%) | 499
Weak fric | 31 (56.4%) | 23 (41.8%) | 1 (1.8%) | 55

Wk frvoic | 30 (61.2%) | 16 (32.7%)| 3 (6.1%)| 49
Sonorants | 78 (46.7%) | 77 (46.1%) |12 (7.2%) | 167

Fricative — fricative | 5 (50.0%) 5 (50.0%) | 0 (0.0%) 10
Sonorant — sonorant | 2 (12.5%) | 14 (87.5%) | 0 (0.0%) 16
Other | 182 (86.3%) | 20 (9.5%) | 9 (4.3%) | 211

Note that there were 651 (75.4%) matches out of 863 required tokens.
133 (10.7%) total insertions.

94 (10.1%) counted insertions.

%includes 183 neutral deletions

Table 5.4: Detailed results (test set)
Match Deletion Substitution | Total

Total tokens | 3467
Counted tokens (Tr) | 3467

51.9%
70.8%

2046 (30.7%)“ | 276
1155 (23.6%) | 276

6674
4898

89.6%
88.3%
82.5%
93.4%

25 (4.0%) | 40
13 (27%) | 43
73 (16.8%) | 3
3 (2.8%) | 4
Africate Von 32 (91.4% 1 (2.9% 2 35
Strident fr | 537 (90.3% 95 (9.2% 3 295

626
478
434
106

Stop closures | 561
Stop bursts | 422
Stop Von | 358
Africates 99

Summary robust | 2219 (87.1%) | 217 (8.5%) | 111 2547

Weak fric | 218
Wk fr voic | 216
Sonorants | 407

52.9% 183 412
61.7% 122
41.6% 497

11
12
74

350
978

60.0% 14
15.3%

0
0

35
98

Fricative — fricative 21

Sonorant — sonorant 15 83

(51.9%) (4.1%)
(70.8%)) (5.6%)
(89.6%)) (6.4%)
(88.3%)) (9.0%)
(82.5%)) (0.7%)
(93.4%)) (3.8%)
(91.4%)) (5.7%)
(90.3%)) (0.5%)
Str fr voic | 327 (82.8%) | 50 (12.7%) | 18 (4.6%)| 395
(87.1%)) (4.4%)
(52.9%)) (2.7%)
(61.7%)) (3.4%)
(41.6%)) (7.6%)
(60.0%)) (0.0%)
(15.3%)) (0.0%)
(78.7%)) (7.0%)

Other | 767 (78.7% 140 68 975

Note that there were 3346 (70.0%) matches out of 4777 required tokens.
885 (13.3%) total insertions.
588 (12.0%) counted insertions.

%includes 891 neutral deletions

o6

The most commonly deleted events were on the release of the consonant /dh/, 49
deletions (of both —c and +v) in the case of a following reduced vowel (such as in
the words ‘this’ or ‘the’), and 33 when followed by some other vowel. In addition
to the 67 events deleted on the release of a /v/, these account for half of the weak
fricative deletions (which also include deletions on closures for voiced and unvoiced
segments, and releases on unvoiced weak fricatives). More research is required into

the robust location of these events using temporal parameters.

Voiced stops The stop bursts for voiced stops can be very close to voicing onset,
and therefore it can be hard to separate the two distinct events: the onset of the
stop burst, and the following onset of glottal vibration (especially considering the
threshold mechanism used for integration of low-level events). It may be possible to
clean up some of these cases by improvement of the temporal accuracy of periodic
regions. This location in stop consonants is the critical region for further tuning
of the periodicity detector, as it is the major area where subtle changes to the
detector can improve performance, where temporal information is available in the
signal (unlike the case of sonorant consonants). However, it may also be necessary
to expand the architecture to cope with certain cases: note for example the /b/ at
700ms in Figure 2.7a, in which the onset peak for the /b/ burst and beginning of
periodic excitation (vowel onset) which follows are exactly matched to the labels,
but very close together. As such, there is no clear way to make a hard decision that
they are not the same event in the current architecture, which uses thresholds in
time between the two types of low-level events to take into account the variability
in time of onset/offset peaks that correspond to boundaries of periodic regions.
This suggests a modification of the system to compute probabilities of a number
of different alternatives, and track these multiple paths in higher level processing.
The issue of locating boundaries of periodic regions with higher temporal accuracy

is discussed in more detail below.

o7

More specifically, the real issue is not necessarily location of every event in time
so much as the three-way distinction between a) an unvoiced aspirated stop, with a
significant (>50ms) aperiodic excitation preceding a vowel onset; b) a voiced stop
with a very short (<30ms) aperiodic excitation, which may coexist with low-level
periodic excitation throughout the closure region (known as voice-bar); and c¢) a
simple vowel onset, which may begin with an irregular (in time) excitation known
as glottalization — which can be detected because it will be spectrally very similar to
the following vowel. The distinction between the last two cases may be served best
by a spectral comparison between the initial irregular burst of energy and following
regular excitation. Note that the most common substitution was a voiced stop burst
recognized as a +v event (33 of the 43 substitutions for stop bursts; in every case,
the expected +v also counted as a deletion). There were also a number of cases of
recognition of a voiced stop burst as a +s event (5 more substitutions) or where it
was simply deleted (6 instances).

There are also a number of misclassified closures: 23 stop closures following
reduced vowels (e.g. schwa) which were recognized as —c rather than —v, which
implies that the voiced region may not have been located at all. In voiced stops
there were also a small number (7) of cases where low-level periodic excitation in

the closure region caused some —v events to be misclassified as —s.

Insertions The major insertion locations were within vowels and stop closure
regions, particularly the 28.0% (20.2% training) of insertions in labelled vowel seg-
ments, corresponding to an insertion rate of 6.8% (5.3%) for those segments. Al-
though the absolute number of insertions in vowel regions is high, it’s not surprising
considering that roughly 3 of the labelled segments are vowels (33.0% training,
30.8% test), especially noting the high degree of fluctuation in vowel regions due to
voicing. Another 20.2% (24.5%) of the insertion rate occurred in closure regions,

corresponding to an insertion rate 12.1% (19.2%) of the labelled closures. This was

o8

particularly high in closures for /k/ consonants (31.4%, 27/86 cases). The closure
results are due in large part to the increased sensitivity of the difference operator in
these regions, and could possibly be improved by adjusting the tuning of the short
difference time used in silent regions for the onset/offset detector.

Also note the insertion rate in fricative regions, which reached 12.2% (20.0%)
for strident fricatives, and 16.9% (32.4%) for weak fricatives. It seems that more
work will be required to determine the correct smoothing algorithm or threshold
adjustments in these regions. It may be the case that increasing onset/offset peak
thresholds in response to knowledge about lack of periodicity would be a useful
modification. Additionally, increasing the window length even further (above 30ms)

in these regions may help to address this.

5.2.2 (General issues

Database Issues One critical issue with the database under study is that the
hand-transcribed labels aren’t always strictly based on acoustics. For example, in
the rules used to generate the TIMIT transcriptions [33], if there was no clear acous-
tic boundary between a semivowel and an adjacent vowel to the trained human la-
beler, then 1/3 of the sonorant region was labeled as the semivowel. Another lack
of specificity in the database is related to variability in mode of production due to
non-canonical realization of certain segments (such as the sonorant /v/ discussed
above). In this case the issue is that although the acoustics for two versions of a seg-
ment are categorically different, and therefore there are a different set of landmarks
acoustically realized for that segment, the two segments are nevertheless labeled
with the same token. Both types of problems may be addressed by use of a more

explicitly landmark-oriented database [34].

Resolution A general concept that may be an issue is temporal resolution in the

system. The tuning of the difference time may cause the detector to be less sensitive

99

to some types of events in certain contexts. For example, the particular difference
time in sonorant regions may not be long enough to detect the slow transitions in
those regions. Another issue of temporal resolution is the location of boundaries of
periodic and aperiodic regions, in the periodicity detection component. This has
resulted in a large number of threshold parameters in time and confidence level that
have required explicit training which likely gives results that depend upon the details
of signal conditioning and perhaps speakers in the database. It would be preferable
to develop dynamic thresholds (perhaps based on more detailed auditory models).

Regarding the tuning of difference time for the onset/offset detector, there are
a number of cases where there may be problems in the sensitivity level in some
regions. One example is that the existence of a voice-bar in voiced closure regions
may decrease temporal resolution in those channels, relative to channels in which
there is silence — though possibly this is an appropriate response and therefore a
good model. Other examples include both of the insertion problems noted above,
in closures and fricative regions. Two possibilities that exist for improvement of
this would be either a) to modify the algorithm used to adapt the difference length,
which could perhaps involve using cross-spectral information in adjusting difference
lengths (currently adaptation is based only on the individual channel AMDF results);
or b) use of multiple resolutions concurrently. Note in particular studies by van der
Horst et al. [26] which show that filtering out particular excitation frequencies from
temporal envelopes are related to different types of cues.

In the pitch detection subsystem, although the two-level threshold system is an
improvement over a simple threshold, what is more generally required is to find a
‘kink’ in the function (e.g. a measure based on finding a zero in the 2nd derivative). It
may also be helpful to implement a dual-level system (‘low-level’ periodicity such as
voice-bar vs. ‘high-level’ periodicity in e.g. vowels). Note that long-term integration
to generate a model of the expected range of the pitch period for a particular speaker

would aid in confidence measures in the ‘low-level’ periodicity voice-bar regions when

60

only a small number of channels show periodic excitation (or channels that exhibit

only weak periodicity, very low energy).

Chapter 6

CONCLUSIONS

This work has shown that use of temporal information for landmark detection
is feasible, particularly for a subset of robust abrupt events such as stop bursts.
Although previous studies have investigated the use of temporal information in par-
ticular cases or as an additional measure, this work extends this body of work by
using temporal information everywhere as the primary information source. It has
also pointed to certain areas where spectral features and perhaps more subtle tem-
poral features (on a longer time scale) are important, particularly for landmarks
related to sonorant consonants. As noted by use of a tunable onset/offset detec-
tor it was determined that some locations require different degrees of sensitivity to
temporal information.

The present implementation performs reasonably well. However, there are a num-
ber of key areas where accuracy could be improved, particularly in use of prediction
and longer term integration of information. These include use of more contextual
information (with the potential for decreased computation) in the pitch detector,
improved adaptation of the sensitivity of the onset/offset event detector, and mod-
ification of the system to dynamically adapt thresholds based on the signal.

According to the motivations discussion in the introductory chapters, it is clear
that temporal information is used by the human speech recognition system, and so
should be critical to achieving high quality in a computer speech recognition system
in all conditions. To further develop this work, and combine temporal information
with additional (spectral) feature types, it will be important to rigorously test a

particular set of algorithms (such as the one described in this thesis) to answer two

62

critical questions: 1) whether integrating temporal information with a spectral-based
system improves performance of the recognizer; and 2) whether such a recognizer
(temporal or combined) is more resistant to noise than a primarily spectral feature-
based system.

It will also be important to develop higher-level structure of a knowledge-based
recognizer and to incorporate any higher level temporal features at that level (such

as duration modeling as studied in [36]).

Chapter 7

AREAS FOR FURTHER WORK

There are a number of directions in which this work can be developed. First, fur-
ther analysis of the specific parameters—possibly including more detailed analysis
of perceptual studies—could improve performance in extraction of temporal infor-
mation. Next, it will be important to integrate the temporal detection system with
other types of signal analysis based on spectral parameters to develop a more robust
event detection system. It will be critical, however, to integrate with the higher-level
structure of a recognition system, to generate output at the phonemic or lexical lev-
els. Finally, it will be important at some stage to consider the issues involved in use

of the parameters in a usable (near real-time) automatic speech recognition system.

7.1 Improving detector

There are several ways that the temporal signal analysis system can be improved
upon. The primary areas that seem to be important include addressing issues of
more dynamic adjustment of the system (rather than the current set of explicit
thresholds), generation of multiple hypotheses, and improving accuracy of the pitch
detector in a couple of key areas.

Constant thresholds are not the optimal algorithm for adjustment of the system
to varied signal conditions, even over the course of a single utterance. It is likely
that adjusting the system based on more static constraints such as phoneme rate
(decreasing thresholds in regions where the system isn’t detecting many events) could

improve accuracy. Another option might be some degree of reanalysis of regions to

64

locate more subtle events (smaller peaks) at a later point in time if there is evidence
that something was missed. Another part of the adaptation problem is to study and
improve the algorithm used to adapt the difference operator, possibly including some
degree of cross-channel information. However, it is important not to overgeneralize
the problem: any clear limitations on human perception, for example, should be
used to constrain the types or rates of adaptation.

Another way to improve the system in situations where there is a lot of variability
or uncertainty is to delay hard decisions by entertaining a number of hypotheses.
This allows a slight increase in overgeneration of events (insertions) which can be
clarified at a later point in the system, possibly based on high-level information.
This will be especially critical in cases where some information has been degraded
such that the system may be able to be confident only of the fact that it doesn’t

have enough information to make a decision based only on local signal content.

Periodicity detection algorithms The periodicity detection routines in particu-
lar have a number of areas where they could be improved. The periodicity detection
system is a major component in the system that has undergone a significant degree
of tuning and improvement. The current implementation requires a large amount
of computation, but is approaching the accuracy of a relatively robust comparison
system. Long-term integration of information could improve both accuracy and per-
formance. There is also work to be done in temporal accuracy of periodic regions
for the task under study, which is a somewhat more stringent requirement in this
system than required for most other applications of pitch detection algorithms.
Regarding precise temporal accuracy, attention needs to be paid to the methods
used to locate boundaries of regions, in particular for the onset of periodicity. The
current system extended the threshold concept for periodicity confidence values to
a high “region threshold” and a lower “boundary threshold”, but it seems that ap-

plying a more complex algorithm to this boundary location problem may be helpful.

65

214 Jerivative of the confidence

One example might be to use a zero-crossing in the
function, finding a sharp kink in this ‘signal’ to locate a more accurate boundary.

