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A probabilistic and statistical framework is presented for automatic speech
recognition based on a phonetic feature representation of speech sounds. In this
acoustic-phonetic approach, the speech recognition problem is hypothesized as a
maximization of the joint posterior probability of a set of phonetic features and
the corresponding acoustic landmarks. Binary classifiers of the manner phonetic
features - syllabic, sonorant and continuant - are applied for the probabilistic detec-
tion of speech landmarks. The landmarks include stop bursts, vowel onsets, syllabic
peaks, syllabic dips, fricative onsets and offsets, and sonorant consonant onsets and
offsets. The classifiers use automatically extracted knowledge based acoustic param-
eters (APs) that are acoustic correlates of those phonetic features. For isolated word
recognition with known and limited vocabulary, the landmark sequences are con-
strained using a manner class pronunciation graph. Probabilistic decisions on place
and voicing phonetic features are then made using a separate set of APs extracted
using the landmarks.

The framework exploits two properties of the knowledge-based acoustic cues



of phonetic features: (1) sufficiency of the acoustic cues of a phonetic feature for a
decision on that feature and (2) invariance of the acoustic cues with respect to con-
text. The probabilistic framework makes the acoustic-phonetic approach to speech
recognition suitable for practical recognition tasks as well as compatible with prob-
abilistic pronunciation and language models. Support vector machines (SVMs) are
applied for the binary classification tasks because of their two favorable properties
- good generalization and the ability to learn from a relatively small amount of
high dimensional data. Performance comparable to Hidden Markov Model (HMM)
based systems is obtained on landmark detection as well as isolated word recogni-
tion. Applications to rescoring of lattices from a large vocabulary continuous speech

recognizer are also presented.
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Chapter 1

Introduction

In this chapter, motivation is built up for the probabilistic and statistical framework
of the acoustic-phonetic approach to automatic speech recognition (ASR) presented
in this work. The approach, named as the event-based system (EBS), is based
on the concept of representation of speech sounds by bundles of phonetic features
(Chomsky and Halle, 1968) and acoustic landmarks (Stevens, 2002). EBS uses
knowledge-based acoustic parameters (APs) that target the acoustic correlates of
the binary manner features - sonorant, syllabic and continuant - to obtain multiple
probabilistic landmark sequences for a speech signal. The landmarks are then used
to extract APs for other manner features such as nasal and strident, and for place and
voicing features, and the probabilities of these features are obtained using another set
of binary classifiers. Posterior probabilities of words are then found by a combination
of these probabilities. The most salient feature of the framework is its utilization of
the context invariance property of the knowledge-based APs which is explained and

mathematically formalized in Chapter 3.



Phonetic features (discussed in detailed in Section 1.1) are more fundamental
units of speech than phones, phonemes or triphones that have been used convention-
ally in automatic speech recognition (Rabiner and Juang, 1993). Unlike phonemes,
phonetic features have clear articulatory and acoustic correlates, and many of the
the acoustic correlates can be automatically extracted. Also, phonetic features can
describe all languages in the world while phonemes differ highly from language to
language. There is evidence of the use of phonetic features in human speech per-
ception (Delgutte and Kiang, 1984). There is also evidence from human perceptual
studies that splitting speech recognition problem into the recognition of manner,
place and voicing features can be advantageous in noisy environments (Miller and
Nicely, 1955).

The landmark and knowledge based approach offers a number of advantages.
First, by carrying out the analysis only at significant locations, the landmark based
approach to speech recognition utilizes strong correlation among the speech frames.
Second, analysis at different landmarks may be done with different APs that are
computed at different resolutions. For example, analysis at stop bursts to deter-
mine the place of articulation requires a higher resolution than that required at
syllabic peaks to determine the tongue tip and blade features. Third, the approach
provides very straightforward analysis of errors. Given the physical significance of
the APs and a recognition framework that uses only the relevant APs, error analysis
can determine whether the APs need to be refined or the decision process didn’t
take into account a certain type of variability that occurs in the speech signal. In

fact, this landmark and knowledge-based approach to recognition is a tool itself for



understanding speech variability. There is evidence from studies of human speech
perception that analysis of speech is carried out at certain events like stop closures,
stop releases and vowel onsets (Ohde and Stevens, 1983; Tartter et al., 1983).

A good amount of work has gone into automatic extraction of knowledge
based acoustic parameters (FEspy-Wilson, 1987; Bitar, 1997; Ali, 1999; Carbonell
et al., 1987; Glass, 1984; Chen, 2000; Hasegawa-Johnson, 1996) as well as detection
of acoustic landmarks (Espy- Wilson, 1987; Liu, 1996; Bitar, 1997; Salomon et al.,
2004; Ali, 1999; Mermelstein, 1975; Niyogi, 1998). However, the use of these ideas
in practical automatic speech recognition (ASR) systems is far from realized. An
attempt is made in this work to build a recognition system that explicitly uses knowl-
edge based APs as well as carries out word level recognition. The framework for
EBS has been designed to allow the use of prior language and pronunciation models
with a knowledge based approach and scalability to large vocabulary recognition.

The production of speech by the human vocal tract and the concept of phonetic
features are introduced in Section 1.1, and the concepts of acoustic landmarks and
the acoustic correlates of phonetic features are discussed in Section 1.2. In Section
1.3 the basic ideas of acoustic phonetic knowledge based ASR are presented. The
various drawbacks of the acoustic phonetic approach that have led the ASR commu-
nity to abandon the approach and some ideas of solving those problems are briefly
discussed in Section 1.4. The basics and the terminology of the state-of-the-art ASR,
that is based largely on Hidden Markov Models (HMMs) are presented in Section 1.5
and the performance of the state-of-the-art systems is compared with human speech

recognition in Section 1.6. An introduction to support vector machines (SVMs) is
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presented in Section 1.7. A literature survey of the previous ASR systems that uti-
lize acoustic phonetic knowledge is presented in Chapter 2. Chapter 3 presents the
probabilistic acoustic-phonetic knowledge-based framework for speech recognition.
Chapter 4 discusses the implementation and experiments for the landmark-detection
system. Classification of place and voicing phonetic features is discussed in Chapter
5. Finally, word recognition results are presented in Chapter 6, and the conclusions

and suggestions for future work appear in Chapter 7.

1.1 Speech Production and Phonetic Features

Speech is produced when air from the lungs is modulated by the larynx and the
supra-laryngeal structures. Figure 1.1 shows the various articulators of the vocal
tract that act as modulators for the production of speech. The characteristics of
the excitation signal and the shape of the vocal tract filter determine the quality of
the speech pattern one hears. In the analysis of a sound segment, there are three
general descriptors that are used - source characteristics, manner of articulation and
place of articulation. Corresponding to the three types of descriptors, three types
of articulatory phonetic features can be defined - manner of articulation phonetic
features, source features, and place of articulation features. The phonetic features,
as defined by Chomsky and Halle (1968) are minimal binary valued units that are
sufficient to describe all the speech sounds in any language. In the description of
phonetic features, examples are given using American English phonemes. A list of

American English phonemes appears in Appendix A with examples of words where



the phonemes occur.

1. Source
The source or excitation of speech can be periodic when air is pushed from
the lungs at a high pressure that causes the vocal folds to vibrate, or aperiodic
when either the vocal folds are spread apart or the source is produced at a con-
striction in the vocal tract. The sounds that have the periodic source or vocal
fold vibration present are said to possess the value '+’ for the voiced feature
and the sounds with no periodic excitation have the value - for the feature
voiced. Both periodic and aperiodic sources may be present in a particular
speech sound, for example, the sounds /v/ and /z/ are produced with vocal
fold vibration but a constriction in the vocal tract adds an aperiodic turbulent
noise source. The main (dominant) excitation is usually the turbulent noise
source generated at the constriction. The sounds with both the sources are

still +voiced by definition because of the presence of the periodic source.

2. Manner of articulation
Manner of articulation refers to how open or close is the vocal tract, how strong
or weak is the constriction and whether the air flow is through the mouth or the
nasal cavity. Manner phonetic features are also called articulator-free features
(Stevens, 2002) which means that these features are independent of the main
articulator and are related to the manner in which the articulators are used.
The sounds in which there is no sufficiently strong constriction so as to pro-

duce turbulent noise or stoppage of air flow are called sonorants which include



Phonetic feature | Articulatory correlate | Vowels | Sonorant — con- | Fricatives | Stops
sonants (nasals
and semi-
vowels)
sonorant No constriction or + + - -
constriction not
narrow enough to
produce turbulent
noise
syllabic Open vocal tract + -
continuant Incomplete constric- + -
tion

Table 1.1: Broad manner of articulation classes and the manner phonetic features

vowels and the sonorant consonants (nasals and semi-vowels). Sonorants are
characterized by the phonetic feature +sonorant and the non-sonorant sounds
(stop consonants and fricatives) are characterized by the feature —sonorant.
Sonorants and non-sonorants can be further classified as shown in Table 1.1
that summarizes the broad manner classes (vowels, sonorant consonants, stops
and fricatives), the broad manner phonetic features - sonorant, syllabic and
continuant and the articulatory correlates of the broad manner phonetic fea-

tures.

Table 1.2 shows finer classification of phonemes on the basis of the manner
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Phonetic feature | s, sh | z, zh | v, dh | th, f | p,t, k| b, d, g | vowels | wrly | nngm
voiced - + + - - + + + +
sonorant - - - - - - + + +
syllabic + - ,
continuant + + + + - -
strident + + - - - _
nasal . +

Table 1.2: Classification of phonemes on the basis on manner and voicing phonetic

features

phonetic features and the voicing feature. As shown in Table 1.2, fricatives can
further be classified by the manner feature strident. The +strident feature
signifies greater degree of frication or greater turbulent noise, that occurs in
the sounds /s/, /sh/, /z/, /zh/. The other fricatives /v/, /f/, /th/ and /dh/
are —strident. Sonorant consonants can be further classified by using the
phonetic feature +nasal or —nasal. Nasals, with +nasal feature - /m/, /n/,
and /ng/ - are produced with a complete stop of air flow through the mouth.