Another part of the problem, however, is to consider periodicity of regions with
only a small amount of periodic excitation, for example voice-bars in the closure
region of a voiced stop consonant where most of the periodic excitation has relatively
low energy and is concentrated in low frequency regions. In this case, it might help
to incorporate additional information when computing the confidence measure: if
there aren’t very many confident estimates, but they are consistent with recent pitch
estimates, this could be support for such a low-level periodic excitation. It should be
possible to incorporate a simple model of the general range of pitch expected as well
as some limits on rate of change. This may also improve performance by allowing
use of fewer channels, and/or examining smaller ranges of the AMDF function.

In terms of decreasing computation, it may also be worthwhile to consider use of
a simple interval histogram (between raw peaks or dips in the envelope signals, or
some other representation) directly rather than computing the AMDF. This could
also involve use of a more complete auditory model (such as neural spike generation),
which would lead to the use of a more accurate auditorily motivated model for pitch
perception based on an interspike interval histogram [23], which was in some sense
the inspiration for histogram processing in this thesis. However, it is important to

weigh the benefits of various parts of such a model against computational cost.

7.2 Integration with spectral information

Another important area of development will be combining with different types of
information, such as spectral information. There are a number of very specific
ways in which spectral information can be used, for example analysis of harmonic
structure to improve pitch detection, and comparison of spectra to distinguish stop

bursts from glottalization. More generally, it will be important to know which

66

parts of the spectrum can be trusted in noisy or degraded environments. Adding
spectral information could involve incorporating a formant tracker, or other types
of modeling of spectral structure of different segment types. One important aspect
will be determining how early in the processing chain different types of cues should
be considered; for example, rough formant tracking (especially of the first formant)
might be helpful in locating sonorant landmarks, but it is an expensive and possibly

unreliable task to perform everywhere.

7.3 Completing the system

Higher-level processing needs to be developed, the first stage of which would most
likely be a segment-level representation. Following this, higher level stages for lex-
ical access (i.e. word recognition), and then language or dialogue modeling would
be necessary for a complete system. It is important to keep in mind the use of
temporal information at all stages in the system. At the segment and words levels
of representation (and perhaps higher levels if prosodic information is considered), a
system could incorporate use of duration cues for full use of temporal information.
For example, at the segment level this may work well in a prediction-oriented system
where detected landmark times are translated into posited segment durations which
can be tested against a model (e.g. as in [36]). This information could be used to
rank multiple hypotheses, and to determine which regions may contain extra land-
marks that were not detected in early stages and need to be inserted, which may

involve scheduling more detailed signal analysis.

7.4 Development of a real-time system

Finally, it is critical in building a functional speech recognition system that it be
able to run near real-time. This requires at a theoretical level that the computation

not depend on too much future information to posit events: a rigorous study of

67

these issues has not been undertaken, though the maximum forward information
requirement of the current system does not seem to be very large. However, in-
creased attention to these issues could improve the delay, especially important as
the landmark detector is only the first stage of analysis in a full system.

There is also a required degree of efficiency in processing. Most of this simply
requires implementation in a language other than Matlab, and possibly optimiza-
tion of the filterbank code based on necessary resolution. However, there are also a
number of ways in which this system can be simplified for this purpose by remov-
ing unnecessary computation. Further research is required in this area, but some
possibilities may include paying more attention to the strongest channels (perhaps
within particular ranges), a degree of pitch hysteresis to minimize AMDF computa-
tion (related to ideas of prediction above). Some of these improvements could benefit
from a study of how much information can be removed, but it is also important to
identify which information is best to ignore: for the benefits of noise-tolerance it
would be important to track information in those channels that seem to have good

information about the speech signal rather than being obscured by noise.

Appendix A

AUDITORY FILTER BANK

Auditory filter bank implementation: anmodheinz00.c (Heinz et al., 2000)

/* anmodheinz00.C : Code for AN Model from Heinz et al. (2000) */

/* Cleaned up from Manuscript code 9/10/99 by M.G. Heinz
(mgheinz@mit.edu) */
/* More cleanup done 3/1/00 to enable longer stimuli by A. Salomon
(ariel@bu.edu, asalomon@alum.mit.edu) */
/* More cleanup done 5/1/00 for bin file output (saves disk space), by A. Salomon */

/* Basic multiple-fiber LINEAR, Human auditory-nerve model with all
model-stage outputs saved to ascii files in the following format:

DATA FILES set up as follows:
linel: MAXCHS [time_vector]
line2: Cf1 [ifr_Cf1]
line3: Cf2 [ifr_Cf2]

The variables: savestim, savebm, saveihc, saveifr can be set to 0
to avoid saving the stimulus, basilar membrane, inner hair cell. or
instantaneous firing rate, respectively.

NOTE: set bin_save to 1 to save files in binary format (AS 5/00)
*/

/* The model and physiological responses of the model are described in
the file: model_descript.ps, which is an excerpt from the
manuscript. Filter bandwidths are based on human psychophysical
tuning curves, and DO NOT change with level (some code is left in
this version that allows the filters to vary with level [set
health=1], but the NONLINEAR version has not been tested. Only the
LINEAR version of the model was used in Heinz et al., 2000.

Basic model response: Rsat=210 sp/sec, Rate Threshold=0 dB SPL,
DR=20 dB, Max Onset rate = 850 sp/sec, max synch at LFs = 0.8,
rolloff matches Johnson (1980). Synch Threshold = -13 dB. PSTs look
good. */

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <time.h>

/*#defi
#define

#define
#define
#define
#define
#define
#define

#define

long st

ne MAXTIMPTS 30000L /# Maximum number of samples in time */
MAXCHS 100 /* Maximum number of frequency channels */

Ple 3.1415926536

DOFOR(i, to) for(i = 0; i < to; i++)

CMULTR(X,Y) ((X).x*(Y).x-(X).y*(Y).y)

CMULTI(X,Y) ((X).y*(Y).x+(X).xx(Y).y)

CTREAL(z,X,re) {(z).x=(X).x*(re); (2).y=(X).y*(re);}
CMULT(z,X,Y) {(z).x=CMULTR((X),(Y));(z).y=CMULTI((X),(Y));}
CADD (z,X,Y) {(2).x=(X).x+(Y).x;(2).y=(X) .y+(¥).y;}

imtype,numchs,health,nstimpts;

long savestim,savebm,saveihc,saveifr, /* AS 5/00: */ bin_save;

long ic
double
double

/*double stim[MAXTIMPTS],gtf [MAXTIMPTS],ihcL[MAXTIMPTS],ihc2[MAXTIMPTS];*/

han,i,resp;
xdum,Cf ,delx,x,SPER;
lowcf,xlowcf,highcf,xhighcf;

/*double ifr[MAXTIMPTS];x*/ /* channel x time */
double *stim, *gtf, *ihcL, #*ihc2, *ifr; /* AS 3/00 */
double anfCfs[MAXCHS]; /* chan: anf: ANFS */

double freq,phase,stimrft,levdbS,stimdur,Textra;

/* file pointers for writing to files */

FILE *fpstim,*fpbm,*fpihc,*fpifr;

void error(char *fmt, ...);

void stimulus();

void gamma4();

void synapse();

double
double
double

struct
struct
struct
struct
struct
double

erbGM(double) ;
cmaph_x2f (double) ;
cmaph_f2x (double) ;

complex { double x; double y;} ;

complex compexp(double);

complex compmult(double, struct complex);

complex compprod(struct complex, struct complex);
complex comp2sum(struct complex, struct complex);
REAL (struct complex) ;

69

long round(double) ;

int main(void)

{

/* U8B &EL UL UL LU UYL LU UL UL UL */

printf ("\n Heinz, Colburn, and Carney (2000) Auditory-Nerve Model (Linear, Human) -");
printf ("\n\tVersion 1.0 (9/10/99)\n");

/*printf ("This version reads in files with <= 30,000 pts. \n");*/

savestim=1; /* Boolean save variables: 0=N0O, 1=YES */

savebm=1;

saveihc=0;

saveifr=0;

bin_save=1; /* AS 5/00 */

/* set these flag to write out the output at different stage of the
model to files for plotting (slows down program). */

/* initialize variables */
printf ("Filterbank parameters: Set Center-filter freq [0], or Range of fregs [1]17: ");
scanf ("}1d" ,&resp); printf (" %d\n",resp);
if (resp == 0) {
printf ("CF of center filter in bank (Hz): ");scanf("%1f", &Cf); printf(" %f\n",Cf);
printf ("# of Filters in Bank: ");scanf("%1d", &numchs); printf(" %d\n",numchs);
printf ("Distance between filters (mm along BM)- ");
scanf ("41f", &delx); printf(" %f\n",delx);
/* NOTE: spacing between filters of 0.0lmm “= 1 HC spacing along BM */
xlowcf=cmaph_£2x(Cf)- (numchs-1.)/2.*delx;
xhighcf=xlowcf+(numchs-1)*delx;
lowcf=round (cmaph_x2f (xlowcf)) ;
highcf=round (cmaph_x2f (xhighcf)) ;
printf ("Resulting Filter Bank Center Frequency Range: %.2f - %.2f Hz\n",
lowcf, highcf);

70

}
else {
printf ("Lowest frequency filter (Hz): ");scanf ("%41f", &lowcf); printf(" %f\n",lowcf);
printf ("Highest frequency filter(Hz): ");scanf("}1f", &highcf);printf(" %f\n",highcf);
printf ("# of Filters in Bank: ");scanf("%1d", &numchs); printf(" %d\n",numchs);
if (numchs>MAXCHS) {
printf ("\n*** MAXCHS=%d in code. Need to increase!\n\n",MAXCHS);
error ("STOPPED") ;
}
xlowcf=cmaph_f2x(lowcf) ;
xhighcf=cmaph_f2x (highcf);
delx = (xhighcf-xlowcf)/(numchs-1);
printf ("Resulting delx = %f [Distance between filters (mm along BM)]\n",delx);
}

/* *xx*x* CHANNEL CFs SETUP (anf) ***x*x */

/* Set up ANF channels */
xdum=xlowcf;
anfCfs [0]=round (cmaph_x2f (xlowcf)) ;
/* printf("Channel %d = %4.2f Hz\n",ichan+1,anfCfs[0]); */
DOFOR (ichan,numchs-1) {
xdum=xdum+delx;
anfCfs[ichan+1]=round (cmaph_x2f (xdum)) ;
/* printf ("Channel %d = %4.2f Hz\n",ichan+2,anfCfs[ichan+1]); */
}

stimulus () ;

/* *x*x*x ALLOCATE MEMORY *#****x (AS 3/00) */
gtf = calloc(nstimpts, sizeof(double));
ihcL = calloc(nstimpts, sizeof(double));
ihc2 = calloc(nstimpts, sizeof(double));
ifr = calloc(nstimpts, sizeof (double));

if ('gtf || tihcL || !ihc2 || !ifr)

error ("Memory allocation error in main()");

health=-1;

/* (1=NL(healthy);
O=impaired (LIN,broad,high threshold);
-1=Previous Analytical Models(LIN,narrow,low threshold))
-2=To isolate BW effect (LIN,broad,low threshold)) */

printf ("Health [-1=LIN(sharp,Low Thresh); 1=NL; O=LIN(broad,HT); -2:LIN(broad,LT)]:

health);
/* Save2file —- Stimulus */
if (savestim) {

fpstim = fopen("stim.dat","w");

if (bin_save) { /* AS 5/00 */

furite (&nstimpts, sizeof (nstimpts), 1, fpstim); /* long */
fwrite (&4SPER, sizeof (SPER), 1, fpstim); /* double */
furite(stim, sizeof(stim[0]), nstimpts, fpstim); /* double(s) */
}
else {

fprintf (fpstim, "%.4f",freq);

DOFOR(i,nstimpts) fprintf(fpstim, " %e",i*SPER*1e3);
fprintf (fpstim,"\n");

fprintf (fpstim, "%.4f",levdbS);

DOFOR(i,nstimpts) fprintf(fpstim," %e",stim[i]);
fprintf (fpstim,"\n");

fclose(fpstim);

71

%d\n",

/* Save2file -- BM Filter Outputs */
if (savebm) {
fpbm = fopen("bm.dat","w");

if (bin_save) { /* AS 5/00 */

furite (&nstimpts, sizeof (nstimpts), 1, fpbm); /* long */
fwrite (&numchs, sizeof (numchs), 1, fpbm); /* long */
furite (4SPER, sizeof(SPER), 1, fpbm); /* double */
}
else {

fprintf (fpbm,"%d" ,numchs) ;
DOFOR(i,nstimpts) fprintf (fpbm, " %f",i*SPER*1e3);
fprintf (fpbm,"\n") ;

}

/* Save2file -- IHC Outputs */
if (saveihc) {
fpihc = fopen("ihc.dat","w");

if (bin_save) { /* AS 5/00 */

furite (&nstimpts, sizeof (nstimpts), 1, fpihc); /* long */
fwrite (&numchs, sizeof (numchs), 1, fpihc); /* long */
fwrite (&4SPER, sizeof (SPER), 1, fpihc); /* double */
}
else {

fprintf (fpihc,"’%d" ,numchs) ;
DOFOR(i,nstimpts) fprintf(fpihc, " %f",i*SPERx*1e3);
fprintf (fpihc,"\n");

}

/* Save2file -- IFR */
if (saveifr) {
fpifr = fopen("ifr.dat","w");

if (bin_save) { /* AS 5/00 */

furite (&nstimpts, sizeof (nstimpts), 1, fpifr); /* long */
furite (&numchs, sizeof (numchs), 1, fpifr); /* long */
furite (4SPER, sizeof(SPER), 1, fpifr); /* double */
}
else {

fprintf (fpifr,"%d",numchs) ;
DOFOR(i,nstimpts) fprintf(fpifr, " %e",i*SPER*1e3);
fprintf (fpifr,"\n");