Instead the air flows out through the nasal cavities.

3. Place of articulation
The third classification required to produce or characterize a speech sound is
the place of articulation, that refers to the location of the most significant
constriction (for stops, fricatives and sonorant consonants) or the shape and

position of the tongue (for vowels). For example, using place phonetic features



, stop consonants may be classified (see Table 1.3) as (1) alveolar (/d/ and
/t/) when the constriction is formed by the tongue tip and the alveolar ridge
(2) labial (/b/ and /p/) when the constriction is formed by the lips, and (3)
velar (/k/ and /g/) when the constriction is formed by the tongue dorsum and
the palate. The stops with identical place, for example the alveolars /d/ and
/t/ are distinguished by the voicing feature, that is, /d/ is 4voiced and /t/is
—voiced. The place features for other classes of sounds - vowels, sonorants

consonants and fricatives - are tabulated in Appendix B.

All the sounds can, therefore, be represented by a collection or bundle of phonetic
features. For example, the phoneme /z/ can be represented as a collection of the

features

{—sonorant, +continuant, +voiced, +strident, +anterior}.

Moreover, words may be represented by a sequence of bundles of phonetic features.
Table 1.4 shows the representation of the digit 'zero’, pronounced as /z I r ow/, in
terms of the phonetic features. Phonetic features may be arranged in a hierarchy
such as the one shown in Figure 1.2. The hierarchy enables us to describe the
phonemes with a minimal set of phonetic features, for example, the feature strident

is not relevant for sonorant sounds.
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Phonetic feature | Articulatory correlate bp|dt|gk

velar Constriction  between tongue | - - +

body and soft palate

alveolar Constriction between tongue tip | - + -

and alveolar ridge

labial Constriction between the lips + - -

Table 1.3: Classification of stop consonants on the basis of place phonetic features

/7/ /1/ /r/ /o/ /w/

—sonorant +sonorant | +sonorant | +sonorant | +sonorant

+continuant | +syllabic | —syllabic | +syllabic | —syllabic

+wvoiced —back —nasal +back —nasal
+strident +high +rhotic —high +labial
+anterior +lax +low

Table 1.4: Phonetic feature representation of phonemes and words. The word "zero’
may be represented as the sequence of phones /z I r ow/ as shown in the top row
or the sequence of corresponding phonetic feature bundles as shown in the bottom

TOwW.
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Figure 1.2: Phonetic feature hierarchy

1.2 Acoustic correlates of phonetic features

The binary phonetic features manifest in the acoustic signal in varying degrees of
strength. There has been considerable research in the understanding of the acoustic
correlates of phonetic features, for example, Stevens (Stevens et al., 1999; Stevens,
1980; Espy- Wilson, 1987; Glass, 1984). In this work, the term Acoustic Parameters
or APs is used for the acoustic correlates that can be extracted automatically from
the speech signal and there has been some success in finding these automatically ex-
tracted acoustic correlates, for example, (Ali, 1999; Bitar, 1997; Hasegawa-Johnson,
1996; Liu, 1996; Deshmukh et al., to appear). In EBS, the APs related to the broad
manner phonetic features - sonorant, syllabic and continuant - are extracted from
every frame of speech. Table 4.1 provides examples of APs for manner phonetics
features (Bitar, 1997; Deshmukh et al., to appear), and later used in Support Vec-

tor Machine (SVM) based segmentation of speech (Juneja and Espy- Wilson, 2003,
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2004).

The APs for broad manner features and the decision for the positive or negative
value for each feature is used to find a set of landmarks in the speech signal. Figure
1.3 illustrates the landmarks obtained from the acoustic correlates of the manner
phonetic features. There are two kinds of manner landmarks (1) landmarks defined
by an abrupt change, for example, burst landmark for stop consonants (shown by
ellipse 1 in the figure), and vowel onset point (VOP) for vowels, and (2) landmarks
defined by the most prominent manifestation of a manner phonetic feature, for
example, a point of maximum low frequency energy in a vowel (shown by ellipse
3) and a point of lowest energy in in a certain frequency band (Bitar, 1997) for an
intervocalic sonorant consonant (a sonorant consonant that lies between two vowels).

The acoustic correlates of place and voicing phonetic features are extracted
using the locations provided by the manner landmarks. For example, the stop
consonants /p/, /t/ and /k/ are all unvoiced stop consonants and they differ in their
place phonetic features. /p/ is +labial, /t/ is +alveolar and /k/ is +velar. The
acoustic correlates of these three kinds of place phonetic features can be extracted
using the burst landmark (Stevens et al., 1999) and the VOP. The acoustic cues for
place and voicing phonetic features are most prominent at the locations provided by
the manner landmarks, and they are least affected by contextual or coarticulatory
effects at these locations. For example, the formant structure typical to a vowel
is expected to be most prominent at the location in time where the vowel is being
spoken with the maximum loudness.

In a broad sense, the landmark based recognition procedure involves three
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steps (1) location of manner landmarks, (2) analysis of the landmarks for place and
voicing phonetic features and (3) matching the phonetic features obtained by this
procedure to phonetic feature based representation of words or sentences. This is the
approach to speech recognition that is followed in this work. The landmark based
approach is similar to human spectrogram reading (Zue and Cole, 1995) where an
expert locates certain events in the speech spectrogram, and analyze those events for
significant cues required for phonetic distinction. By carrying out the analysis only
at significant locations, the approach utilizes strong correlation among the speech
frames. The approach has been advocated by Stevens (Stevens et al., 1992; Stevens,
2002) and further pursued by Liu (Liu, 1996) and Bitar and Espy-Wilson (Bitar,

1997; Espy- Wilson, 1994).

1.3 Definition of acoustic-phonetic knowledge based

ASR

All the approaches to ASR can be classified as either ’static’ or 'dynamic’. In the
static approach, explicit events are located in the speech signal and the recognition of
units - phonemes or phonetic features - is carried out using a fixed number of acoustic
measurements extracted using those events. In the static method, no dynamic
models like HMMs are used to model the time varying characteristics of speech. In
this thesis, the acoustic phonetic approach to ASR is defined as a static approach

where analysis is carried out at explicit locations in the speech signal and EBS
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Figure 1.3: Illustration of manner landmarks for the utterance ”diminish” from the
TIMIT database (NIST, 1990). (a) Phoneme Labels, (b) Spectrogram, (c¢) Land-
marks characterized by sudden change, (d) Landmarks characterized by maxima or
minima of a correlate of a manner phonetic feature, (e) Onset waveform (an acoustic
correlate of phonetic feature —continuant), (f) E[640,2800] (an acoustic correlate of
syllabic feature). Ellipse 1 shows the location of stop burst landmark for the conso-
nant /d/ using the maximum value of the onset energy signifying a sudden change.
Ellipse 2 shows how minimum of E[640,2800] is used to locate the syllabic dip for
the nasal /m/. Similarly, ellipse 3 shows that the maximum of the E[640,2800] is

used to locate a syllabic peak landmark of the vowel /ix/.

15



belongs to this category. In the dynamic approach, speech is modeled by statistical
dynamic models like HMMSs and this approach is discussed further in Section 1.5.
A detailed discussion of the past acoustic phonetic ASR methods and other
methods that utilize acoustic phonetic knowledge (for example, HMM systems that
use acoustic phonetic knowledge) is presented in Section 2. A typical acoustic-
phonetic approach to ASR has the following steps (this is similar to the overview
of the acoustic-phonetic approach presented by Rabiner (Rabiner and Juang, 1993)

but it is defined here more broadly):

1. Speech is analyzed using any of the spectral analysis methods - Short Time
Fourier Transform (STFT), Linear Predictive Coding (LPC), Perceptual Lin-
ear Prediction (PLP), etc. - using overlapping frames with a typical size of

10-25ms and typical overlap of 5ms.

2. Acoustic correlates of phonetic features are extracted from the spectral repre-
sentation. For example, low frequency energy may be calculated as an acoustic
correlate of sonorancy, zero crossing rate may be calculated as a correlate of

frication, and so on.

3. Speech is segmented by either finding transient locations using the spectral
change across two consecutive frames, or using the acoustic correlates of source
or manner classes to find the segments with stable manner classes. The earlier
approach , that is, finding acoustic stable regions using the locations of spectral
change has been followed by Glass et al. (Glass and Zue, 1988). The latter
method of using broad manner class scores to segment the signal has been
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used by a number of researchers (Bitar, 1997; Liu, 1996; Fohr et al.; Carbonell
et al., 1987). Multiple segmentations may be generated instead of a single
representation, for example, the dendograms in the speech recognition method
proposed by Glass (Glass and Zue, 1988). (The system built by Glass et al. is
included here as an acoustic phonetic system because it fits the broad definition
of the acoustic-phonetic approach, but this system uses very little knowledge

of acoustic phonetics.)

. Further analysis of the individual segmentations is carried out next to either
recognize each segment as a phoneme directly or find the presence or absence
of individual phonetic features and using the intermediate decisions to find
the phonemes. When multiple segmentations are generated instead of a single
segmentation, a number of different phoneme sequences may be generated.
The phoneme sequences that match the vocabulary and grammar constraints
are used to decide upon the spoken utterance by combining the acoustic and

language scores.

1.4 Hurdles in the acoustic-phonetic approach

A number of problems have been associated with the acoustic-phonetic approach in

the literature. Rabiner (Rabiner and Juang, 1993) lists at least five such problems

or hurdles that have made the use of the approach minimal in the ASR community.

The problems with the acoustic phonetic approach and some ideas for solving them

provide much of the motivation for the present work. These documented problems of
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the acoustic-phonetic approach are now listed and it is argued that either insufficient
effort has gone into solving these problems or that the problems are not unique to

the acoustic-phonetic approach.

e It has been argued that the difficulty in proper decoding of phonetic units
into words and sentences grows dramatically with an increase in the rate of
phoneme insertion, deletion and substitution. This argument makes the as-
sumption that phoneme units are recognized in the first pass with no knowl-
edge of language and vocabulary constraints. This has been true for many of
the acoustic phonetic methods, but this is not necessary since vocabulary and
grammar constraints may be used to constrain the speech segmentation paths

(Glass et al., 1996).

e Extensive knowledge of the acoustic manifestations of phonetic units is re-
quired and the lack of completeness of this knowledge has been pointed out
as a drawback of the knowledge based approach. While it is true that the
knowledge is incomplete, there is no reason to believe that the standard signal
representations, for example, Mel-Frequency Cepstral Coefficients (MFCCs),
used in the state-of-the-art ASR methods (discussion in Section 1.5) are suffi-
cient to capture all the acoustic manifestations of the speech sounds. Although
the knowledge is not complete, a number of efforts to find acoustic correlates
of phonetic features have obtained excellent results. Most recently, there has
been significant development in the research on the acoustic correlates of place

of stop consonants and fricatives (Stevens et al., 1999; Ali, 1999; Bitar, 1997),
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nasal detection (Pruthi and Espy-Wilson, 2003), and semivowel classification
(Espy-Wilson, 1994). The knowledge from these sources may be adequate to
start building an acoustic-phonetic speech recognizer to carry out word recog-
nition tasks, and that was the focus of this work. It should be noted that
because of the physical significance of the knowledge based acoustic measure-
ments, it is easy to pinpoint the source of recognition errors in the recognition

system. Such an error analysis is close to impossible in MFCC like front-ends.

The third argument against the acoustic-phonetic approach is that the choice
of phonetic features and their acoustic correlates is not optimal. It is true
that linguists may not agree with each other on the optimal set of phonetic
features, but finding the best set of features is a task that can be carried out
instead of turning to other ASR methods. The phonetic feature set used in
this work will be based on the distinctive feature theory and it will be optimal

in that sense.

Another drawback of the acoustic-phonetic approach as pointed out in (Ra-
biner and Juang, 1993) is that the design of the sound classifiers is not op-
timal. This argument probably assumes that binary decision trees with hard
knowledge-based thresholds are used to carry out the decisions in the acoustic-
phonetic approach. Statistical pattern recognition methods that are no less
optimal than the HMMs have been applied to acoustic-phonetic approaches as
discussed further in Section 2. Statistical pattern recognition methods have

been applied in some acoustic phonetics knowledge based methods, for exam-
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ple, (Niyogi, 1998; Fohr et al.) although scalability of these methods to bigger

recognition tasks has not been accomplished.

e The last shortcoming of the acoustic-phonetic approach is that no well defined
automatic procedure exists for tuning the method. The acoustic-phonetic
methods can be tuned if they use standard data driven pattern recognition
methods, and this can be possible in the presented approach. But the goal of
this work was to design an ASR system that does not require tuning except
under extreme circumstances, for example, accents that are extremely different
from standard American English (assuming the original system was trained

on native American speakers).

1.5 State-of-the-art ASR

ASR using the acoustic modeling by HMMs has dominated the field since the mid
1970s when very high performance on certain continuous speech recognition tasks
was reported by Jelinek (Jelinek, 1976) and Baker (Baker, 1975). A very brief
review of HMM based ASR, starting with how isolated word recognition is carried
out using HMMs is presented here. Given a sequence of observation vectors O =
{01, 09, ..., 01}, the task of the isolated word recognizer is to find from a set of words

{w;}Y_,, a word w? such that

Wy = arg H%U%XP(O/wi)P(wi). (1.1)
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One of the ways to carry out isolated word recognition using HMMs is to build
a 'word model’ for each word in the set {w;}/_,. That is, an HMM model \, =
(Ay, By, ) is built for every word w,. An HMM model ) is defined as a set of three
entities (A, B, ) where A = {a;;} is the transition matrix of the HMM, B = {b;(0)}
is the set of observation densities for each state, and m = {m;} is the set of initial
state probabilities. Let N be the number of states in the model A\, and the state at

instant ¢ be denoted by ¢, a;;, bj(0) and 7; are defined as

aj = P41 = jlaz = 1), 1<i,j<N (1.2)
bj(0) = P(or = olgs = j) (1.3)
m = P(q = i), 1<i<N (1.4)

The problem of isolated word recognition is then to find the word w,« such that
v* = arg max P(O|\;) P(w;). (1.5)

Given the models A, for each of the words in {w;}Y_;, the problem of finding v* is
called the decoding problem. The Viterbi algorithm ( Viterbi, 1967; Forney, 1973)
is used to find the estimate of the probabilities P(O|);), and the prior probabilities
P(w;) are known. The training of HMMs is defined as a task of finding the best
model )\;, given an observation sequence O or a set of observation sequences for
each word w; and it is usually carried out using the Baum-Welch algorithm (derived
from Expectation Maximization algorithm). Multiple observation sequences, that is,
multiple instances of the same word are used for training the models by sequentially
carrying out the iterations of the Baum-Welch over each instance. Figure 1.4 shows
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Figure 1.4: A typical topology of an HMM used in ASR with non-emitting start
and end states 0 and 4

a typical topology of an HMM used in ASR. There are two non-emitting states
- 0 and 4 - that are the start and the end states, respectively, and the model is
left-to-right, that is, no transition is allowed from any state to a state with lower
index.

For continuous or connected word speech recognition with small vocabularies,
the best path through a lattice of HMMs of different words is found to get the
most probable sequence of words given a sequence of acoustic observation vectors.
A language or grammar model may be used to constrain the search paths through
the lattice and improve recognition performance. Mathematically the problem in

continuous speech recognition is to find a sequence of words W such that
W = arg max P(O|W)P(W). (1.6)
1%

The probability P(W) is calculated using a language model appropriate for the
recognition task, and the probability P(O|W) is calculated by concatenating the
HMDMs of the words in the sequence W and using the Viterbi algorithm for decoding.
A silence or a ’short pause’ model is usually inserted between the HMMs to be
concatenated. Figure 1.5 illustrates the concatenation of HMMs. Language models
are usually composed of bigrams, trigrams or probabilistic context free grammars
(Jurafsky and Martin, 2000).
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When the size of the vocabulary is large, for example, 100,000 or more words,
it is impractical to build word models because a large amount of storage space is
required for the parameters of the large number of HMMSs, and a large number of
instances of all the words is required for training the HMMs. But words highly
differ in their frequency of occurrence in speech corpora, and the number of avail-
able training samples is usually insufficient to build acoustic models. HMMs have
to be built for subword units like monophones, diphones (centers of sequences of
phone pairs), triphones (phones in context of two adjoining phones) or syllables. A
dictionary of pronunciations of words in terms of the subword units is constructed
and the acoustic model of each word is then the concatenation of the subword units
in the pronunciation of the word, as shown in Figure 1.6. Monophone models have
shown little success in ASR with large vocabularies and the state-of-the-art in HMM
based ASR is the use of triphone models. There are about 40 phonemes in American
English. Therefore, approximately 40% triphone models are required.

An enormous number of modifications and improvements over the basic HMM
method for ASR have been suggested in the past two decades, but these methods
are not discussed here. The goal of this work is an acoustic-phonetic knowledge
based system that will operate very differently from the HMM approach. It is now
briefly discussed why the performance of the HMM based systems is far from that
of human speech recognition (HSR), and what is the difference in the performance

of ASR and HSR.
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| one | | 'short pause’ | | seven |

Figure 1.5: Concatenation of word level HMMs for the words - ’one’ and ’seven’
- through a ’short pause’ model. To find the likelihood of an utterance given the
sequence of these two words, the HMMs for the words are concatenated with an
intermediate 'short pause’ model and the best path through the state transition
graph is found. Similarly the three HMMSs are concatenated for the purpose of

training and the Baum-Welch algorithm is run through the composite HMM

Figure 1.6: Concatenation of phone level HMMs for the phonemes - /w/, /ah/ and
/n/ - to get the model of the word ’one’. To find the likelihood of an utterance
given the word ’one’, the HMMs for the these phonemes are concatenated and the
best path through the state transition graph is found. Similarly the three HMMs
are concatenated for the purpose of training and the Baum-Welch algorithm is run

through the composite HMM
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1.6 ASR versus HSR

ASR has been an area of research over the past 40 years. While significant ad-
vances have been made, especially since the advent of the HMM based ASR systems,
the ultimate goal of performance equivalent to humans is nowhere near. In 1997,
Lippmann (Lippmann, 1997) compared the performance of ASR with HSR. The
comparison is still valid today given only incremental improvements to HMM based
ASR have been made since that time. Lippmann showed that humans perform ap-
proximately 3 to 80 times better than machines using word error rate (WER) as
the performance measure. The conclusion made by Lippmann that is most relevant
to this work is that the gap between HSR and ASR can be reduced by improving
low level acoustic-phonetic modeling. It was noted that ASR performance on a
continuous speech corpus - Resource Management - drops from 3.6% WER to 17%
WER when the grammar information is not used (i.e., when all the words in the
corpus have equal probability). The corresponding drop in the HSR performance
was from 0.1% to 2%, indicating that ASR is much more dependent on high level
language information than HSR. On a connected alphabet task, the recognition per-
formance of HSR was reported to be 1.6% WER while the best reported machine
error rate on islolated letters is about 4% WER. The 1.6% error rate of HSR on
connected alphabet can be considered to be an upper bound of human performance
on isloated alphabet. On telephone quality speech, Ganapathiraju ( Ganapathiraju,
2002) reported an error rate of 12.1% on connected alphabet which represents the

state-of-the-art. Lippmann also points out that human spectrogram reading per-
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formance is close to ASR performance although, it is not as good as HSR. This
indicates that the acoustic-phonetic approach, inspired partially from spectrogram
reading, is a valid option for ASR.