}

/* Channel Loop */

72

/*

DOFOR (ichan,numchs) {
Cf = anfCfs[ichan];
x=cmaph_£2x(Cf); */
x = 11.9 * logl0(.8 + (Cf/456.));

printf("chan = %d out of %d Cf= Jf\n",ichan+1,numchs,Cf);

/* Calculate IFR responses for stimulus */
gamma4 () ;
synapse () ;

/* Save2file -- BM Filter Outputs */
if (savebm) {
if (bin_save) { /* AS 5/00 */
fwrite (&anfCfs[ichan], sizeof(anfCfs[0]), 1, fpbm);
furite(gtf, sizeof(gtf[0]), nstimpts, fpbm);

}
else {
fprintf (fpbm,"%f",anfCfs[ichan]);
DOFOR(i,nstimpts) fprintf (fpbm," %e",gtf[il);
fprintf (fpbm,"\n") ;
}
}

/* Save2file -- IHC Outputs */
if (saveihc) {
if (bin_save) { /* AS 5/00 */
fwrite (&anfCfs[ichan], sizeof (anfCfs[0]), 1, fpihc);
fwrite(ihcL, sizeof(ihcL[0]), nstimpts, fpihc);
}
else {
fprintf (fpihc,")f" ,anfCfs[ichan]);
DOFOR(i,nstimpts) fprintf(fpihc," %e",ihcL[il);
fprintf (fpihc,"\n");
}

/* Save2file —-- IFR */
if (saveifr) {
if (bin_save) { /* AS 5/00 */
furite(&anfCfs[ichan], sizeof (anfCfs[0]), 1, fpifr);
furite(ifr, sizeof(ifr[0]), nstimpts, fpifr);
}
else {
fprintf (fpifr,"/f",anfCfs[ichan]);
DOFOR(i,nstimpts) fprintf (fpifr," ‘%e",ifr[il);
fprintf (fpifr,"\n");
}

/* double */
/* double(s) */

/* double */
/* double(s) */

/* double */
/* double(s) */

73

} /* end ichan loop */

if (savebm) fclose(fpbm) ;
if (saveihc) fclose(fpihc);
if (saveifr) fclose(fpifr);

/* free alloc’d arrays AS 3/00 x/
if (stim) free(stim);

if (gtf) free(gtf);

if (ihcL) free(ihcl);

if (ihc2) free(ihc2);

if (ifr) free(ifr);

printf ("\n AN filter bank simulation is complete. \n");
} /* end of main() */

void stimulus(void)

{

/* stimulus amplitudes are in "pascals"
Conversion: 90dB SPL re 20uPa = .632 Pa */

char waveform_file[40];
int i;

printf ("Stimulus Waveform Filename: ");

scanf ("}s" ,waveform_file); printf(" %s\n",waveform_file);
printf ("Time Step Size in input file (secs): ");
scanf ("} 1f", &SPER); printf(" %f\n",SPER);

printf ("Input Duration of Simulation (in msec): ");
scanf ("}1f", &stimdur); printf(" %f\n",stimdur);
printf (" [Zeroes will be added to end of input waveform out to this duration.]\n ");

/* C convert to seconds */
stimdur=stimdur*le-3;

nstimpts=round(stimdur/SPER) ;

/* **xx*% ALLOCATE MEMORY ***x*x (AS 3/00) */
stim = calloc(nstimpts, sizeof(double));

if (!stim) error ("Memory allocation error in stimulus()");
DOFOR(i,nstimpts) stim[i] = 0.; /* zero out buffer */

printf ("\nReady to read in from the waveform file: %s\n First ten values are:\n",
waveform_file);

fpstim = fopen(waveform_file,"r");
DOFOR(i,nstimpts) {
/* For single column, ascii, floating point input waveform, use next line */
fscanf (fpstim,")1f",&stim[i]);

}

if(i < 10) printf("i = %d stim[i] = %£f\n",i,stim[i]);

printf ("\n");
fclose(fpstim);

return;

} /* End stimulus() */

/* NEW GAMMA4 5/22/98 */
void gamma4(void)

{

long i, j,idelay;

double
double
double
double
double
double
double
double
double
struct

A
c
£
W

X
d

0,A1,ss0,cc0O,ssl,ccl;
, Fc, c1LPihc, c2LPihc, c1LPfb=0, c2LPfb=0;
b =0., fbl = 0., fbtemp = 0., fbtempl = 0.;
avenow = 0.,wavel = 0.;
= 0., taulL = 0.;
elay = 0., tau0 = 0., tau = 0., Kihc=0, Kfb=0.;

asymihc=0., taurange=0, betafb=0;
asymfb=0, betaihc=0;

F
c

cfb=0, DC=0.;
omplex gtf2[5],gtf21[5];

/* Initialization */
for(i = 0; i < 5; i++)

{

gtf2[il.x = 0.; gtf2[il.y = 0.; gtf2l[il.x = 0.; gtf2l[i]l.y = 0.;

}

/* parameters for TauO vs. CF */

ssO = 6.;

ccO = 1.1;

ssl = 2.2;

ccl = 1.1;

c = 2. / SPER; /* for Bilinear transformation */

/* IHC LP filter parameters */
Fc = 4800.; /* Fc is nominal cutoff freq (i.e., -3*n dB down point,

cl1LPihc
c2LPihc

/* FB LPF
Fcfb =
c1LPfb
c2LPfb

1

n=order) for IHC low-pass filters (Hz) to obtain a
3-dB cutoff frequency of 2500 Hz according to Weiss
and Rose (1988), and to match Johnson (1980) by
eye. */

(c-2%*Ple * Fc) / (c + 2 x PIe * Fc);

=2 % Ple * Fc / (2 * PIe * Fc + c);

parameters */

./(2 * PIe * .002); /% for 2 msec time constant in FB */
(c-2 % Ple * Fcfb) / (¢ + 2 * PIe * Fcfb);

2 * PIe * Fcfb / (2 * PIe * Fcfb + c);

I6)

/* Find tau0 for this CF */
/* x = 11.9 * 10gl0(0.80 + Cf / 456.); */ /* position of cf unit;
from Liberman’s map */
/* Cat filters */
/* tau0 = (ccO * exp(-x / ss0) + ccl * exp(-x /ssl)) * 1le-3; */
/* in sec */

/* This is the setting for HUMAN filters. Bandwidths are based on
Glasberg and Moore’s (1990) ERB=f(CF) equation. These values of
ERB are used at low levels, and then the "high-level" ERB
corresponding to tau0 is set to be twice as wide. */

/* tau is (2pi*(1.019*ERB)) x*/

/* tau0 in sec */

/* Gammatone bandwidth is 1/(2*pixtau) */

taullL = 1./(2*PIe*1.019*erbGM(Cf));

/* Set parameters for IHC and FB nonlinearities */
asymihc = 3; /* asymmetry - this sets positive:negative asymmetry of
ihc NL*/

betaihc = tan(PIe * (-0.5 + 1./(asymihc + 1.))); /* used below to bias NL */
Kihc = 1225.;
/* Gain on input of NL- effectively determines threshold & dynamic

range of IHC - set this using anrhode - saturates at 60 dB SPL

(see Dallos) - also influences alpha for rate-level function */

asymfb = 3; /* asymmetry - this sets positive:negative asymmetry of ihc NLx/
betafb = tan(PIe * (-0.5 + 1./(asymfb + 1.)));
Kfb = 3000.; /* set using anrhode - this determines threshold and
range of compression*/

taurange = 0.5 * taulL; /*range of tau variation - determines

’strength’ & influences threshold of

compression. Adjust using anrhode and anra

(phase) */
tauO=taulLL-taurange;

DC = (1.-1./asymfb)/2.; /* - this is asymptotic DC when max of NL is normed to 1 */

/* i=0 */
gtf21[0] = compmult(stim[0], compexp(-2*%PIe * Cf * SPER)); /* init */

for(i = 1; i < nstimpts; i++) /* Time Loop */
{
/* FREQUENCY SHIFT THE ARRAY BUF */
gtf2[0] = compmult(stim[i], compexp(-2*%PIe * Cf * SPER * 1i));
if (health == 1) tau = tauO + taurange * (DC - £fbl)/DC ;
if (health == 0) tau = tau0;
if (health == -1) tau = tau0 + taurange;
if (health ==-2) tau = tau0;

}

/*

/*

for

i

for

i

for

for(j = 1; j < 5; j++) /* IIR Bilinear transformation LPF */
gtf2[j] = comp2sum(compmult(1./(tau*c+l.),comp2sum(gtf2[j-1],gtf21[j-1])),
compmult ((tau*c-1.)/(tau*c+1l.) ,gt£21[j1));

/* FREQUENCY SHIFT BACK UP */
/* Factor of tau put in front of filter 11/26/97
- normalization by tau0 included for now */
gtf[i]l = tauxtau*tau*tau/(tauO*tauO*taulO*taul)
* REAL (compprod (compexp (2*¥PIe * Cf * SPER * i), gtf2[41));

if (health==-2) gtf[i]=gtf[i]*(tauO+taurange)* (tauO+taurange)* (tauO+taurange)*
(tauO+taurange) / (tauxtau*tau*tau) ;

fbtemp = gtf[i]; /* filter output used for feedback */

/* IHC NL */
wavenow = (atan(Kihc * gtf[i] + betaihc)
- atan(betaihc))/(PIe/2. - atan(betaihc));

/* FB NL */
fbtemp = (atan(Kfb * fbtemp + betafb)
- atan(betafb))/(PIe/2. - atan(betafb));

/* The following LPFs are IIR Bilinear transformation filters */
ihcL[i] = ciLPihc * ihcL[i-1]
+ c2LPihc * (wavenow + wavel); /# lp filter the IHC*/

fb = c1LPfb * fbl
+ c2LPfb * (fbtemp + fbtempl); /* 1lp filter the fb tau signal*/

/* save all loop parameters */
for(j = 0; j < 5; j++) gtf21[j]l = gtf2[jl;
wavel = wavenow;
fbl = fb;
fbtempl = fbtemp;
/* END of TIME LOOP */

lowpass filter the IHC voltage more (these could be merged
with loop above....) */

There’s no need to keep entire arrays for the intermediate IHC
signals, once everything’s debugged */

(i=1; i < nstimpts; i++)
hc2[i] = c1LPihc * ihc2[i-1] + c2LPihc * (ihcL[i] + ihcL[i-1]);

(i=1; i < nstimpts; i++)
hcL[i] = c1LPihc * ihcL[i-1] + c2LPihc * (ihc2[i] + ihc2[i-1]);

(1i=1; i < nstimpts; i++)

7

/*
/*
/%
/%
/*
/%
/%
/*
/*
/*
/%

/*

}

/*
vo

{

/*

ihc2[i] = c1LPihc * ihc2[i-1] + c2LPihc * (ihcL[i] + ihcL[i-1]);

for(i = 1; i < nstimpts; i++)
ihcL[i] = c1LPihc * ihcL[i-1] + c2LPihc * (ihc2[i] + ihc2[i-1]1);

for(i = 1; i < nstimpts; i++)
ihc2[i] = c1LPihc * ihc2[i-1] + c2LPihc * (ihcL[i] + ihcL[i-1]1);

for(i = 1; i < nstimpts; i++)
ihcL[i] = c1LPihc * ihcL[i-1] + c2LPihc * (ihc2[i] + ihc2[i-1]1);

/* DELAY THE WAVEFORM (delay gtf and ihcL for display purposes) */
/* Note: Latency vs. CF for click responses is available for Cat only (not human) */
/* Use original fit for Tl (latency vs. CF in msec) from Carney & Yin ’88

and then correct by .75 cycles to go from PEAK delay to ONSET delay */

A0 = 8.13; */ /* from Carney and Yin ’88 */

Al = 6.49; */

delay = A0 * exp(-x/A1) * 1e-3 - 1./Cf; */

printf ("delay=Y%e\n",delay); */

idelay = delay / SPER; */

for(i = nstimpts; i > idelay; i-=) { %/
gtf[i] = gtfl[i-idelayl; =*/
ihcL[i] = ihcL[i-idelay]l; */

LY

for(i = 1; i < (idelay + 1); i++) { */

HE
gtf[i]l = 0.; =/
ihcL[i] = 0.; =*/
} */

/* printf("No delay\n"); #*/ /*reminder message, if delay is commented out*/

return;
/* End of gammad() */

NEW SYNAPSE 5/22/99 */
id synapse(void)

long i,j,isp;

double PIrest,PPI,PImax,PL,PG,CI,CL,CG,VI,VL,Pfactor,Vfactor;

double c0,s0,cl,s1,dead,rtime,rsptime,rint,prob;

double g,spont,ftemp,Rsat;

double pl,p3;

long option; /* Option for PPI: 1: half-wave rectify, 2: NL Smoother */

spont = 50.; /* "spont" rate, before adaptation, refractoriness */
Rsat=165.; */

Pfactor = .03; /#* ** Controllable #* This might be scaled later to
go from inst. rate mode to spikes modex/
PIrest = Pfactor/2.5; /* .012; this will be lower for spikes version */

78

PG
PL

Vfac
VI =
VL =

CI
CL
CG

/*
PIma

ifr[

opti

for(
{

79

Pfactor; /* .03 %/
Pfactor * 2.; /*.06 roughly from W&S 1988 figs */

tor = 0.0005; /* **Controllable** */
Vfactor;
10. * Vfactor;

spont / PIrest;
CI * (PIrest + PL)/PL; /* for stability in steady-state */
CL » (1. + PL/PG) - CI * PL / PG; /* so that system is in steady
state at spont */
PImax=PL*PG/(CG*PL*PG/Rsat-PG-PL); */ /* 0.18 newsyn5 */

x=0.6;
0] = spont;
on=2;
i =1; i < nstimpts ; i ++)

if (option==1) {
/* Option 1: Linear equation between ihcL (in range [-1/3,1]) and
PPI, the half-wave rectify PPI */

PPI = (PImax-PIrest) * ihcL[i] + PIrest;
if (PPI<0.0) PPI=0.0;

if (option==2) {

/* Option 2: NonLinear relation between ihcL (in range [-1/3,11)
and PPI, such that PImax and PIrest are achieved and the PPI
goes to O smoothly for negative ihcL */

pl=log(exp(log(2) *PImax/PIrest)-1);
p3=pl*PIrest/log(2);

PPI = p3/pl*log(l+exp(pl*ihcL[il));

}
CI = CI + (SPER/VI)#*(-PPI*CI + PLx(CL - CI));
CL = CL + (SPER/VL)*(-PL*(CL - CI) + PG*(CG - CL));

ifr[i] = CI * PPI;

/* Now, ifr[i] contains instantaneous discharge rate vs. time */

return;

Y /x

End of synapse() */

long round(double value)

{
if ((value-floor(value))>=0.5) return(ceil(value));

else return(floor(value));

double erbGM(double CF)
{
double erbCf;

erbCf=24.7%(4.37*C£/1000+1) ;
return (erbCf) ;
double cmaph_f2x(double f)
{
double x;
if ((£>20677) | | (£<20)) error("frequency out of human range, [in cmaph_f2x(£f)]1");

x=(1.0/0.06) *1og10((£/165.4)+0.88) ;
return (x) ;

double cmaph_x2f(double x)
{
double f;

if ((x>35) | | (x<0)) error("BM distance out of human range, [in cmaph_x2f(x)]");

£=165.4% (pow (10, (0.06%x))-0.88) ;
return(f);

struct complex compexp(double theta)
/* this returns a complex number equal to exp(i*theta) */
struct complex answer;
answer.x = cos(theta);

answer.y = sin(theta);
return answer;

struct complex compmult(double scalar, struct complex compnum)
/* Multiply a complex number by a scalar */
struct complex answer;

CTREAL (answer , compnum, scalar) ;

80

return answer;

struct complex compprod(struct complex compnuml, struct complex compnum?2)
/* Find the product of 2 complex numbers */

struct complex answer;

CMULT (answer , compnuml , compnum2) ;
return answer;

struct complex comp2sum(struct complex summandl, struct complex summand2)

/* add 2 complex numbers */
struct complex answer;

CADD (answer ,summandl, summand2) ;
return answer;

double REAL(struct complex compnum)
{
return compnum.x;

}

/* error: print an error message and die gracefully */
/* Takes arguments like printf */
/* Copied from Kernighan and Ritchie, p 174 */
void error(char *fmt, ...)
{

va_list args;

va_start (args, fmt);

fprintf(stderr, "error: ");

viprintf (stderr, fmt, args);

fprintf (stderr, "\n");

va_end (args) ;

exit(1); /* closes all open file */

Binary file input in Matlab: ANload bin.m

function [bm, time, ANcfs, stim, ifr, ihc] = ANload_bin(base);

% File: ANload_bin.m

% Created by: A. Salomon

% For use with: anmodheinz00.c (by M. G. Heinz)

%

% Loads filterbank responses from the AN model -- BINARY VERSION

h BM: Basilar membrane

82

YA IHC: Inner hair cell

% IFR: AN instantaneous firing rate

h

% [bm, time, ANcfs[, stim[, ifr[, ihc]]]] = ANload_bin(base);

VYNNI AYAA

% Load and organize all data

VYNNI YANANAS

[bm, time, ANcfs] = bin_load_mat(strcat(base, ’bm.dat’));

if (nargout > 3), stim = bin_load_stim (strcat(base, ’stim.dat’)); end;
bin_load_mat (strcat(base, ’ifr.dat’)); end;
bin_load_mat (strcat(base, ’ihc.dat’)); end;

if (nargout > 4), ifr

if (nargout > 5), ihc

Appendix B

MATLAB SOURCE (SIGNAL ANALYSIS,

B.1 High-level signal analysis code

Main loop: run analysis.m

% run_analysis(path to files, delta)
function run_analysis(fpath, delta);

% hard-coded parameters
PER_THRESH = 7.5;
APER_THRESH = 4.0;
PK_THRESH = 3.5;
DIP_THRESH = 2.5;

disp(sprintf (’Loading J%sbm.dat.’, fpath));
[sig_bm, sig_time, sig_ANcfs, sig_stim] = ANload_bin(fpath);

% time-scale dependent defaults
t_ms = (find(sig_time == sig_time(1) + 10.0) - 1) / 10;
p_window = boxcar(round(t_ms*20)); % window for pitch detection

s_step = 2.5; % step for pitch summary (ms)

% FIR version of Hilbert transform
% kaiser window
A512 = 8 + 512%(2.285 * pi/128); % pi/128 width transition
B512 = 0.5842%(A512-21)"0.4 + 0.07886%(A512-21);
k512 = kaiser(513, B512);

% transform

n512 = (0:512) - 256; nb512(512/2+1) = Inf; Y prevent divide by O
h512 = k512’ .* ((2/pi) * ((sin(pi*(n512)/2).72) ./ (n512)));
h512(1:2:513) = 0; mh = (512/2+1); Y’ midpoint of hilbert filter

% simple IIR filter for smoothing
[B,Al = butter(1l, 2000/8000);

env_bm = zeros(size(sig_bm)); % make space for envelopes

ETC.)

diffs = []; d_times
rgns = [1; r_times

[;

[1; r_vconfs = [];

for ch = 1:length(sig_ANcfs),
disp(sprintf (’\n\nChannel %d (CF = %d Hz): \n’, ch, sig_ANcfs(ch)));

h

% compute envelope (with time correction)
disp ’Computing envelope.’

ht = filter(h512, 1, sig_bm(ch,:));

henv = abs(sig_bm(ch,1:length(sig_bm)-(mh-1)) + j*ht(mh:length(ht)));

env_bm(ch,1:length(henv)+delta(ch)) = ...
henv(1-delta(ch) :length(henv)) ;
filtfilt (B, A, henv(l-delta(ch):length(henv)));

disp ’Computing pitch information.’

[rgn,r_time,r_vconf] = channel_pitch(env_bm(ch,:),
sig_time(1:length(env_bm)),

n_rgns(ch) = length(rgn);

rgns(ch,1:length(rgn)) = rgn;

r_times(ch,1:length(rgn)) = r_time;

r_vconfs(ch,1:length(rgn)) = r_vconf;

disp ’Computing difference information.’

% not filtering

B, A, p_window, 0);

diffs(ch,:) = channel_diff(env_bm(ch,:), sig_time, rgn, r_time,

round(t_ms), 0, ’box’);

d_time = sig_time((0:length(diffs)-1)*round(t_ms)+1);

end; % for ch

save(strcat (fpath,’env_bm.mat’), ’env_bm’, ’B’, ’A’, ’h512’,

’sig_stim’, ’sig_time’, ’sig_ANcfs’);

save(strcat (fpath,’out_ch.mat’), ’n_rgns’, ’rgns’, ’r_times’,

h

’r_vconfs’, ’diffs’, ’d_time’);

compute summary information

disp ’ ’

disp(sprintf(’Computing summary measures (step = %.1fms):’, s_step))

[s_per, s_aper, s_pp, ch_class] = ...

S_

sS_

summarize_pitch(n_rgns, rgns, r_times, r_vconfs, sig_ANcfs,

t_ms*1000, length(p_window)/t_ms, s_step);
pitch = (t_ms*1000)./s_pp;
time = O:s_step:s_step*(length(s_per)-1);

end;

s_ms_pitch = medsmooth(s_pitch .* (s_per > PER_THRESH), 5);
s_ms_aper = medsmooth(s_aper .* (s_aper > APER_THRESH), 5);

84

% compute onset (pos. difference) and offset (neg. difference) components
disp(’Computing onset/offset parameters.’);

sm_diffs = filtfilt(hamming(5)/sum(hamming(5)), 1, diffs);

s_on = filtfilt(hamming(5)/sum(hamming(5)), 1, mean(sm_diffs .* (sm_diffs > 0)));
s_off = filtfilt(hamming(5)/sum(hamming(5)), 1, mean(sm_diffs .* (sm_diffs < 0)));
s_on_pk = mermel_sh(s_on, PK_THRESH, DIP_THRESH) ;

s_off_pk = mermel_sh(-s_off, PK_THRESH, DIP_THRESH);

save(strcat (fpath, ’output.mat’),
’s_time’, ’s_per’, ’s_aper’, ’s_pitch’, ’ch_class’,
’s_ms_pitch’, ’s_ms_aper’,
’s_on’, ’s_off’, ’s_on_pk’, ’s_off_pk’);

Per-channel pitch analysis: channel pitch.m

% [rgn, r_time, r_vconf] = channel_pitch(env_sig, env_time
YA [, B, A[, p_window[, s_typelll)
h

% Given an envelope signal (env_sig) and corresponding time scale in
% ms (env_time), outputs a series of region labels and their associated
% start times. Note that in periodic regions, one event/region label
% is output per each pitch estimate (approx. one every pitch period).

% rgn, r_time are the region labels with their times; values in rgn are:

% 0 for silence, -10 for aperiodic signal, and
% >0 for a periodic signal, value is est. pitch period in ms
h

% env_sig, env_time is the signal with a vector of sample times (in ms)
% s_type: O - linear BM env, 1 - log BM env, 2 - IFR

% Optional parameters:
% B, A - define filter used to clean up AMDF measure

% p_window - window for periodicity detection (default is 20ms boxcar)

function [rgn, r_time, r_vconf] = channel_pitch(env_sig, env_time,
B, A, p_window, s_type);

% intermal ’constants’

SIL_THRES_RATIO = -30; % dB ratio, threshold to mean detection level
P_CONF_THRES = 0.3; % threshold for periodicity confidence measure
DEFAULT_PP = 5; % default pitch period (ms) after initial silence

% assume env_time in ms, find #samples in 1ms (assume integral i.e. sr in kHz)
t_ms = (find(env_time == env_time(1) + 10.0) - 1) / 10;
s_rate = t_ms*x1000;

SIL = 0;
APER = -10;
min_per = s_rate/500; max_per = s_rate/55;

86

% default parameters
if nargin < 3, [B,A] = butter(l, 2000/(s_rate/2)); end;
if nargin < 5, p_window = boxcar(round(t_ms * 20)); end;

if nargin < 6, s_type = 0; end;

% first section is always called silence, use to train silence threshold
i=1; mode = 0; % mode: 0 = silence, 1 = periodic/aperiodic

rgn(i) = SIL; r_time(i) = env_time(1); r_vconf(i) = 0;

switch (s_type),
case 0, % linear
sil_thres = 10°(-90/20); %10~(-85/20); %10~(-80/20);
case 1, 7% log
sil_thres = max(env_sig) + SIL_THRES_RATIO;
case 2, % IFR
sil_thres = 60;
end;

% prepare for next section
i = i+1; t = length(p_window)+1;
delta_t = round (DEFAULT_PP*t_ms); % default delta is short

% loop until t at end
while t < (length(env_sig)-length(p_window)),

if mode == 0, % silence mode
f = find(env_sig(t:length(env_sig)) > sil_thres);
if length(f),
t_next = f(1) + t-1;
else t_next = length(env_sig); end;

mode = 1; % don’t assume silence next time
else % per or aper mode

% pitch detection

amdf = AMDF (env_sig, t, p_window);

[pp, conf] = AMDF_pitch_est(amdf); %, B, A);

if conf > P_CONF_THRES & pp >= min_per & pp <= max_per,
rgn(i) = pp/t_ms;

else
rgn(i) = APER;
end;
r_time(i) = env_time(t); r_vconf(i) = conf; i = i+l;

delta_t = round((conf~2)*pp + (1l-conf~2)*delta_t);
t_next = t + delta_t;

end;

% prepare for next iteration
t = t_next;

% silence detection
if max(env_sig(t:min(t+delta_t,length(env_time)))) < sil_thres,
rgn(i) = SIL; r_time(i) = env_time(t); r_vconf(i) = 0;
i = i+1l; mode = O;
end;
end;

disp(sprintf(’/d events total.’, i-1));

Per-channel difference analysis: channel diff.m

% [diffs, e_steps] = channel_diff(env_sig, env_time, rgn, r_time, step
% [, diff_type [, sil_e_step, fric_e_stepl]);

% Optional parameters:

% diff_type - type of differencing operator - e.g. ’dgauss’, ’box’, ’hamming’
% sil_e_step, fric_e_step - energy windowing difference lengths for

h silence (stop detection) and aperiodic (fricative detection) modes

function [diffs, e_steps] = channel_diff(env_sig, env_time, rgn, r_time,
step, diff_type, sil_e_step, fric_e_step);

% region type values
SIL = 0; APER = -10;

% assume env_time in ms, find #samples in lms (assume integral i.e. sr in kHz)
t_ms = (find(env_time == env_time(1) + 10.0) - 1) / 10;
len = length(env_sig);

% default parameters

if nargin < 5, step = t_ms; end;

if nargin < 7, diff_type = ’box’; end;

if nargin < 8, sil_e_step = round(5*t_ms); fric_e_step = round(30*t_ms); end;

diffs = zeros(ceil(size(env_time)/step));
e_steps = zeros(ceil(size(env_time)/step));

% add extra region at end, if needed
if r_time(length(rgn)) < max(env_time),

rgn = [rgn 0];
r_time = [r_time max(env_time)];
end;
e_step = sil_e_step; % default e_step is short

[e_wl,e_wr] = diff_window(e_step, diff_type);

87

% loop over all regions, pick diff sizes
for i = 1:length(rgn)-1,

t = find(env_time == r_time(i));

t_next = find(env_time == r_time(i+1));

if rgn(i) == APER, target_e_step = fric_e_step;
elseif rgn(i) == SIL, target_e_step = sil_e_step;

else target_e_step = round(2*rgn(i)*t_ms); % 2x pitch period
end;
disp(sprintf(’%d,%.2f: target e_step is %d’, i, r_time(i), target_e_step))

=

t = max(t,e_step+l) + step;

% energy difference detection
for n = floor(t / step):floor(t_next / step),
% step slew control
if (e_step "= target_e_step),
if (e_step < target_e_step),
e_step = min(e_step+step/2, target_e_step);
elseif (e_step > target_e_step),
e_step = max(e_step-step/2, target_e_step);
end;
end;