Further evidence that humans carry out highly accurate phoneme level recog-
nition comes from perceptual experiments carried out by Fletcher (Fletcher and
Steinberg, 1929). On clean speech, a recognition error of 1.5% over the phones in
nonsense consonant-vowel-consonant (CVC) syllables was reported. (Machine per-
formance on nonsense CVC syllables is not known.) Further, it was reported that
the probability of correct recognition for a syllable is the product of the probability
of correct recognition of the constituent phones. Allen (Allen, 1994, 2002) inferred
from this observation in his review of Fletcher’s work that individual phones must be
correctly recognized for a syllable to be recognized correctly. Allen further concluded
that it is unlikely that context is used in the early stages of human speech recognition
and that the focus in ASR research must be on phone recognition. Fletcher’s work
also suggests that recognition is carried out separately in different frequency bands
and the phone recognition error rate by humans is the minimum of error rate across
all the frequency bands. That is, recognition of intermediate units that Allen calls
phone features (not the same as phonetic features) is done across different channels
and combined in such a way that the error is minimized. In HMM based systems
the recognition is done using all the frequency information at the same time and in
this way HMM based systems work in a very different manner from HSR. Moreover,
the state-of-the-art of the technology is more concentrated on recognizing triphones

because of the poor performance of HMMs at phoneme recognition.
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The focus of EBS is on the recognition of phonetic features and the correct
recognition of phonetic features will lead to correct recognition of phonemes. The
recognition system presented in this work is not based on processing different fre-
quency bands independently, but all the available information is not used at the
same time for recognizing all the phones. That is, different information (acoustic
correlates of phonetic features) is used for recognition of different features to get
partial recognition results (in terms of phonetic features) and at times this infor-
mation may belong to different frequency bands. The goal in building a phonetic
feature and landmark based system is to capture the low level information with a

satisfactory accuracy.

1.7 Support Vector Machines

SVMs are maximum margin classifiers. These have been applied in this work as
binary classifiers of phonetic features for both obtaining the acoustic landmarks and
detecting the place of articulation. Figure 1.7 illustrates the difference between large
margin classifiers and small margin classifiers. For linearly separable data lying in
space R™, the goal of SVM training for two class pattern recognition is to find a

hyperplane defined by a weight vector w and a scalar b
wx+b=0, reR" (1.7)

such that the margin 2/||w|| between the closest training samples with opposite
labels is maximized. Figure 1.7 shows two types of classifiers for linearly separable
data (1) a linear classifier without maximum margin and (2) a linear classifier with
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maximum margin. It is easy to see in Figure 1.7 that the classifier in (b) is more
robust to noise because a larger amount of noise is required to let a sample point cross
the decision boundary. It has been argued ( Vapnik, 1995) that the maximization of
the margin leads to the minimization of a bound on the test error by the principle
of Structural Risk Minimization (discussed in Section 1.7.1).

In general, SVMs select a set of Ng, support vectors {xV}N5V that is a
subset of [ vectors in the training set {x;}!_, with class labels {y;}\_,, and find an
optimal separating hyperplane f(x) (in the sense of maximization of margin) in a

high dimensional space H,

N,
f(x) = iyiaiK(fo,x) —b. (1.8)
i=1
The space H is defined by a linear or non-linear kernel function K(x;,x;) that satis-
fies the Mercer conditions (Burges, 1998). The weights «;, the set of support vectors
{x?V1NsV and the bias term b are found from the training data using quadratic op-
timization methods.

The mapping ® : R — H can be explicitly defined for certain kernels but it
is usually difficult. The space H may be infinite dimensional but that is handled
elegantly because K is a scalar, and the training is straightforward because of the
linearity of the separating function f(x) in K in Equation 1.8. Two commonly used

kernels are radial basis function (RBF) kernel and linear kernel. For RBF kernel,
K (x;,x) = exp(—7]x; — x*) (1.9)
where the parameter « is usually chosen empirically by cross-validation from the
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Figure 1.7: (a) small margin classifiers, (b) maximum margin classifiers

training data. For the linear kernel,

K(x,x)=x;x+1 (1.10)

1.7.1 Structural Risk Minimization (SRM)

Given a set of training vectors {x;}!_,, and the corresponding class labels {;}_,
such that

y; € {—1,+1} and x; € R",

assume that the samples {x;}._; and the class labels {y;}!_, are produced by a joint

probability distribution P(x,y) (note that dP(x,y) = p(x,y)dxdy where p(x,y) is

29



the probability density). For a possible function f(x,«) that attempts to find the
class labels for given vector a x, the expected risk of the function or the expected

error on unseen data is defined as

Ra) = [ 31y~ Fixa)ldPexy) (111)

With a probability n (0 < n < 1), the following bound on the expected risk exists

(Vapnik, 1995),

R(a) < Run(a) + \/h(log(Ql/h) +l1) —log(n/4) (1.12)

where h is called the Vapnik Chervonenkis (VC) dimension and the second term on

the right side is called the VC confidence. R.,,,(«) is the empirical risk

l
Romp(c1) = %Z i — F(xi,0)|. (1.13)

The VC dimension h depends on the class of functions f(x,«a) and the empirical
risk is defined for a particular o under consideration. h is defined as the maximum
number of samples that can be separated by a function from the class of functions
f(x, ) with any arbitrary labeling of those samples. The principle of structural
risk minimization consists of finding the class of functions and a particular function
belonging to that class (defined by a particular value of «), such that the sum of
VC confidence and the empirical risk is minimized. SVM training finds a separating
hyperplane by maximizing margin across the two classes and this process of finding
a maximum margin classifier has been linked to the SRM principle. There is no
concrete proof however that SVMs actually minimize the expected bound on test

data error (Burges, 1998).
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Chapter 2

Previous acoustic-phonetic

methods

A number of ASR procedures have appeared in the literature that make use of
acoustic phonetics knowledge. These procedures can be classified into three broad
categories that will make it easy for the reader to contrast these methods with this
work - (1) the acoustic phonetic approach to recognition, (2) the use of acoustic
correlates of phonetic features in the front-ends of dynamic statistical ASR methods
like HMMs, and (3) the use of phonetic features in place of phones as recognition
units in the dynamic statistical approaches to ASR that use standard front-ends like

MFCCs.
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2.1 Acoustic-phonetic approach

The acoustic phonetic approach is the recognition strategy that was outlined in Sec-
tion 1.3. It is characterized by the use of spectral coefficients or the knowledge based
acoustic correlates of phonetic features to first carry out the segmentation of speech
and then analyze the individual segments or linguistically relevant landmarks for
phonemes or phonetic features. This method may or may not involve the use of sta-
tistical pattern recognition methods to carry out the recognition task. That is, these
methods include pure knowledge based approaches with no statistical modeling. The
acoustic phonetic approach has been followed and implemented for recognition in
varying degrees of completeness or capacity of application to real world recognition
problems. Figure 2.1 shows the block diagram of the acoustic phonetic approach.
As shown in Table 2.1, most of the acoustic phonetic methods have been limited to
the second and third modules (i.e., landmark detection and phone classification).
Only the SUMMIT system (discussed below) is able to carry out recognition on
continuous speech with a substantial vocabulary. But the SUMMIT system uses a
traditional front end with little or no knowledge based APs. Also most systems that
have used or developed knowledge based APs do not have a complete set of APs for

all phonetic features.

2.1.1 Landmark detection or segmentation systems

Bitar (Bitar, 1997) used knowledge based acoustic parameters in a fuzzy logic frame-

work to segment the speech signal into the broad classes - vowel, sonorant conso-
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nant, fricative and stop - in addition to silence. Performance comparable to an
HMM based system (using either MFCCs or APs) was obtained on the segmen-
tation task. Bitar also optimized the APs for the discriminative capacity on the
phonetic features the APs were designed to analyze. APs were also developed and
optimized for the phonetic features strident for fricatives, and labial and alveolar
for stop consonants. Many of the APs developed by Bitar (1997) are used in this
work. However, some of them have been refined. A recognition system for word
recognition was not developed in this work.

Liu (Liu, 1996) proposed a system for detection of landmarks in continuous
speech. Three different kinds of landmarks were detected - glottal, burst and sono-
rant. Glottal landmarks marked the beginning and end of voiced regions in speech,
the burst landmark located the stop bursts, and the sonorant landmarks located
the beginning and end of sonorant consonants. The three kinds of landmarks were
recognized with error rates of 5%, 14% and 57% respectively, when compared to
hand-transcribed landmarks and counting insertions, deletions and substitions as
errors. It is difficult to understand these results in the context of ASR since it is
not clear how the errors will affect word or sentence recognition. A system using
phonetic features and acoustic landmarks for lexical access was proposed by Stevens
et al, (Stevens et al., 1992; Stevens, 2002) as discussed in Section 1.2. However,
a practical framework for speech recognition was not presented in either of these
works.

Salomon (Salomon, 2000) used temporal measurements derived from the av-

erage magnitude difference function (AMDF') computed in each frequency channel
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to obtain measures of periodicity, aperiodicity, energy onsets and energy offsets.
This work was motivated by the perceptual studies that humans are able to detect
manner and voicing events in spectrally degraded speech with considerable accu-
racy, indicating that humans use temporal information to extract such information.
An overall detection rate of 70.8% was obtained and a detection rate of 87.1% was
obtained for perceptually salient events. The temporal based processing proposed
in this work, and developed further by Deshmukh et at (Deshmukh et al., to appear)
have been used in the proposed project.