% are we done?
loc = (n-1)*step+l;
if e_step + loc > len, break; end;

e_steps(n) = e_step;
end;
end;

% Now that we have times, run diffs (performance improvement, since

% diffs are computed over larger regions)

% split into ’regions’
rgn_locs = find(diff(e_steps)) + 1;
r =1;

while r < length(rgn_locs),
% compute window
n = rgn_locs(r);
[e_wl,e_wr] = diff_window(e_steps(n), diff_type);

% filter
next_n = min(rgn_locs(r+1), length(env_sig)-length(e_wl));

88

1diff_locs = -(length(e_wl)-1) + (n-1)*step+l : (next_n-1 -1)*step+1;
rdiff_locs = (n-1)*step+l : (next_n-1 -1)*step+l + length(e_wr)-1;

left = filter(e_wl, 1, env_sig(ldiff_locs));
right = filter(e_wl, 1, env_sig(rdiff_locs));

the_diffs = 20*loglO(max(le-6,right)) - 20*loglO(max(le-6,left));
diffs(n:next_n-1) = the_diffs(length(e_wl):step:length(the_diffs));

% next ’rgn’
r = r+l;

end;

Pitch summary: summarize pitch.m

% [s_per, s_aper, s_pp, ch_class] =

% summarize_pitch(n_rgns, rgns, r_times, r_vconfs, sig_ANcfs,

% [s_rate, [pw_len, [stepll]l);

function [s_per, s_aper, s_pp, ch_class] = ...
summarize_pitch(n_rgns, rgns, r_times, r_vconfs, sig_ANcfs,
s_rate, pw_len, step, start, end_t);

% hard-coded parameters
P_CONF_THRESH = 0.3;

% region type values
SIL = 0; APER = -10;

% defaults

if nargin < 6, s_rate = 16000; end;
if nargin < 7, pw_len = 20; end;

if nargin < 8, step = 1; end;

if nargin < 9, start = 0; end;

if nargin < 10, end_t = Inf; end;

% compute size of output
nchs = length(n_rgns);
len = ceil((min(end_t,max(r_times(:)))-start)/step);

t_ms = s_rate/1000; % for use in region time translation (back to samples)

% TODO: just do all computations in samples

% default output values
s_per = zeros(l,len);
s_aper = zeros(l,len);

s_pp = Inf .* ones(1,len);
ch_class = zeros(nchs,len);

89

% set unused region times to end of signal

for n = 1:nchs,
r_times(n,n_rgns(n)+1:length(r_times)) = len;

end;

% bracket beginning and end of interest in each estimate
start_times = r_times - max(0,rgns);
end_times = r_times + pw_len;

% loop over time
for n = 0:len-1,
% find relevant estimates (TODO: don’t use low conf est?), get pitch est
est_locs = find(start_times(:) <= start+n*step & ...
end_times(:) > start+n*step & ...
rgns(:) > 0); % & r_vconfs(:) > 0.1);
[pp, ph_conf, which] = pitch_hist(... % including pp/2 est @ conf/2
[rgns (est_locs)*t_ms; fix(rgns(est_locs)*t_ms/2)],
[r_vconfs(est_locs); r_vconfs(est_locs)/3]);
which = rem(which-1, length(est_locs))+1;

% disp(sprintf(’est_locs {%d}, which {%d}’, length(est_locs), length(which)))

% store pitch estimate
if ph_conf, s_pp(n+l) = pp;
else s_pp(n+1) = Inf; end; % division -> pitch = 0

% store channel info

% - find silent channels

sil_locs = find(r_times(:,1:length(r_times)-1) <= start+n*step & ...

start+n*step < r_times(:,2:length(r_times)) & ...
rgns(:,1:length(rgns)-1) == SIL);

sil_chs = unique(rem(sil_locs-1,nchs)+1);

ch_class(sil_chs,n+1l) = -1;

% - find periodic channels
est_ch = rem(est_locs(which)-1,nchs)+1;
per_chs = unique(est_ch);
for i = 1:length(per_chs),
ch_ests = est_locs(which(find(est_ch == per_chs(i))));
ch_class(per_chs (i) ,n+1) = median(r_vconfs(ch_ests));
end;

% compute periodicity confidence (sum of conf for periodic channels)
s_per(n+l) = sum(ch_class(per_chs,n+1));

% - find aperiodic channels

aper_chs = find(ch_class(:,n+1) >= 0 & ch_class(:,n+1) < P_CONF_THRESH & ...

sig_ANcfs > (s_rate / s_pp(n+1)));
if “isempty(est_locs),
est_ch = rem(est_locs-1,nchs)+1;
for i = 1:length(aper_chs),

90

91

ch_ests = est_locs(find(est_ch == aper_chs(i)));
if isempty(ch_ests), ch_class(aper_chs(i),n+l) = -1;
else, ch_class(aper_chs(i) ,n+1) = - mean(r_vconfs(ch_ests));
end;
end;

% compute aperiodicity confidence (sum of conf for aperiodic channels)
s_aper(n+1) = sum(ch_class(aper_chs,n+1l) + 1);
end;

if “rem(n*step,250), disp(sprintf(’%d,’, start+n*step)); end;
end;

B.2 Event detection

Event detection: LM_output.m (with hooks for training)

% [ev_times, ev_values, ev_labels] = ...

% LM_output (f_name, s_time, s_per, s_aper, s_pitch,
% d_time, s_on, s_off, s_on_pk, s_off_pk);
h

function [ev_times, ev_values, ev_labels] = LM_output(f_name, postfix,
PON_TIME_THR_pre, PON_TIME_THR_pos, POFF_TIME_THR, AP_TIME_THR,
PER_THRESH_HIGH, PER_THRESH, APER_THRESH_HIGH, APER_THRESH,
ON_PK_THRESH, ON_DIP_THRESH, OFF_PK_THRESH, OFF_DIP_THRESH);

load(strcat(f_name,’.out_ch.mat’));
load(strcat (f_name,’.output.mat’));

f_name = strcat(f_name, ’.LM’, postfix);

if nargin < 3, PON_TIME_THR_pre = 10; end; % max time diff from Pon to onset for v+ events
if nargin < 4, PON_TIME_THR_pos = 10; end; % _pre —-> preceding, _pos -> following

if nargin < 5, POFF_TIME_THR = 30; end; % max time diff from Poff to off for v- events
if nargin < 6, AP_TIME_THR = 20; end; % max time diff from AP to on/f for c+/- events
if nargin < 7, PER_THRESH_HIGH = 7.5; end;

if nargin < 8, PER_THRESH = 7.5; end;

if nargin < 9, APER_THRESH_HIGH = 8.0; end;

if nargin < 10, APER_THRESH = 5.0; end;

if nargin < 11, ON_PK_THRESH = 3.5; end;

if nargin < 12, ON_DIP_THRESH = 2.5; end;

if nargin < 13, OFF_PK_THRESH = 3.5; end;

if nargin < 14, OFF_DIP_THRESH = 2.5; end;

% compute peaks
s_on_pk = mermel_sh(s_on, ON_PK_THRESH, ON_DIP_THRESH) ;
s_off_pk = mermel_sh(-s_off, OFF_PK_THRESH, OFF_DIP_THRESH);

sl
dl

length(s_time);
length(d_time);

% not settable

SON_TIME_THR = 20; % region around on/off to call an event s+/-
P_MIN_TIME = 10; % shortest Pon-Poff time

AP_MIN_TIME = 10; % shortest APon—-APoff time

SON_THR = 0.8; % proportion of slices labelled per. to count as son.

% median smoothing / temporal thresholds
s_ms_pitch = medsmooth(s_pitch .* (s_per > PER_THRESH), 5);
s_ms_aper = medsmooth(s_aper .* (s_aper > APER_THRESH), 5);

% open output file
fid = fopen(f_name, ’w’);

% find region boundaries

Pon_loc = (find(s_ms_pitch(1:sl-1) == 0 & s_ms_pitch(2:s1) > 0));
Poff_loc = (find(s_ms_pitch(1l:s1-1) > 0 & s_ms_pitch(2:s1) == 0) +1);
APon_loc = (find(s_ms_aper(1:sl-1) == 0 & s_ms_aper(2:s1) > 0));
APoff_loc = (find(s_ms_aper(1l:s1-1) > 0 & s_ms_aper(2:s1) == 0) +1);
% initialize landmark lists

n_evs = 0;

ev_times = []; ev_values = []; ev_labels = {};

% prune P events if pitch within region doesn’t agree with most of utt,
% or max Pconf too low
Pprune = zeros (max(length(Pon_loc),length(Poff_loc)),2);
exp_pitch = median(nonzeros(s_ms_pitch));
for n = 1:length(Pon_loc),
n_off = min(find (Poff_loc > Pon_loc(n))); % should be = n? ASSUME YES

% pruning rule:
rgn_pitch = median(s_ms_pitch(Pon_loc(n) :Poff_loc(n_off)));
if rgn_pitch > 2%exp_pitch | rgn_pitch < .b*exp_pitch |
(Poff_loc(n_off) - Pon_loc(n)) < P_MIN_TIME |
max (s_per(Pon_loc(n) :Poff_loc(n_off))) < PER_THRESH_HIGH,
s_ms_pitch(Pon_loc(n) :Poff_loc(n_off)) = 0; 7% explicit prune!!
Pprune(n,1) = 1; Pprune(n_off,2) = 1;
end;
end; % for

Pon_loc = Pon_loc(find("Pprune(:,1)));
Poff_loc = Poff_loc(find("Pprune(:,2)));

% loop over P/AP events -- associate w/ on/off if they exist
% -> otherwise, insert w/ strength value of 0

A NOTE: per evts are ’v’, aper are ’c’

h

- Pon

for n = 1:length(Pon_loc),

pk_offs = s_time(Pon_loc(n)) - d_time(s_on_pk);
ind_pks = find(pk_offs > -PON_TIME_THR_pre & pk_offs < PON_TIME_THR_pos);
if “isempty(ind_pks),
1 = max(ind_pks);
ev_t = d_time(s_on_pk(1)); ev_v = s_on(s_on_pk(1));
s_on_pk = s_on_pk([1:1-1 1+1:length(s_on_pk)]);
else,
ev_t = s_time(Pon_loc(n)); ev_v = 0;
end;

n_evs = n_evs+1;

ev_times(n_evs) = ev_t; ev_values(n_evs) = ev_v;
ev_labels{n_evs} = ’+v’;

end;

% - Poff

for n = 1:length(Poff_loc),

[d,1] = min(abs(s_time(Poff_loc(n)) - d_time(s_off_pk)));
if d <= POFF_TIME_THR,
ev_t = d_time(s_off_pk(1)); ev_v = -s_off(s_off_pk(1));
s_off_pk = s_off_pk([1:1-1 1+1:length(s_off_pk)]);
else,
ev_t = s_time(Poff_loc(n)); ev_v = 0;

end;

n_evs = n_evs+l;

ev_times(n_evs) = ev_t; ev_values(n_evs) = ev_v;
ev_labels{n_evs} = ’-v’;
end;

h
h
h
h
h

now that P on/off events have been removed,
prune AP events unless
a) there is a correp on or off event (in s_{on|offl}_pk)
b) max in region > APER_THRESH_HIGH
OR always prune if
c) region completely periodic (surr by Pon/off)
d) region shorter than 10ms (i.e. 4 frames @ 2.5ms/sample)

APprune = zeros(max(length(APon_loc),length(APoff_loc)),2);
for n = 1:length(APon_loc),

n_off min(find (APoff_loc > APon_loc(n))); % should be = n? ASSUME YES

% find nearest on/off events
[dn,1n] = min(abs(s_time(APon_loc(n)) - d_time(s_on_pk)));

[df,1f] = min(abs(s_time(APoff_loc(n_off)) - d_time(s_off_pk)));

% pruning rules:

93

% - definitely prune if rgn completely periodic (>80%..)