Ali (Ali, 1999) carried out segmentation of continuous speech into broad classes
- sonorants, stops, fricatives and silence - with an auditory-based front end. The
front end was comprised of mean rate and synchrony outputs obtained using a
Hair Cell Synapse model (Seneff, 1988). Rule based decisions with statistically
determined thresholds were made for the segmentation task and an accuracy of
85% was obtained that is not directly comparable to (Liu, 1996) where landmarks,
instead of segments are found. Using the auditory based front end, Ali further
obtained very high classification accuracies on stop consonants (86%) and fricatives
(90%). The sounds /f/ and /th/ were put into the same class, and so were /v/ and
/dh/ for the classification of fricatives. Glottal stops were not considered in the stop
classification task. One of the goals of this work was to show noise robustness of
the auditory-based front end and it was successfully shown that the auditory based
features perform better than the traditional ASR front ends. An acoustic phonetic
speech recognizer to carry out recognition of words or sentences was not designed

as a part of this work.
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Figure 2.1: Block diagram of acoustic phonetic approach

Mermelstein (Mermelstein, 1975) proposed a convex hull algorithm to segment
the speech signal into syllabic units using maxima and minima in a loudness measure
extracted from the speech signal. The basic idea of the method was to find the
prominent peaks and dips. The prominent peaks were marked as syllabic peaks and
the points near the syllabic peaks with maximal difference in the loudness measure
were marked as syllable boundaries. Although this work was limited to segmenting
the speech signal into syllabic units rather than recognizing the speech signal, the
idea of using the convex hull was utilized later by Espy-Wilson (Espy- Wilson, 1994),
Bitar (Bitar, 1997) and Howitt (Howitt, 2000) in locating sonorant consonants and

vowels in the speech signal.

2.1.2 Word or sentence recognition systems

The SUMMIT system
The SUMMIT system (Zue et al., 1989; Glass et al., 1996; Halberstadt, 1998; Chang,
1998) developed by Zue et al. uses a traditional front-end like MFCCs or auditory-

based models to obtain multilevel segmentations of the speech signal. The segments
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are found using either - (1) acoustic segmentation (Glass and Zue, 1988) method
finds time instances when the change in the spectrum is beyond a certain threshold
and (2) boundary detection methods that use statistical context dependent broad
class models (Chang and Glass, 1997; Lee, 1998). The segments and landmarks
(defined by boundary locations) are then analyzed for phonemes using Gaussian
Mixture Models (GMMs) or multi-layer perceptrons. Results comparable to the
best state-of-the-art results in phoneme recognition were obtained using this method
(Glass et al., 1996) and, with the improvements made by Halderstadt (Halberstadt,
1998), the best phoneme recognition results to date were reported. A probabilistic
framework was proposed to extend the segment based approach to word and sentence
level recognition. SUMMIT system has produced good results on continuous speech
recognition as well (Halberstadt, 1998; Chang, 1998). This probabilistic framework
is discussed below in some detail because the probabilistic framework used in the
present work is similar to it in some ways, although there are significant differences
that are discussed in brief towards the end of this section.

Recall that the problem in continuous speech recognition is to find a word
sequence W such that

A

W = arg max P(W|0O) (2.1)

Chang (Chang, 1998) used a more descriptive framework to introduce the proba-
bilistic framework of the SUMMIT system. In this framework, the problem of ASR

is written more specifically as
WUS = arg max P(WUS/O), (2.2)
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where U is a sequence of subword units like phones, diphones and triphones. S
denotes the segmentation, that is, the start and end of each unit in the sequence. The
observation sequence O has a very different meaning from that used in the context
of HMM based systems. Given a multilevel segment-graph, and the observations
extracted from the individual segments, the symbol O is used to denote the complete
set of observations from all segments in the segment graph. This is a very different
situation from HMM based systems where the observation sequence is the sequence
of MFCCs and other parameters extracted at each frame of speech, identically for
every frame. In the SUMMIT system, on the other hand, the acoustic measurements
may be extracted in different ways in each segment.

Using successive applications of Bayes rule and because P(O) is constant rel-

ative to the maximization, Equation 2.2 can be written as

WUS = arg max P(O/WUS)P(S/WU)P(U/W)P(W) (2.3)
wus

P(O|WUS) is obtained from the acoustic model, P(S|UW) is the duration con-
straint, P(U|W) is the pronunciation constraint, and P(W) is the language con-
straint. The acoustic measurements used for a segment are termed as ’features’ for
that segment and acoustic models are built for each segment or landmark hypothe-
sized by a segment. This definition of 'features’ is vastly different from the phonetic
features used in this thesis. A particular segmentation (sequence of segments) may
not use all the features available in the observation sequence O. Therefore, a diffi-
culty is met in comparing the term P(O/WUS) for different segmentations. Two

different procedures have been proposed to solve this problem - Near-Miss Modeling
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Module Bitar | Liu Ali Sal- | Merm- APH- | Fanty | SUM- | Chang

omon | el- et al | MIT

stein | ODEX|

Knowledge | Partial Partial Partial Partial No Partial Partial No Partial
based APs
Landmark | Yes Yes Yes Yes Yes Yes Yes Yes Yes
detection
Feature Partial No Partial No No Partial Yes Yes Yes
detection
or phone
classifica-
tion
Sentence No No No No No No Partial Yes Yes
recognition

Table 2.1: The previous acoustic-phonetic methods and the scope of those methods
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(Chang, 1998) and anti-phone modeling (Glass et al., 1996).

A two-level probabilistic hierarchy, consisting of broad classes - vowels, nasals,
stops, etc. - at the first level and phones at the second level was used in the SUM-
MIT system by Halberstadt (Halberstadt, 1998) to improve the performance of the
recognition systems. Different acoustic measurements for phonemes belonging to
different broad classes were used to carry out the phonetic discrimination. This
is similar to a typical acoustic-phonetic approach to speech recognition where only
relevant acoustic measurements are used to analyze a phonetic feature. But the
acoustic measurements used in this system were the standard signal representation
like MFCCs or PLPs, augmented in some cases by a few knowledge based measure-
ments.

EBS is similar to SUMMIT in the sense that both the systems generate mul-
tiple segmentations and then use the information extracted from the segments or
landmarks to carry out further analysis in a probabilistic manner. There are five
significant factors that set the systems apart. First, SUMMIT is a phone based
recognition system while EBS is a phonetic feature based system. That is, phonetic
feature models are built in EBS instead of phone models. Secondly, although EBS
uses a similar idea of obtaining multiple segmentations and then carrying further
analysis based on the information obtained from those segments, it concentrates on
linguistically motivated landmarks instead of analyzing all the front-end parameters
extracted from segments and segment boundaries. Third, EBS utilizes the suffi-
ciency and invariance properties of acoustic parameters in such a way that it does

not need to account for all acoustic observations for each segmentation. Fourth, in
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EBS, binary phonetic feature classification provides a uniform framework for speech
segmentation, phonetic classification and lexical access. This is very different from
the SUMMIT system where segmentation and analysis of segmentations are carried
out using different procedure. Fifth, the SUMMIT system uses standard front-ends
for recognition with a few augmented knowledge based measurements, and the pro-

posed system uses only the relevant knowledge based APs for each decision.

Other Methods

A neural network based recognizer Fanty et al. (1992) that can be classified as an
acoustic-phonetic approach was reported for word recognition. Speech is analyzed
frame by frame for broad categories of phonemes using neural network classifiers.
These categories are decided on the basis of perceptual and acoustic similarity rather
than articulatory phonetic features. Speech is segmented on the basis of the frame
level analysis, and the segments are then analyzed for the constituent phonemes
using another set of neural networks. Different neural networks are used for each
category of phonemes. Signal parameterization is composed of PLP coefficients aug-
mented by certain knowledge based measurements. For certain acoustic measure-
ments, landmarks like location of maximum zero crossing rate for fricatives are also
used. On the studio quality ISOLET spoken letter corpus (ref) 96% accuracy was
achieved. Performance on the telephone quality speech of the CSLU Whitepages
corpus was reported at 89.1%, the best result at that time (1992) on the spoken
alphabet task.

The system in (Fanty et al., 1992) was the more advanced version of the FEA-
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TURE system (Cole et al., 1983) developed in the early 1980s for isolated letter
recognition. The FEATURE system used some knowledge based measurements like
energies in different frequency bands, zero crossing rate, etc. Four points were lo-
cated in the utterance containing the isolated digit - the beginning of the utterance,
the onset of the vowel, the vowel offset and the end of the utterance. A probabilis-
tic classification tree based on grouping similar letters together was constructed.
At each node of the tree, likelihoods were computed for the utterance to belong
to the node using multivariate Gaussian probability distributions. Only relevant
features were extracted at each node of the tree, that is a typical characteristic of
a hierarchical acoustic-phonetic approach. Probabilities at each node leading to a
terminal node were multiplied to come up with the probability of the terminal node
representing a spoken letter. Although this is classified here as an acoustic phonetic
approach, it should be noted here that this was not an articulatory feature based
system.

A rule-based acoustic phonetic speech recognition system (APHODEX) in
which speech is segmented into coarse classes - voiced plosives, unvoiced plosives,
vowels, unvoiced fricative, voiced fricatives and sonorant consonants - was reported
Fanty et al. (1992). The segments are then analyzed using two kinds of acoustic
cues - strong cues and weak cues. If strong cues provide sufficient information about
the phoneme in a broad class segment, a decision is made irrespective of the weak
cues. If the strong cues do not provide sufficient information, weak cues are used for
decoding. The acoustic cues used in decoding are knowledge based measurements
like formant transitions and spectral peaks. The system outputs a phoneme lattice
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that can be used for hypothesizing words and sentences. Recognition results at the
word level were not presented for this system.

Log critical-band energies were used in a syllable-based speech recognition sys-
tem (Chang, 2002) to obtain the manner level segmentation, classification of place of
segments and identification of syllables. For manner segmentation, a frame classifi-
cation accuracy of 85% was obtained and for place classification, accuracies ranging
from 44% to 96% were obtained. A syllable-matching algorithm was used to get
scores of different words. It was shown in this work that word errors in current large
vocabulary recognizers depend directly on phone errors providing further evidence
of the need for conducting fine acoustic-phonetic analysis in speech. Further, it was
shown that the tolernance of the recognition systems to errors was dependent on the
part of the syllable - onset or coda - where the articulatory feature is present, which
shows the need to find accurate landmarks including vowel onsets and offsets. The
approach in this work differs significantly from the work presented here because EBS
is significantly more knowledge intensive and it utilizes the properties of knowledge

based acoustic parameters appropriately.

2.2 Knowledge based front-ends

Some researchers have utilized acoustic cues that are correlates of phonetic features
to form the front-end in HMM based ASR methods and other statistical methods.
These methods traditionally use standard front-ends like MFCCs and LPC coeffi-

cients. The use of acoustic phonetic knowledge in the fronts-ends in these systems
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led to improvement in performance using certain performance criteria.

Bitar and Espy-Wilson (Bitar, 1997) showed that acoustic-phonetic knowledge
based acoustic parameters perform better than the standard MFCC based signal
representation on the task of broad class segmentation using an HMM based back
end. In particular, it was shown that the decrease in performance was much less
dramatic for the knowledge based front-end than for MFCCs when cross-gender
testing was carried out, that is, when training was done on males and testing was
done on females, and vice versa. These experiments were extended to isolated word
recognition (Deshmukh et al., 2002) and a similar pattern was observed not only for
cross gender testing but also for testing across adults and children whose speech can
be from different databases.

Hosom (Hosom, 2000) augmented a PLP based front-end with five knowledge
based acoustic measurements - intensity discrimination, voicing, fundamental fre-
quency, glottalization and burst-related impulses - in a hybrid framework of HMMs
and Artificial Neural Networks (ANNs). Three different ANNs were built, one for
each of the multivalued distinctive features - Manner, Place and Height - and the
outputs of these networks were combined to produce phoneme probabilities using
fuzzy logic rules (a model called Fuzzy-Logic Model of Perception (Massaro, 1993)
was used for combination). The observation probabilities of HMM states were es-
timated from these phoneme probabilities. Three more networks were used for the
same distinctive features to estimate the phoneme transition probabilities that were
further used to estimate the state transition probabilities in the HMM framework.

A relative reduction in error rate of 26% was obtained on the task of automatic
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alignment of phonemes in the TIMIT database over a baseline HMM/ANN system.
When the time-alignment system was used to train the hybrid HMM/ANN for the

OGTI alphadigit task, a relative reduction in error rate of 10% was obtained.

2.3 Phonetic features as recognition units in sta-

tistical methods

In this category of ASR methods, the usual statistical frameworks use phonetic
features as an intermediate units of recognition, and then use the outputs of the
intermediate classifiers to recognize phonemes, words or sentences. These methods
use no explicit knowledge of the acoustic correlates of phonetic features.

Deng (Deng and Sun, 1994) used five multi-valued articulatory features and
their overlapping patterns to guide the topology of HMMs in an MFCC and HMM
based speech recognizer. An HMM state is constructed for each bundle of pho-
netic features and those bundles are determined by a canonical representation of
phonemes in terms of phonetic features as well as linguistic rules for change in the
feature values for overlapping phonemes. For each phoneme sequence (a sentence),
a graph of hidden states is constructed using the mapping of phonemes to feature
bundles. The composite HMM is then trained using the Baum-Welch algorithm. An
improvement in phoneme classification accuracy in the range 15%-27% was obtained
over a baseline context-independent recognition system.

Eide et al. (Fide et al., 1993) proposed a method of phoneme classification us-
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ing a phonetic feature bundle representation of phonemes. Probabilities of phonetic
features at each frame in a phoneme segment were estimated using Gaussian mix-
ture models. Probabilities of different phonemes for given hand-segmented phoneme
regions were estimated from the phonetic feature probabilities at each frame within
the segments under analysis. The latter estimate was obtained using the frequency
of the phonetic features occurring in the phoneme segment in the training data. A
phoneme classification result of 70% was obtained. This is not a direct acoustic-
phonetic approach because it lacks the use of landmarks and knowledge based signal
representation.

Kirchoff (Kirchhoff, 1999) used five multivalued articulatory features as in-
termediate classification units in a hybrid HMM/ANN approach. The observation
densities of HMM states in this system were modeled using ANNs instead of Gaus-
sian mixtures. The posterior probabilities of each feature value at each HMM state
were obtained from the output of the ANNs. These posterior probabilities were
then combined to extract the posterior phone probabilities, that were converted
to likelihoods. An improvement over a baseline HMM/ANN system was observed,

especially when the signal was corrupted with noise.

2.4 Conclusions from the literature survey

While there have been many attempts at an acoustic-phonetic approach to ASR,
only one of them - the SUMMIT system - has been able to match the performance

of HMM based methods on practical recognition tasks. The other acoustic-phonetic
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methods were stopped at the level of finding distinctive acoustic correlates of pho-
netic features, detection of landmarks or broad class recognition. Although the
SUMMIT system carries out segment based speech recognition with some knowl-
edge based measurements, it is not a landmark based system in the strict sense,
nor a phonetic feature based system. Like HMM based systems, it uses all available
acoustic information (for example, all the MFCCs) for all decisions. But the success
of SUMMIT has been motivating because it appears to be the only ’static’ approach
that actually works on practical tasks. Acoustic phonetics knowledge and the con-
cept of phonetic features has been used with HMM based systems with some success,
but that only marginally adds to these systems an enhanced ability to recognize at
the level of phonemes. In conclusion, there is no acoustic-phonetic approach to ASR
that explicitly targets linguistic information in the speech signal as well as carries

out practical recognition tasks.
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Chapter 3

A Probabilistic Framework

The problem of recognition of bundles of features can be expressed as maximizing
the posterior probability of landmarks and the corresponding feature bundles, given

the observation sequence O. That is,
UL = arg I%BI:XP(UL’O) = arg I%%XP(L|O)P(U|OL), (3.1)

where L = {l[;}M, is a sequence of landmarks and U = {u;}}¥, is the sequence
of phonemes or bundles of features corresponding to the phoneme sequence. The
meanings of these symbols is illustrated in Table 3.1 for the digit ”zero”. There are

several points to note with regard to the notation in Table 3.1.

1. I; denotes a set of related landmarks that occur together. For example, the
syllabic peak (syllable nucleus) and the VOP occur together. Also certain
landmarks may be repeated in the sequence. For example, when a vowel
follows a sonorant consonant, the sonorant consonant offset and the vowel
onset are identical.
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2. Each set of landmarks [; is related to a broad class B; of speech selected from
the set {vowel (V), fricative (Fr), sonorant consonant (SC), stop burst (ST),
silence (SIL)} as shown in Table 3.2. For example, the syllabic peak and the
VOP are related to the broad class V. Let B = {B;}}¥, denote the sequence
of broad classes corresponding to the sequence of sets of landmarks L. Note
that ST denotes the burst region of a stop consonant, and the closure region

is assigned the broad class SIL.

3. The number of the set of landmarks M and the number of bundles of phonetic
features N may not be the same in general. This difference may occur because
a sequence of sets of landmarks and the corresponding broad class sequence,
for example, SIL-ST, may correspond to one set of phonetic features (the clo-
sure and the release constitute one stop consonant) or two bundles (closure
corresponds to one stop consonant and release corresponds to another stop
consonant, e.g, the cluster /kt/ in the word ”vector”). Also, one set of land-
marks or the corresponding broad class may correspond to two sets of place
features, for example, in the word "omni” with the broad class sequence V-
SC-V, the SC will have the features of the sound /m/ (calculated using the

SC onset) as well the sound /n/ (calculated using SC offset).

The landmarks and the sequence of broad classes can be obtained deterministically
from each other, for example, the sequence B = {SIL,Fr,V,SC,V,SC,SIL} for ”zero”

in Table 3.1 will correspond to the sequence of sets of landmarks L shown. Therefore

P(L|O) = P(B.|0) (3.2)
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[nt]

Table 3.1: An illustrative example of the symbols B, L and U

L=

/2/

/1/

/r/

/o/

Jw/

Uy Ug us Uy Us
—sonorant | +sonorant | +sonorant | +sonorant | +sonorant
+continuant | +syllabic | —syllabic | +syllabic | —syllabic
+strident —back —nasal ~+back —nasal
+voiced +high ~+rhotic —high +labial
“+anterior +lax +low
Fr \Y SC \Y% SC
L Iy l3 ly ls
Fon VOP Son VOP Son
Foft P D P D
Soft Soff
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Table 3.2: Landmarks and corresponding broad classes.

Broad Class Segment | Landmark Type

Vowel Syllabic peak (P)

Vowel onset point (P)

Stop Burst

SC Syllabic dip (D)

SC onset (Son)

SC offset (Soff)

Fricative Fricative onset (Fon)

Fricative offset (Foff)

where By is a sequence of broad classes for which the landmark sequence L is
obtained. Note that there is no temporal information contained in B, U and L
except for the order in which the symbols occur. This equivalence of broad classes
and landmarks is not intended as a general statement and it holds only for the

landmarks and broad classes shown in Table 3.2.

3.1 Segmentation using manner phonetic features

Given a sequence of T frames O = {01, 09, ..., 07}, where o, is the vector of APs at
time ¢, the most probable sequence of broad classes B = {B;}}, and their durations
D = {D;}*, have to be found. The frame o; is considered as the set of all APs

computed at frame ¢, although EBS does not use all the APs in each frame. EBS
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speech?