% - also prune region if both dn,df above thresh AND max in region too

if mean(s_ms_pitch(APon_loc(n):APoff_loc(n_off)) > 0) > SON_THR |
(APoff_loc(n_off) - APon_loc(n)) < AP_MIN_TIME |
(dn > AP_TIME_THR & df > AP_TIME_THR & ...

max (s_ms_aper (APon_loc(n) :APoff_loc(n_off))) < APER_THRESH_HIGH),

APprune(n,1) = 1; APprune(n_off,2) = 1;
s_ms_aper (APon_loc(n) : APoff_loc(n_off)) = 0; % explicit prune!!
end;
end; % for

APon_loc = APon_loc(find(“APprune(:,1)));
APoff_loc = APoff_loc(find("APprune(:,2)));

% — APon
for n = 1:length(APon_loc),
[d,1] = min(abs(s_time(APon_loc(n)) - d_time(s_on_pk)));
if d <= AP_TIME_THR,
ev_t = d_time(s_on_pk(1)); ev_v = s_on(s_on_pk(1));
s_on_pk = s_on_pk([1:1-1 1+1:length(s_on_pk)]);
else,
ev_t = s_time(APon_loc(n)); ev_v = 0;
end;

n_evs = n_evs+l;

ev_times(n_evs) = ev_t; ev_values(n_evs) = ev_v;
ev_labels{n_evs} = ’+c’;

end;

% - APoff

for n = 1:length(APoff_loc),

[d,1] = min(abs(s_time(APoff_loc(n)) - d_time(s_off_pk)));

if d <= AP_TIME_THR,
ev_t = d_time(s_off_pk(1l)); ev_v = -s_off (s_off_pk(1l));
s_off_pk = s_off_pk([1:1-1 1+1:length(s_off_pk)]);

else,
ev_t = s_time(APoff_loc(n)); ev_v = 0;

end;

n_evs = n_evs+l;

ev_times(n_evs) = ev_t; ev_values(n_evs) = ev_v;
ev_labels{n_evs} = ’-c’;
end;

% loop over remaining on/off events

[event_locs, ind] = sort(d_time([s_on_pk s_off_pk]));
event_vals = [s_on(s_on_pk) s_off(s_off_pk)];
event_vals = event_vals(ind);

low

94

for n = 1:length(event_locs),
ev_class = ’c’;
s_locs = find(abs(s_time-event_locs(n)) < SON_TIME_THR/2);

% polarity: onset or offset

if event_vals(n) < O, ev_pol = =7

if mean(s_ms_pitch(s_locs) > 0) > SON_THR, ev_class = ’s’; end;
else ev_pol = ’+7;

if mean(s_ms_pitch(s_locs) > 0) > SON_THR, ev_class = ’s’; end;
end;

n_evs = n_evs+1;

ev_times(n_evs) = event_locs(n);
ev_values(n_evs) = abs(event_vals(n));
ev_labels{n_evs} = strcat(ev_pol, ev_class);
end;

[ev_times, ind] = sort(ev_times);
ev_values = ev_values(ind);
ev_labels = ev_labels(ind);
for n = 1l:n_evs,
fprintf (fid, ’%.2f %.2f %s\n’,
ev_times(n), ev_values(n), ev_labels{n});

end;

fclose(fid);

B.3 Subroutines used in signal analysis

AMDF function: AMDF.m
% amdf = AMDF(s,t,w);
% Computes average magnitude difference function (AMDF) over signal s, or
% a set of signals (one FB output per row), starting at time t (in samples)
% with specified window w, as per de Cheveigne’ (1998).
% w defaults to a rectangular window of length 20ms (assuming 16kHz samp rate).
function amdf = AMDF(s, t, w);
if nargin < 3,
w = boxcar(20%16)/(20%16) ;

end;

for i = 1:size(s,1),

95

for tau = 1:length(w),
amdf (i,tau) = sum(w’ .* ...
abs(s(i,t:t+length(w)-1) - s(i,t-tau:t+length(w)-1-tau)));
end;
end;

Pitch histogram analysis: AMDF pitch_est.m

% [pp, conf] = AMDF_pitch_est(amdf[, fa, fbl);
% Find pitch period peak in an AMDF measure.

h amdf is the amdf function output.

% fb, fa specify an optional filter to be used to smooth the amdf function.

% Outputs:
% pp is the location of the pitch period peak, in samples
% conf is a confidence measure based on depth of dip

function [pp, conf] = AMDF_pitch_est(amdf, fa, fb);
% filter with supplied filter
if nargin > 1,

if nargin < 3, fa = 1; end;

amdf = filtfilt(fb, fa, amdf);
end;

% convex hull
hull = convex_hull (amdf) ;

% find max dip
[dip,dip_loc] = max(hull - amdf);

% translate into pp, conf -- find max. confidence

conf_hull = (hull - amdf) ./ hull;
[conf,pp] = max(conf_hull);

Difference window generation: diff _window.m

% [w_left, w_right] = diff_window(step[, £f])

% Compute energy difference window for a difference length equal to step.
% Basically, an adaptive filter.. f can be used to specify the

% filter type: ’dgauss’ for derivative of a gaussian, ’box’ for a pair

% of box functions, ’hamming’ for a pair of hamming windows.

function [w_1l, w_r] = energy_diff(step, f);

96

% defaults
if nargin < 2, f = ’dgauss’; end;

% compute filter (difference function)
if strcmp(f, ’dgauss’),
nl = -step+0.5:-0.5; nr = 0.5:step-0.5;
w_l = -1/sqrt(2*pi) * 2#nl/(step/4.1343739) .* exp(-(nl."2)/(2*(step/2)"2));
w_r = 1/sqrt(2*pi) * 2*nr/(step/4.1343739) .* exp(-(nr."~2)/(2x(step/2)°2));
elseif strcmp(f, ’box’),
w_l = boxcar(step)’;
w_r = boxcar(step)’;
elseif strcmp(f, ’hamming’),
w_1 = hamming(step)’;
w_r = hamming(step)’;
else
% error(sprintf(’Bad filter specification ’’)s’’.’, £));
w_l = eval(sprintf(’%s(/d)’, £, step)); w_.1l = w_1(:)’;
w_r = eval(sprintf(’%s(/d)’, £, step)); w_r = w_r(:)’;

end;

if nargout == 1, w_l = [-w_1l w_r]; end;

Median smoothing: medsmooth.m

function [y] = medsmooth(x, ws);
% MEDSMOOTH Median smoothing
YA [yl = medsmooth(x, ws);

back
forw

floor((ws-1)/2);
ceil((ws-1)/2);

for i = 1:length(x),
y(i) = median(x(max(1,i-back):min(length(x),i+forw)));
end;

Convex hull: convex_hull.m

function hull = convex_hull(sig);

% convex hull
len = length(sig);

hull(1) = sig(1);
for n = 2:len,
hull(n) = max(hull(n-1),sig(n));
end;
return;

97

Convex hull peak-picking: mermel.m

function [pk_locs] = mermel(signal, pk_thresh, dip_thresh);
[max_val,max_loc] = max(signal);

% compute convex hull: foward
i =1; h = signal(1);
while(i < max_loc),
pts = find(signal(i+1l:max_loc) > h);
if (isempty(pts))
np = max_loc;
else
np = i+pts(1);
end;
hull(i:np-1) = h;

i = np; h = signal(np);
end;

% compute convex hull: backward
i = length(signal); h = signal(i);
while(i > max_loc),
pts = find(signal(i-1:-1:max_loc) > h);
if (isempty(pts))
np = max_loc;
else
np = i-pts(1);
end;
hull(i:-1:np+1) = h;

i = np; h = signal(np);
end;

hull (max_loc) = max_val;

% apply thresholds, recurse
[dip,dip_loc] = max(hull - signal);

if (max_val > pk_thresh),
if (dip > dip_thresh),
pk_locs = [mermel(signal(1l:dip_loc), pk_thresh, dip_thresh)
mermel (signal(dip_loc:length(signal)), pk_thresh, dip_thresh)+dip_loc-1];
else
pk_locs = max_loc;
end;
else
pk_locs = [];
end;

98

B.4 Pitch scoring

Pitch comparison with get_f0 output: compare f0.m

function [correct, p_rms_err, count, uv_correct, uv_count,
p_rms_err_x2, x2_ref, x2_det, vc_count, m_pitch] = compare_f0(basename);

load(strcat(basename,’.output.mat’));

fid = fopen(strcat(basename,’.wav.f0’));
f0 = fscanf (fid, ’%f’);
fclose(fid);

count = length(f0); v_count = nnz(£0>0); uv_count = nnz(£f0==0);
p_offset = find(s_time == 0.01%1000) ;

p_time = s_time(p_offset:4:p_offset+(count-1)*4);

fO_est = s_ms_pitch(p_offset:4:p_offset+(count-1)*4);

fO_est = fO_est(:);

v_correct = nnz(f0 > 0 & fO_est > 0) / v_count;
uv_correct = nnz(f0 == 0 & fO_est == 0) / uv_count;
correct = (nnz(£f0 > 0 & fO_est > 0) + nnz(f0 == 0 & fO_est == 0)) / count;

v_idx = find(f0 > 0 & fO_est > 0);
p_rms_err = sqrt(mean((f0(v_idx) - fO_est(v_idx))."2));
p_rms_err_x2 = sqrt(mean(min((£f0(v_idx) - fO_est(v_idx))."2,

min((f0(v_idx) - 2*fO_est(v_idx))."2, (2*f0(v_idx) - fO_est(v_idx))."2))));
x2_ref = nnz((fO(v_idx)-fO_est(v_idx))."2 > (2*f0(v_idx)-fO_est(v_idx))."2);
x2_det = nnz((f0(v_idx)-fO_est(v_idx))."2 > (fO0(v_idx)-2*f0_est(v_idx))."2);

vc_count = length(v_idx);
m_pitch = median(fO(v_idx));

if nargout < 1,
disp(sprintf(’Correct: %5.2f%k’, correct*100));
disp(sprintf(’(V: %5.2f%%\tUV: %5.2f%%)’, [v_correct uv_correct].*100));
disp(sprintf(’Pitch RMS error: J5.2fHz (modified: %5.2fHz)’,

p_rms_err, p_rms_err_x2));

plot(p_time, fO, p_time, fO_est)
end;

Appendix C

TOOLS FOR POSITING EVENTS AND SCORING

Project declaration: Makefile

CXXFLAGS = -g -Wall -ansi
TARGETS = phn2lm compare

build: ${TARGETS}

phn2lm: phn2lm.o
g++ ${CXXFLAGS} -0 $@ $"

phn2lm.o: phn2lm.cc context/TIMIT.h compare.h

compare: compare.o align.o
g++ ${CXXFLAGS} -0 $@ $"

compare.o: compare.cc compare.h
align.o: align.cc compare.h

clean:
-rm ${TARGETS}

-rm *.o0

Scoring script: score.sh

#!/bin/bash

if test "$#" -1t 1; then

echo Usage: score.sh <base> ...,

echo where <base>.phn and <base>.LM must exist for each input
fi

while test $# -ge 1; do
if test ! -f $1.phn -a ! -f $1.PLM; then
echo "Can’t find $1.phn or $1.PLM (aborting)"; exit -1; fi

101

if test ! -f $1.LM; then echo "Can’t find $1.LM (aborting)"; exit -1; fi

if test ! -f $1.PLM; then
phn2lm $1.phn $1.PLM
fi

echo $1

echo ———-—=-——-—————————————
compare $1.PLM $1.LM

echo —-—--——""-""-"—"""—-"---——-
echo

shift
done

Definitions: compare.h (includes penalty table class for alignment algorithm)

#include <iostream>
#include <string>
#include <vector>

/!

// high-level constants -- parameters to algorithm

#define MAX_TIME_DIFF 50.0 /*ms*/

/!

// event_type enum and i/o operations

enum event_type { ev_INV = -1,
ev_Von, ev_Voff, ev_Con, ev_Coff, ev_Son, ev_Soff,
NUM_EV_TYPES };

inline bool polarity(event_type ev)
{

return (ev == ev_Von || ev == ev_Con || ev == ev_Son);

inline bool isvalid (event_type ev)
{

return (ev > ev_INV && ev < NUM_EV_TYPES);
}

inline ostream& operator << (ostream& os, const event_type ev)
{

switch (ev) {

case ev_Von: os << "+v"; break;

case ev_Voff: os << "-v"; break;
case ev_Con: os << "+c"; break;
case ev_Coff: os << "-c"; break;
case ev_Son: os << "+g"; break;
case ev_Soff: os << "-g"; break;
default: os << "77",

}

return os;

inline istream& operator >> (istream& is, event_type& ev)
{
char type, pol;

is >> ws >> pol >> type;

if ((pol == ’+’ || pol == ’-7))
switch (type) {
case ’v’: ev = (pol == ’+’) 7 ev_Von : ev_Voff; break;
case ’c’: ev = (pol == ’+’) 7 ev_Con : ev_Coff; break;
case ’s’: ev = (pol == ’+’) 7 ev_Son : ev_Soff; break;
default: ev = ev_INV;
}

else ev = ev_INV;

if ((ev == ev_INV) && !(pol == ’7’ && type == ’7’))
is.putback(type) .putback(pol);

return is;

//

// LM_label: recognized landmark structure

struct LM_label {
LM_label() : ev(ev_INV), time(-1), strength(0.0) {}
bool isvalid() { return ::isvalid(ev); }

event_type ev; // event type and polarity
float time, strength; // time, strength value
3

inline istream& operator >> (istream& is, LM_label& 1lm)
{
is >> Im.time >> 1lm.strength >> ws >> lm.ev;

return is;

}

inline ostream& operator << (ostream& os, const LM_label& 1m)

{

102

os << lm.time << ’\t’ << lm.strength << ’\t’ << 1m.ev;

return os;

1/

// LM_ref_label: reference landmark structure

struct LM_ref_label {
enum { MAX_EV = 2 };

LM_ref_label() : time(-1) { ev[0] = ev_INV; }
bool isvalid() { return ::isvalid(ev[0]); }

event_type ev[MAX_EV]; // event type(s) and polarity(ies)

bool req[MAX_EV]; // whether event is ’required’ (= cost for DEL)
float time; // time, strength value

string comment; // comment field, usu adj segment labels

};

inline istream& operator >> (istream& is, LM_ref_label& 1m)

{

int i;
is >> Im.time >> 1lm.comment;

for (i = 0; i < LM_ref_label::MAX_EV; i++) {
is >> 1lm.ev[i];
Im.req[i] = (is.peek() !'= ’7’); if (!1m.req[i]) is.get();
if (is.peek() == ’,’) is.get(); else break;

}

while (++i < LM_ref_label::MAX_EV) { lm.ev[i] = ev_INV; lm.req[i] = false; }

return is;

inline ostream& operator << (ostream& os, const LM_ref_label& 1lm)

{
0os << Im.time << ’\t’ << Im.comment << ’\t’ << 1lm.ev[0];
if (Im.ev[1] !'= ev_INV) os << ’,’ << 1m.ev[1];

return os;

1/
// aggregated objects

typedef vector<LM_label> LM_label_seq;
typedef vector<LM_ref_label> LM_ref_label_seq;

103

104

//
// prototypes

//
// penalty table class

class penalty_table {
enum {
MAX_penalty = 1000000,
SUB_penalty = 50 /*100%*/,
INS_penalty = 50 /*75%/,
DEL_penalty = 50 /*75%/
};

enum p_step { INVALID = -1, 0K, 0K2, SUB, DEL, INS };

struct node {
enum { MAX_EV = LM_ref_label::MAX_EV };

node() : p_step(INVALID), cost(MAX_penalty) {}

p_step p_step;
int cost;
bool avail [MAX_EV];

int navail() {
int n=0;
for (int i=0; i < MAX_EV; i++) n += (availl[i]?1:0);
return n;
}
int nreq(LM_ref_label& 1m) {
int n=0;
for (int i=0; i < MAX_EV; i++) n += ((availl[il&lm.req[i])?1:0);
return n;

void fill(int _cost, p_step _p_step, LM_ref_label& _1bl, int ev_use = -1) {
cost = _cost; p_step = _p_step;
for (int i = 0; i < MAX_EV; i++)

(_1bl.ev[i] != ev_INV) & (i '= ev_use);

availl[i]
}
void fill(int _cost, p_step _p_step, node& n) {
cost = _cost; p_step = _p_step;
for (int i = 0; i < MAX_EV; i++) availl[i]l = n.availl[il;

105

public:
penalty_table() : nbacktr(0) {}

void create_table(LM_ref_label_seq&, LM_label_seq&) ;
int backtrace(LM_ref_label_seq&, LM_label_seq&);

ostream& output(ostream&, LM_ref_label_seq&, LM_label_seq&);
ostream& output_results(ostreamk);

private:
enum { ML = 250 };
node the_table[ML] [ML];
int nl, n2; // size of ref, recog label strings

p_step backtr[2#ML];
int nbacktr, nerr, nsub, nins, ndel, nokins, nokdel;

};

TIMIT-format label access: TIMIT.h

// TIMIT.h: Definitions for reading/writing TIMIT-format labels

#ifndef __TIMIT_H
#define __TIMIT_H

#include <string>
#include <iostream>

const int TIMIT sample_rate = 16000;

struct TIMIT_label
{

int start;

int end;

string phon;

float start_time() { return float(start)/TIMIT_ sample_rate; }
float end_time() { return float(end)/TIMIT_ sample_rate; }
};

inline istream& operator >> (istream& is, TIMIT_label& label)

{
is >> label.start >> label.end >> label.phon;
return is;

}

inline ostream& operator << (ostream& os, TIMIT_label& label)

106

os << label.start << ’ ’ << label.end << ’ ’ << label.phon << endl;

return os;

}

#endif // __TIMIT_H

C.1 Positing landmarks (phn2lm program)

Main program: phn2lm.cc

//
// phn2lm.cc: convert TIMIT .phn labels to expected landmark sequence

//
#include <fstream>
#include <map>

#include <string>

#include "TIMIT.h"
#include "compare.h" // get event_type declaration

inline void write_LM(ostream& os, TIMIT_label &prev, TIMIT label &curr,
char *LMtype, char *comment = "", float t = -22)

if (t < 0) t = curr.start_time();

0s << t*1000 << ’\t’
<< prev.phon << ’;’ << curr.phon << ’\t’
<< LMtype << endl;

enum Manner { INVALID, Closure, StopBurst, Fricative, Sonorant, Vocalic };

class SegmentClass {

public:
Manner manner () { return m_manner; }
bool is_sonorant () { return m_manner == Sonorant || m_manner == Vocalic; }
bool is_obstruent() { return m_manner == Fricative
|| m_manner == StopBurst; }
bool voiced() { return m_voiced; }
bool strident () { return m_strident; }
bool is_canonical() { return m_ctype.empty(); }
string& type_label() { return m_ctype; }

string& seg_label() { return m_label; }

SegmentClass() : m_manner (INVALID) {}

SegmentClass (Manner manner, bool voiced, bool strident, string ctype)

: m_manner (manner), m_voiced(voiced), m_strident(strident), m_ctype(ctype)

{3

SegmentClass& operator = (const SegmentClass& seg)

{

m_manner = seg.m_manner;

m_voiced = seg.m_voiced; m_strident = seg.m_strident;

m_ctype = seg.m_ctype;
return *this;

private:
Manner m_manner;
bool m_voiced;
bool m_strident;

string m_ctype, m_label; // canonical type, label

3

typedef map<string, SegmentClass> MannerMap;
MannerMap *construct_manner_table()

{

MannerMap *manner_map = new MannerMap;

if (manner_map) {
// silence

(*manner_map) ["h#"] = SegmentClass(Closure,
(*manner_map) ["pau"] = SegmentClass(Closure,
(*manner_map) ["epi"] = SegmentClass(Closure,

// closures

(*manner_map) ["pcl"] = SegmentClass(Closure,
(*manner_map) ["bcl"] = SegmentClass(Closure,
(*manner_map) ["tcl"] = SegmentClass(Closure,
(*manner_map) ["dcl"] = SegmentClass(Closure,
(*manner_map) ["kcl"] = SegmentClass(Closure,
(*manner_map) ["gcl"] = SegmentClass(Closure,

// stops

(*manner_map) ["p"] = SegmentClass(StopBurst,
(*manner_map) ["b"] = SegmentClass(StopBurst,
(*manner_map) ["t"] = SegmentClass(StopBurst,
(*manner_map) ["d"] = SegmentClass(StopBurst,
(*manner_map) ["k"] = SegmentClass(StopBurst,
(*manner_map) ["g"] = SegmentClass(StopBurst,
(*manner_map) ["q"] = SegmentClass(StopBurst,

false,
false,
false,

false,
true,
false,
true,
false,
true,

false,
true,
false,
true,
false,
true,

true,

false,
false,
false,

false,
false,
false,
false,
false,
false,

false,
false,
false,
false,
false,
false,

false,

”Sil");
”Sil”);
"Sil");

R
{OF
")
")
")
{OF

")
")
OF
")
")
OF

"glott");

107

108

// fricatives

(*manner_map) ["£"] SegmentClass (Fricative, false, false, "");

(*manner_map) ["v"] = SegmentClass (Fricative, true, false, "");
(*manner_map) ["th"] = SegmentClass(Fricative, false, false, "");
(*manner_map) ["dh"] = SegmentClass(Fricative, true, false, "");
(*¥manner_map) ["s"] = SegmentClass(Fricative, false, true, "");
(*manner_map) ["z"] = SegmentClass (Fricative, true, true, "");
(*manner_map) ["sh"] = SegmentClass(Fricative, false, true, "");
(*manner_map) ["zh"] = SegmentClass(Fricative, true, true, "");

(*manner_map) ["ch"] SegmentClass(Fricative, false, true, "afr");

(*manner_map) ["jh"] SegmentClass(Fricative, true, true, "afr");

(*manner_map) ["hh"] SegmentClass (Fricative, false, false, "h");

(*manner_map) ["hv"] SegmentClass (Fricative, true, false, "h");

(*manner_map) ["ax-h"] = SegmentClass(Fricative, true, false, "ax-h");

// sonorant consonants and glides
(*manner_map) ["m"] = SegmentClass(Sonorant, true, false, "nasal");

(*manner_map) ["n"] = SegmentClass (Sonorant, true, false, "nasal");

(*manner_map) ["ng"] SegmentClass(Sonorant, true, false, "nasal");

(*manner_map) ["nx"] SegmentClass(Sonorant, true, false, "nasal");

(*manner_map) ["1"] = SegmentClass(Sonorant, true, false, "1");
(*manner_map) ["r"] = SegmentClass (Sonorant, true, false, "r");
(*manner_map) ["w"] = SegmentClass(Sonorant, true, false, "glide");
(*manner_map) ["y"] = SegmentClass (Sonorant, true, false, "glide");

(*manner_map) ["dx"] SegmentClass (Sonorant, true, false, "flap");

// vowels

(*manner_map) ["iy"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ih"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["eh"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ey"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ae"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["aa"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["aw"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ay"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ah"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ao"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["oy"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ow"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["uh"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["uw"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ux"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["ax"] = SegmentClass(Vocalic, true, false, "");

(#manner_map) ["ix"] = SegmentClass(Vocalic, true, false, "");

109

(#manner_map) ["er"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["axr"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["el"] = SegmentClass(Vocalic, true, false, "");
(*manner_map) ["em"] = SegmentClass(Vocalic, true, false, "");

(*manner_map) ["en"] SegmentClass (Vocalic, true, false, "");

(*manner_map) ["eng"] = SegmentClass(Vocalic, true, false, "");

return manner_map,

}

void convert(ostream& os, istream& is, MannerMap* manner_map)

{
// read in .phn label file:
// for each pair of labels, characterize transition -> output expected LMs
// unfortunate issues: - not all LMs will be realized

// - unclear ordering in some cases

TIMIT_label label, prev_label;
SegmentClass curr_class, prev_class;
bool ev[NUM_EV_TYPES], req[NUM_EV_TYPES], any_ev;

is >> prev_label; // grab first label, since we want transitions
prev_class = (*manner_map) [prev_label.phon];

while ((is >> label).good()) {
// clear events
for (int i = 0; i < NUM_EV_TYPES; i++) ev[i] = req[i] = false;

curr_class = (*manner_map) [label.phon];

// determine transition type(s)

// a) is there a voicing boundary? (+/- v)

if (!prev_class.is_sonorant() && curr_class.is_sonorant())
ev[lev_Von] = reqlev_Von] = true;

else if (prev_class.is_sonorant() && !curr_class.is_sonorant())

ev[lev_Voff] = reqlev_Voff] = true;

// b) is there a sonorant consonantal boundary? (+/- s)

if (prev_class.manner() == Sonorant && curr_class.manner() == Vocalic)
ev[ev_Son] = reqlev_Son] = true;
else if (prev_class.manner() == Vocalic && curr_class.manner() == Sonorant)
evlev_Soff] = reqlev_Soff] = true;
else if (prev_class.manner() == Sonorant &&
curr_class.manner () == Sonorant)

evlev_Son] = ev[ev_Soff] = true;

110

// c) is there an obstruent consonantal boundary? (+/-c)
if (!prev_class.is_obstruent() && curr_class.is_obstruent()) {
ev[ev_Con] = true;

reqlev_Con] = true;

}

else if (prev_class.is_obstruent() && !curr_class.is_obstruent()) {
evlev_Coff] = true;
if (prev_class.manner() == Fricative) req[ev_Coff] = true;

}
else if (prev_class.is_obstruent() && curr_class.is_obstruent()) {
if (prev_class.strident() && !curr_class.strident())
ev[ev_Coff] = true;
else if (!prev_class.strident() && curr_class.strident())

ev[ev_Con] = true;
else
ev[ev_Con] = evl[ev_Coff] = true;
}
// d) finally, make sure we output an event for an h#- or -h# boundary
if (prev_class.manner() == Closure && !prev_class.is_canonical()) {
if (!'(ev[ev_Con] | ev[ev_Von])) ev[ev_Con] = true;
} else if (curr_class.manner() == Closure && !curr_class.is_canonical())

if (!(ev[ev_Coff] | ev[ev_Voff])) ev[ev_Coff] = true;

// output any events we’ve found
any_ev = false;
for (int i = 0; i < NUM_EV_TYPES; i++)
if (ev[il) {
if (lany_ev) {
os << label.start_time()*1000 << ’\t’
<< prev_label.phon << ’;’ << label.phon << ’\t’;
any_ev = true;
}

else os << ’,7%;

os << (event_type)i;
if (!req[i]) os << ’77;
}
os << endl;

// e) extra +c for velar stop bursts (not req), and
// £) extra -c for (unvoiced?) stop bursts (assume asp. —--— not req)
if (curr_class.manner() == StopBurst && curr_class.is_canonical()
/*&& !curr_class.voiced()*/)
write_LM(os, prev_label, label,
(label.phon == "k" || label.phon == "g") ? "+c?,-c?" : "-c?",
"(burst off)", (label.start_time() + label.end_time())/2);

111

// ready for next iter
prev_label = label;
prev_class = curr_class;

int main(int argc, char xargv[])
{

int arg = 1;

// check for other options
if (argc-arg < 1 || argc-arg > 2) {
cerr << "USAGE: phn2lm <phn file> [<output file>]"
<< endl
<< " <phn file> is the input label file" << endl
<< " <output file> defaults to stdout" << endl << endl;

return -1;

// open input file

ifstream inf(argv([arg]);

if (linf) {
cerr << " Can’t open input file ’" << argv[arg] << "’." << endl;
exit(-2);

// open output file

ofstream outf(argv[++arg]);

if (linf) {
cerr << " Can’t open output file ’" << argvl[arg] << "’." << endl;
exit(-2);

// set up manner definitioms
MannerMap *manner_map = construct_manner_table();

// do translation
convert (outf, inf, manner_map) ;

inf.close();
outf.close();

112

C.2 DP Scoring (compare program)

Main program: compare.cc

//

// compare.cc: compare and align recognized landmarks with expected
// landmark sequence -- driver code

//

#include <fstream>
#include <list>

#include "compare.h"

1/

// implementations

int main(int argc, char *argv[])
{

int arg = 1;

// check for other options

if (argc-arg !'= 2) {
cerr << "USAGE: compare <ref LM file> <recog LM file>" << endl << endl;
return -1;

// open input file 1 -- ref

ifstream inf1(argvlarg]);

if (linf1) {
cerr << " Can’t open input file ’" << argvlarg] << "’." << endl;
exit(-2);

// open input file 2 -- recog

ifstream inf2(argvlarg+1]);

if (linf2) {
cerr << " Can’t open input file ’" << argv[arg+l] << "’." << endl;
exit(-2);

// read in each LM file
LM_ref_label_seq labels_ref;
LM_ref_label rlabel;
LM_label_seq labels_recog;
LM_label label;

// get all of the labels

113

while((inf1l >> rlabel).good())
labels_ref.push_back(rlabel);

while((inf2 >> label).good())
labels_recog.push_back(label);

// run alignment

static penalty_table pt;
pt.create_table(labels_ref, labels_recog);
pt.backtrace(labels_ref, labels_recog);
pt.output(cout, labels_ref, labels_recog);
pt.output_results(cout);

infl.close();
inf2.close();

Alignment DP algorithm: align.cc

//

// align.cc: compare and align recognized landmarks with expected
// landmark sequence -- actual alignment code

//

#include <cmath>
#include "compare.h"

#define SUB_2X
static int dbug2 = O;

ostream& operator << (ostream& os, const penalty_table::node &n)