1-p1

p1

sonorant? SIL

b2

1—p2

syllabic? continuant?
P4
% 1-p3 \L 1N
Vv SC ST Fr

Figure 3.1: Probabilistic Phonetic Feature Hierarchy

uses the probabilistic phonetic feature hierarchy shown in Figure 3.1 to segment
speech into the five manner classes. The broad class segmentation problem can be

stated mathematically as,

BD = arg max P(BD/O) (3.3)

Provided that the frame at time ¢ lies in the region of one of the manner
classes, the posterior probability of the frame being part of a vowel at time ¢ can be

written as

P,(V|O) =P,(speech, sonorant, syllabic|O) (3.4)

=P, (speech|O) P;(sonorant|speech, O) P(syllabic|sonorant,O)  (3.5)

where P, is used to denote the posterior probability of a feature or a set of features
at time . Similar expression can be written for each of the other manner classes.
Calculation of the posterior probability for each feature requires only the acous-
tic correlates of that feature. Furthermore, to calculate the posterior probability of a
manner phonetic feature at time ¢, only the acoustic correlates of the feature in a set
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of frames {t — s,t — s+ 1,...,t + e}, using s previous frames and e following frames
along with the current frame ¢, are required to be used. Let this set of acoustic
correlates extracted from the analysis frame and the adjoining frames for a feature

f be denoted by xt Then equation 3.5 can be rewritten as

Pt(V|O) Pt (SpeeCh|xspeeCh)Rg(SOnOTant|speeCh xsonorant)

P,(syllabic|sonorant, zV"*") (3.6)

The probability P(BD|O) can now be expanded in terms of the underlying manner
phonetic features of each broad class. Denote the features for class B; as the set
{fi fa ..., f}gBi}, the broad class at time ¢ as b;, and the sequence {b, bs, ..., b;_1 } as
b*~1. Note that B is the broad class sequence with no duration information. On the
other hand, b, denotes a broad class at time ¢t. Therefore, the sequence b includes
duration information. Making a stronger use of the definition of acoustic correlates
by assuming that the acoustic correlates of a manner feature at time ¢ are sufficient

even if b'~! is given,

M D; +Zi—1 D]

ppo)=1] [] P®Bilov™" (3.7)

i=li=143021 D;

M Di+¥iZ) Dj Np,
—H H HPt fk|37t e Fon 07 (3.8)

1= 1t 1+z;:1D k=1
In the above equation, Z;;ll Dj is the sum of the durations of the i —1 broad classes
before the broad class 7, and 23:1 D; is the sum of durations of the first 7 broad

classes. Therefore, Z;;ll D; — 2321 D, is the duration of the i broad class and

hence the numbers {1 + ZZ " Dj, .., D+ Z;;ll D;} are the frame numbers of the
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frames that occupy the it broad class. Now expanding the conditional probability,

M D+Z] 1D N,

_ H H H Pt fkwrt 7f17 "'7;f’il7bt11>' (39)

=1 4— 1+ZZ lD k=1 xt 7f17"'7fk71abt7)

Splitting the priors,

M D1+Z]'—1D NB

fi i i pt—1
Pi(x*|fi, ..., f1,D
pBpo) =] ] ||Ptfk|f1,- ity L e S )
Tey £i i1
=1 — 1+E;:1D k=1 t(xt |f17~~afk717 )

(3.10)

Clearly

M Di+XiZ1 Dj Np,

II II [IIRUilA - fio ™) =P(BD)=P(B)P(D|B)  (3.11)

=11y, kel
Now given the set {fi,..., fe_1} or the set {fi, ..., fx}, x,{’i is assumed to be inde-
pendent of b*~'. The independence of the APs given the set {f{,..., fx} is hard to
establish, but it can be shown to hold better for the knowledge-based APs than
mel-frequency cepstral coefficients (MFCCs) under certain conditions as discussed
in Section 3.3. In words, this independence means that the APs for a phonetic fea-
ture are assumed to be invariant with the variation of the broad class of neighboring
frames, for example, the APs for the feature sonorant are assumed to be invariant of

whether the sonorant frame lies after vowel, nasal or fricative frames. This is further

discussed in Section 3.3. Making this independence or invariance assumption,

M D2+ZJ 1D N,

Pt t > g seey 7‘7
poloy=pPBPOB]] I 1l f’“?'f fl fz.f’“)l). (3.12)
i=14— 1+Zl lel klJ1y o Jk—1

The posteriors P,(fi|z/*, fi,..., fi_,) are directly obtained in this work from the

SVM based classifiers using binning (Drish, 1998). The discriminant space of the
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SVMs is split into bins and the posterior of a particular class is estimated as the
ratio of the number of samples of that class in the bin to the total number of samples
in that bin.

The term Pi(f}|fi, ..., fi_,) normalizes the imbalance of the number of positive
and negative samples in the training data. For example, if equal number of training
samples were used to find the posterior in the binning method, the estimate of the
posterior probability is not biased toward a particular class. But, for example, if
the number of training samples of class +1 is twice that of the number of samples
of the class —1, the estimate of the posterior of the +1 class is 4/3 times that of
the case where equal number of samples were used. Similarly, the estimate of the
posterior of the —1 class is 2/3 times that of the case where equal number of samples
were used. The denominator in this case will divide the posterior of class +1 by
2/3 and the posterior of the class —1 by 1/3. Assume a particular bin where the
correct posterior is 1/2 for both the classes, then the scores of 2/3+2/3 for the class
+1 and 1/3 + 1/3 for the class —1 are obtained using this normalization but these
are not posteriors because these can be greater than one. These can be considered
as likelihoods because this normalization is equivalent to conversion of a posterior
probability to a likelihood by division from a prior. But note that here the likelihood
is that of only the relevant observations and not all observations.

The computation of P(BD|O) for a particular B and all D is a very compu-
tationally intensive task in terms of storage and computation time. Therefore, an
approximation is made that is similar to the approximation made by Viterbi decod-
ing in the HMM based recognition systems and the SUMMIT system (Glass et al.,
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1996),
P(B|0) ~ max P(BD|O) (3.13)
Because the probabilities P(B|O) calculated this way for different B will not add

up to one, the more correct approximation is

_ maxp P(BD|O)
P(B|O) ~ > pmaxp P(BD|O)’

(3.14)
although the term in the denominator is not relevant to the maximization in Equa-
tion (3.1).

A Viterbi-like probabilistic segmentation algorithm presented in the next sec-
tion takes as input the probabilities of the broad manner phonetic features - sonorant,

syllabic and continuant - and outputs the probabilities P(B|O) under the assump-

tion of Equation 3.13.

3.2 Probabilistic segmentation algorithm

The probabilistic segmentation algorithm is similar to (Lee, 1998) and the primary
difference is that it operates only on binary posterior probabilities of phonetic fea-
tures in each frame instead of calculating a ’segment score’ which is a likelihood of
observations in a segment. The algorithm has the four steps listed below. Please
note that the algorithm below computes the probability P(B|O) a bigram model
for the prior P(B). The prior can also be obtained from a sophisticated language
model in constrained vocabulary recognition.

Denote by n the number of unique broad classes (five in this case) and call
them (; with ¢ varying from 1 to n. A segmentation path will be denoted by a tuple
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(B, D,II) with the sequence of broad classes B, a sequence of durations D and the
posterior probability of the segmentation II. Let N’ denote the number of most
probable paths required from the algorithm. It is assumed a bigram language model
for the priors P(B) is available but that is not necessary and the algorithm can be
modified to consider other language models. Denote by D, the last element in the

sequence D and by B, the last element in B.

1. Location of transition points
Form a sequence of times when the probability ranking of the broad classes
changes. Call the set of these times I' = {7;}X, where K is the number of
such locations. The change of a broad class along a segmentation path will
only be allowed at these locations. This does not imply however that a class

must change at a transition point.

2. Initialization
Form a sequence of segmentations S = {S;}¥ | where S; is the segmentation
(B, D', 1I') such that B* = {3;} and D' = {r; — 1}. That is for each broad
class, a path is defined with that single broad class in the class sequence and
a duration given by the length of time before the first transition point. Set II°
as
-1

' = [ R(310)P(m — 1|8) P(8) (3.15)
t=1
and use Equation 3.12 to evaluate P;(3;]O).
3. Forward computation

for k from 1 to K, (begin loop 1)
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(a) Initialize an empty set of segmentation paths S’

(b) for ¢ from 1 to n, (begin loop 2)

for each segmentation S; = (B?, D7,1I7) in S, (begin loop 3)
i. Create a new path S’ = (B, D',1l') = (B, D’ 1Y),

ii. if B;,, is same as [3;

o Assign paur = P(Djyy + Tor1 — Tl Blyy)/ P(Dget| Bloyy)
o Assign D), ., = D}, + Tis1 — Tk
o Assign pirans = 1
else
e Append 7441 — 7 to D’

e Append F; to B’

o Assign puans = P(5i|Bl,.)

last

o Assign paur = P(D}, | Blust)

last

iii. Update IT' as
Tk+171

H, = Hj H Pt(ﬂi|0)pdurptrans (316)

t=Ty

and again using Equation 3.12 to evaluate P;(5;]O).

iv. Append the path S’ to the sequence of paths S’

end loop 3

end loop 2
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(c) For each path S" in §', if another path exists with same broad class
sequence and greater probability, delete the path S’ from S§'. This step

implements the approximation in Equation 3.13
(d) Select the Nt paths in S’ and delete the rest of the paths in §'.