{
os << n.cost << ’ ’ << (int)n.p_step << ’ ’
<< (n.availl[0] ? ’1’:°-’) << (n.avail[1] ? °2’:°-?);

return os;

void penalty_table::create_table(LM_ref_label_seq& ref, LM_label_seq& recog)
{

int i, j, cx, ct;

nl

n2 = recog.size();

ref.size();

the_table[0][0].£fi11(0, OK, refl[0]);

114

cx = the_table[0][0].navail();
for (i=1; i <= n1; i++) {
the_table[i] [0] .fi11(DEL_penalty * cx, DEL, ref[il);
cx += the_table[i] [0] .nreq(ref[i]);
}
for (j=1; j <= n2; j++) the_table[0][j].fill(INS_penalty * j, INS, ref[0]);

for (i=1; i <= n1; i++) {
for (j=1; j <= n2; j++) {

cx = MAX_penalty;
ct = the_table[i-1][j].cost
+ the_table[i-1][j].nreq(ref[i-1]) * DEL_penalty;
if (ct<cx) cx=ct, the_table[i][j].fill(ct, DEL, ref[il);

/* try for matches from prev ref label: */
if (the_table[i-1][j-1].navail() == 1) {
event_type ev = ref[i-1].ev[the_table[i-1]1[j-1].avail[0] 7 0:1 1;
if (ev == recogl[j-1].ev) {
ct = the_table[i-1][j-1].cost
+ (int) (abs(ref[i-1].time-recogl[j-1].time));
if (ct<cx) cx=ct, the_table[i][j].fill(ct, OK, ref[il);
}
else {
ct = the_table[i-1][j-1].cost + SUB_penalty
#ifdef SUB_2X
*(// halved penalty if polarities match
(polarity(ref[i-1].ev[the_table[i-1][j-1].availl[0] 7 0:1])
== polarity(recog[j-1].ev)) 71 : 2)
#endif
+ (int) (abs(ref[i-1].time-recogl[j-1].time));
if (ct<cx) cx=ct, the_table[i][j].fill(ct, SUB, ref[il);
}
}
/* try for matches from current ref label: */
if (the_table[il[j-1].navail() == 2) {
if (ref[i].ev[0] == recoglj-1].ev) {
ct = the_table[i][j-1].cost
+ (int) (abs(ref[i].time-recogl[j-1].time));
if (ct<cx) cx=ct, the_table[i][j].fill(ct, 0K2, refl[i], 0);
} else if (ref[i].ev[1] == recoglj-1].ev) {
ct = the_table[i][j-1].cost
+ (int) (abs(ref[i].time-recogl[j-1].time));
if (ct<cx) cx=ct, the_table[i][j].fill(ct, 0K2, refl[i], 1);
} /* else { // Don’t allow subst for 2-avail cases ..
ct= the_table[i-1][j-1].cost + SUB_penalty;
if (ct<cx) cx=ct, the_table[i][j].cost=ct, the_table[i][j].p_step=SUB;
} %/

115

/* finally, insertion penalty case */

ct = the_table[i][j-1].cost + INS_penalty;

if (ct<cx) cx=ct, the_table[i][j].fill(ct, INS, the_table[i][j-11);
}

if (dbug2)
for (i=0; i<=n1; i++) {
for (j=0; j<=n2; j++)
cout << the_table[i][j] << " ",
cout << endl;
}

int penalty_table::backtrace(LM_ref_label_seq& ref, LM_label_seq& recog)

{

int i, j, k, nn;
float ubeg = ref.begin()->time, uend = (ref.end()-1)->time;
//cout << "utt_beg: " << utt_beg << "\tutt_end: " << utt_end << endl;

nerr = nsub = nins = ndel = nokdel = nokins = 0;
for (k=0, i=nl, j=n2; i>=0 && j>=0; k++) {

backtr[k] = the_table[i] [j].p_step;
switch (backtr[k]) {

case ODK: i--; j——; break;

case 0K2: i break;

case SUB: i--; j--; nerr++; nsub++; break;

case INS: if (recogl[j-1].time < ubeg || recoglj-1].time > uend) nokins++;
j——; nerr++; nins++; break;

case DEL: i--; mnn = the_table[i][j].navail(); // mult del possible

nokdel += nn - the_table[i] [j].nreq(ref[i]);
nerr+=nn; ndel+=nn; break;

default: cerr << "backtrace: INVALID" << endl;

}
}
if (dbug2)
for (i = 0; i < k; i++)
cout << "backtr[" << i << "] = " << (int)backtr[i] << endl;
nbacktr = (--k); /* return size after dumping faked entry */

return nbacktr;

ostream& penalty_table::output(ostream& os,

LM_ref_label_seq& ref, LM_label_seq& recog)

int i,j,m;
LM_ref_label_seq::iterator i_ref = ref.begin();
LM_label_seq::iterator i_recog = recog.begin();

string s;

for (m = nbacktr-1, i = j = 0; m >= 0; m—-) {

switch (backtr[m]) {
case 0OK:
os << *i_recogt++ << ’\t’ << i_ref->ev[the_table[i][j].avail[0] 7 0:1];
if (li_ref->req[the_table[i][j].avail[0] ? 0:1 1) os << ’7’;
os << ’\t’ << i_ref->comment << endl;
i++, j++, i_ref++;

break;

case 0K2:

os << *i_recogt++ << ’\t’ << i_ref->ev[the_table[i][j+1].availl[0] 7 1:0];

if (li_ref->reql[the_table[i][j+1].avail[0] 7 1:0 1) os << ’77;
os << ’\t’ << i_ref->comment << endl;
j++;

break;

case SUB:
os << *i_recogt++ << ’\t’ << i_ref->ev[the_table[i][j].avail[0] 7 0:1]1;
if (li_ref->req[the_table[i][j].avail[0] ? 0:1 1) os << ’7’;
os << ’\t’ << i_ref->comment << endl;
i_ref++;
i++, j++;

break;

case INS:
// find transition label
if (i_recog->time < ref.begin()->time)
s = ";h#"; // assumption that initial segment label will be h#
else
s = (i_ref < ref.end() && i_recog->time >= i_ref->time)

? i_ref->comment : (i_ref-1)->comment;

os << *i_recogt+ << \t’ << 7%’ << ’\t’ << s.substr(s.find(’;’)+1) << endl;

j++;

break;

case DEL: // this is a mess, because either 1 or 2 evs can be del’d..
os << i_ref->time << "\t*\t*\t";
if (the_table[il[j].avail[0]) {
os << i_ref->ev[0]; if (!i_ref->req[0]) os << ’7’;
}
if (the_table[i][j].navail() == 2) os << ’,’;
if (the_table[il[j].availl[1l) {

116

117

os << i_ref->ev[1]; if (!i_ref->req[1]) os << ’7’;
}
os << ’\t’ << (i_ref++)->comment << endl;
i++;

break;

default:
os << "7777" << endl;

os << endl;

return os;

ostream& penalty_table::output_results(ostream& os)

{

os << "Total errors: " << nerr << endl
<< "Substitutions: " << nsub << endl
<< "Insertiomns: " << nins << endl
<< "Deletions: " << ndel << endl
<< endl
<< "Accounted for:" << endl
<< " pre/post ins: " << nokins << endl
<< " non-req dels: " << nokdel << endl
<< "Net errors: " << (nerr - nokins - nokdel) << endl;

return os;

1]
2]

BIBLIOGRAPHY

Kenneth N. Stevens. Acoustic Phonetics. MIT Press, Cambridge, Mass., 1999.

George A. Miller and Patricia E. Nicely. An analysis of perceptual confusions
among some english consonants. Journal of the Acoustical Society of America,

27(2):338-353, 1955.

Dianne J. Van Tassell, Sigfrid D. Soli, Virginia M. Kirby, and Gregory P. Widin.
Speech waveform envelope cues for consonant recognition. Journal of the Acous-

tical Society of America, 82(4):1152-1161, 1987.

Dianne J. Van Tassell, Donna G. Greenfield, Joelle J. Logemann, and David A.
Nelson. Temporal cues for consonant recognition: Training, talker general-
ization, and use in evaluation of cochlear implants. Journal of the Acoustical

Society of America, 92(3):1247-1257, 1992.

Robert V. Shannon, Fan-Gang Zeng, Vivek Kamath, John Wygonski, and
Michael Ekelid. Speech recognition with primarily temporal cues. Science,

270:303-304, 1995.

C. W. Turner, P. E. Souza, and L. N. Forget. Use of temporal envelope cues
in speech recognition by normal and hearing-impaired listeners. Journal of the

Acoustical Society of America, 97(4):2568-2576, 1995.

P. B. Denes and E. N. Pinson. The Speech Chain: The Physics and Biology of
Spoken Language. Anchor Press / Doubleday, Garden City, New York, 1973.

8]

[10]

[11]

119

S. J. Keyser and K. N. Stevens. Feature geometry and the vocal tract. Phonol-
ogy, 11:207-236, 1994.

Carol Y. Espy-Wilson. An acoustic-phonetic approach to speech recognition:
Application to the semivowels. RLE Technical Report 531, MIT Research Lab
for Electronics, June 1987.

Carol Y. Espy-Wilson. A feature-based semi-vowel recognition system. Journal

of the Acoustical Society of America, 96(1):65-72, 1994.

Sharlene Liu. Landmark Detection for Distinctive Feature-Based Speech Recog-
nition. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass.,
1994.

Sharlene Liu. Landmark detection for distinctive feature-based speech recogni-

tion. Journal of the Acoustical Society of America, 100(5):3417-3430, 1995.

E. F. Evans. Auditory processing of complex sounds: an overview. In R. P.
Carlyon, C. J. Darwin, and I. J. Russell, editors, Processing of complex sounds
by the auditory system, pages 295-306. Oxford University Press, New York,
1992.

E. F. Evans. Cortical representation. In A. V. S. de Reuck and J. Knight, edi-
tors, Hearing representations in vertebrates, pages 272-287. J. & A. Churchill,
London, 1968.

Philip X. Joris and Tom C. T. Yin. Envelope coding in the lateral superior
olive. I. Sensitivity to interaural time differences. Journal of Neurophysiology,

73:1043-1062, 1995.

[16]

[17]

[19]

[20]

[21]

22]

[23]

[24]

120

Philip X. Joris. Envelope coding in the lateral superior olive. II. Characteristic
delays and comparison with responses in the medial superior olive. Journal of

Neurophysiology, 76:2137-2156, 1996.

Philip X. Joris and Tom C. T. Yin. Envelope coding in the lateral superior olive.
ITI. Comparison with afferent pathways. Journal of Neurophysiology, 79:253—
269, 1998.

Ariel Salomon and Carol Y. Espy-Wilson. Automatic detection of manner
events based on temporal parameters. In Eurospeech 99 Conference Proceedings,

volume 6, pages 2797-2800, 1999.

Arindam Mandal, Laura J. Davis, Carol Y. Espy-Wilson, and Melanie Matthies.
The use of spectral vs. temporal cues to recognize speech (2pscl12). In Program

of the 138th Meeting of the Acoustical Society of America, November 1999.

Sangita Sharma and Hynek Hermansky. Speech recognition from temporal

patterns. In Proceedings, International Conference of Phonetic Sciences, 1999.

Nabil Bitar. Acoustic Analysis and Modeling of Speech Based on Phonetic Fea-
tures. Ph.D. Dissertation, Boston University, Boston, 1997.

Stuart Rosen. Temporal information in speech: acoustic, auditory, and linguis-
tic aspects. Philosophical transactions of the Royal Society of London Series B,
Biological sciences, 336:367-373, 1992.

Brian C. J. Moore. An Introduction to the Psychology of Hearing. Academic
Press, London / San Diego, 1999.

S. P. Bacon and Neal F. Viemeister. Temporal modulation transfer functions

in normal-hearing and hearing-impaired subjects. Audiology, 24:117-134, 1985.

[25]

[26]

[30]

[31]

32]

33]

121

Neal F. Viemeister. Temporal modulation transfer functions based upon mod-
ulation thresholds. Journal of the Acoustical Society of America, 66(5):1364—
1380, 1979.

René van der Horst, A. Rens Leeuw, and Wouter A. Dreschler. Importance
of temporal envelope cues in consonant recognition. Journal of the Acoustical

Society of America, 105(3):1801-1809, 1999.

Laurel H. Carney. A model for the responses of low-frequency auditory-nerve

fibers in cat. Journal of the Acoustical Society of America, 93(1):401-417, 1993.

Michael G. Heinz. Quantifying the effects of the cochlear amplifier on tempo-
ral and average-rate information in the auditory nerve. Ph.D. Thesis, Mas-

sachusetts Institute of Technology, Cambridge, Mass., 2000.

Alan V. Oppenheim and Ronald W. Schafer. Discrete-time Signal Processing.
Prentice Hall, Englewood Cliffs, N.J., 1989.

Lawrence R. Rabiner and Ronald W. Schafer. Digital Processing of Speech
Signals. Prentice Hall, Englewood Cliffs, N.J., 1978.

Carol Y. Espy-Wilson. Acoustic measures for linguistic features distinguishing
the semivowels /w j r 1/ in american english. Journal of the Acoustical Society

of America, 92(2):736-757, 1992.

D. S. Pallett. Benchmark tests for DARPA resource management database
performance evaluations (S10.b.6). In Proceedings of the 1989 International

Conference on Acoustics, Speech and Signal Processing, pages 536539, 1989.

S. Seneff and V. Zue. Transcription and alignment of the TIMIT database.
Included with the TIMIT database, 1988.

122

[34] J. Y. Choi, E. Chuang, D. Gow, K. Kwong, S. Shattuck-Hufnagel, K. N. Stevens,
and Y. Zhang. Labeling a speech databse with landmarks and features (4asc6).

In Program of the 134th Meeting of the Acoustical Society of America, page
3163, November 1997.

[35] ESPS 5.3.1. Entropic Research Laboratory, Inc., 1999.

[36] John F. Pitrelli. Hierarchical Modeling of Phoneme Duration: Application to
Speech Recognition. Ph.D. Thesis, Massachusetts Institute of Technology, Cam-
bridge, Mass., 1985.

VITA