(e) Assign S =§
end loop 1

4. The sequence S gives the N**** most probable segmentations.

3.3 Sufficiency and Invariance

Although it is not clear how sufficiency and invariance can be rigorously established
for certain parameters, some idea can be obtained from classification and scatter
plot experiments. For example, sufficiency of the four APs used for sonorant feature
detection - periodicity, aperiodicity, energy in (100Hz,400Hz) and ratio of the energy
in (0,F3) to the energy in (F3, half of sampling rate) - can be viewed in relation to
13 mel-frequency cepstral coefficients (MFCCs) in terms of classification accuracy
of the sonorant feature. Using SVMs, a frame classification accuracy of 94.39% was
obtained on TIMIT ’sx’ sentences which compares well to 94.68% accuracy obtained
using MFCCs, when all other test conditions were kept identical. In both the cases,
a set of 10,000 randomely selected samples of each of the +sonorant and —sonorant
frames were used for training and the same number of samples were extracted from

the test set for testing.
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Invariance was assumed with variation in previous broad class frames in Equa-
tion 3.12 where the APs x{ b for a manner feature were assumed to be independent
of the manner class labels of preceding frames b'~! when {f}, ..., fu} or {fi, ..., fe_1}
was given. First consider the case where {f!, ..., fx} is given, that is, the value of
the feature whose APs are being investigated is known. A typical case where the
assumption may be hard to satisfy is when the APs for the sonorant feature are
assumed to be invariant of whether the analysis frame lies in the middle of a vowel
region or the middle of a nasal region, that is, b'~! is composed of nasal frames in
one case and vowel frames in the other case.

Such independence can roughly be measured by the similarity in the distribu-
tion of vowels and nasals based on the APs for the feature sonorant. To test this
independence, 200 sets of sonorant APs for each nasals and vowels were extracted
randomly from the TIMIT train set. Each set of APs was extracted from a single
frame located at the center of the vowel or the nasal. The APs were then used to
discriminate vowels and nasals using Fischer Linear Discriminant Analysis (LDA).
Figure 3.2(a) shows the distribution of the projection of the 13 MFCCs into a one-
dimensional space using LDA. A similar projection is shown for the four sonorant
APs in Figure 3.2(b). It can be seen from these figures that there is considerably
more overlap in the distribution of the vowels and the nasals for the APs of the
sonorant feature than for the MFCCs. Thus, the APs for the sonorant feature are
more independent of the manner context than are the MFCCs.

But there are certainly cases where neither APs nor MFCCs may satisfy the in-

variance assumption. For example, when using multiframe observations, the APs for
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the sonorant feature may have different distributions at the fricative-vowel bound-
ary and at the middle of a vowel. At the fricative-vowel boundary, the frames before
the boundary frame are —sonorant frames and at the middle of a vowel, the frames
before the middle frame are +sonorant frames. The multiframe acoustic observa-
tions are clearly different in the two cases if some frames previous to the current
analysis frames are included. Boundaries are a small portion of the speech signal
and it is hoped that the breakdown of this assumption should have little effect on
recognition performance. Also note that this assumption is similar to the assump-
tion in the HMM based approach where the likelihood of an observation is assumed
to be dependent only on the current state.

The invariance of the APs mf ¢ for a manner feature fi with the manner class
labels of preceding frames b*~* when only the features {fi, ..., fx_1} is given is now
considered. If only single frame observations are used, the observations may depend
strongly on the broad class of the current frame b;. But multiframe observations,
especially if frames preceding the current analysis frame are used, are clearly depen-
dent on the broad class sequence b*~!. In most cases, multiframe observations are
used in this work and this particular assumption will not be satisfied. As shown in

Chapter 4, reasonable results are still obtained on broad class segmentation.
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Figure 3.2: (a) Projection of 13 MFCCs into a one-dimensional space with vowels
and nasals as discriminating classes, (b) Similar projection for four APs used to
distinguish +sonorant sounds from -sonorant sounds. Because APs for the sonorant

feature discriminate vowels and nasals worse than MFCCs, they are more invariant

3.4 Constrained Landmark Detection for Word

Recognition

For isolated word or connected word recognition, manner class segmentation paths
can be constrained by a pronunciation model such as a Finite State Automata
(FSA) (Jurafsky and Martin, 2000). The remaining phonetic features can then be
estimated from the landmarks obtained in the segmentation process. Figure 3.3
shows an FSA based pronunciation model for the digit ’zero’ and the canonical
pronunciation /z I r ow/. The broad manner class representation corresponding
to the canonical representation is Fr-V-SC-V-SC where it is assumed that the the

offglide of the final vowel /ow/ may be recognized as a sonorant consonant. One
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transition is made for each frame of speech, starting from the initial state S0, and
the transition probability is equal to the posterior probability of the manner class
that labels the transition. Starting with the start state SO, the best path through
the FSA for ’zero’ can be calculated using (1) the posterior probability of a manner
class for each frame as a transition probability, and (2) the posterior probabilities
of the features listed below each state once the search algorithm has exited out of
that state and the next state (that is, when sufficient information is available for
obtaining landmarks for those features).

Figure 3.3 is a simple case where only one set of features is associated with each
broad class. Often two sonorant consonants may occur consecutively so that two sets
of features have to be associated with the broad class SC. In such a case, the first set
of features (for example the features +labial and +nasal for the sonorant consonant
/m/ in the word "omni”) are computed using the landmark associated with the
onset of SC the second set of features associated with /n/ are computed using the
consonant release. For connected word recognition, the FSAs of all the words can
be connected through a SILENCE state and the best path can be found using the
composite FSA. The probabilistic segmentation algorithm has been modified such
that only those transitions allowed by the automata are made at each transition

point.
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Figure 3.3: A phonetic feature based pronunciation model for the word ’zero’.

3.5 Probabilistic place and voicing detection

Using the acoustic landmarks obtained in the broad class recognition system, the
probabilities of other manner phonetic features, and place and voicing features can
be obtained. For example, given a manner class segmentation B = {V ,SC,V} or
more explicitly, the corresponding sequence of landmarks L = {ly,ls,l3}, and the
observation vector O, to find the probability that the intervocalic SC is a nasal, the
following acoustic observations need to be made (Pruthi and Espy-Wilson, 2003).
(1) the energy offset at the SC onset, (2) the density of formants (resonances) at the
SC syllabic dip, (3) an energy ratio at the SC syllabic dip, (4) the energy onset at
the SC offset (vowel onset) and (5) the stability of the spectrum in the SC region.
Let the set of APs extracted from the set of landmarks [, for a feature f be denoted
by x;; and the probability that the SC in the sequence V-SC-V is the phoneme /n/
be denoted by P5(/n/) (we use the index 2 because SC is the second broad class in

the segmentation V-SC-V), we can write

P5(/n/|0, L) = P(nasal|ly, 2}***) P(alveolar|nasal, I, 2" (3.17)
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The assumption has been made that the SC landmarks and the acoustic correlates
of the nasal and alveolar are sufficient to find the posterior probability of those
features. In general, only the landmarks from adjoining broad class segments may
be needed. For example, to find the probability that the SC in a V-SC-V sequence
is an /r/ the measurement of the third formant (F3) in the adjoining vowels may be
needed because /r/ is characterized by a sharp decline in F3 relative to the adjoining

vowel. Therefore,

Py(/r/|0O, L) = P(—nasal|ly, z}***") P(rhotic| — nasal, ly, la, I, 2{"¢9*")  (3.18)

l1,l2,l3

In general, if the bundle of features below the level of broad manner phonetic features
for a phoneme u; is represented by { i, .1, fi, 425 - fh,}, then, given a sequence of
landmarks L = {;}}, and the observation sequence O, the conditional probability

of the sequence of phonemes can be written as

M N; )
P(U/OL) = H H Pz(f’,:'|f]lVBl+1’ Y f”é‘—l’ L’ xlf_l,li,liﬁ_l’ulil) (319)
=1 k:NB,L-“"l

where the sufficiency of the acoustic correlates xlf Y has been assumed. This

'ml +1

can be rewritten as

, 4 P( Lio1,lisli |y Fh sty Jis Lyu'™h)
PU/oL) = H H Pi(filFasrs o Fiys Lyu'™) idie .

I i i
=1 k= NB +1 P(l‘li]il,li,li+1|fNBi+17""f]’é717L7uZ 1)
(3.20)

It is straightforward to see that

M N;
[T TI PUilfi s fiy Lu™) = PUIL) (3.21)
i=1 k=Np,+1

If the APs of the place features are assumed to be invariant of the place features of
the place context, the term u*~! can be ignored. Furthermore, the acoustic correlates
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may depend on the manner of the current sound and the adjoining sounds, therefore,
instead of keeping the complete landmark sequence, only the landmarks ;_1,1;, l;11
may be kept in the above equation. For example, the acoustic correlates of the
feature alveolar at a stop release may be dependent only on the presence of the
closure, the release and whether the following sound is a vowel or a fricative, and

not on the sound that is present before the stop closure. Making these assumptions,

PU/OL) = P(U|L) ﬁ ﬁ P( fk|xzz 1,ll,ll+17f]i\73.+1a---afli—lali—lalz‘Ji-i-l)
i=1 k=Np. +1 fk|fNB +17"'7f]i—17li—17li7li+1)

(3.22)

Again the numerator is obtained from the outputs of an SVM and the denominator
is obtained from the fraction of positive or negative samples used in SVM training.
The invariance of APs of the place phonetic features extracted using the man-

ner landmarks can also be assessed by the scatter of the APs with the change in
context. First, the invariance of the acoustic correlates 2/ with the place features
of the neighboring sounds is investigated when the feature f} is given. To show
the invariance, 200 samples of the stop consonant /t/ in prevocalic contexts were
extracted in each of the two vowel contexts - front and back. LDA was then used
to discriminate the two vowel contexts using three APs - Av, Ahi and Ahi-A23 -
extracted from four frames each at the stop onset and at the vowel onset. These are
the APs relevant for the distinction of the stop features labial and alveolar, and the
feature +-alveolar is assumed to be given (that is why the consonant /t/ is used).
The same experiment was repeated by replacing APs by 12 MFCCs along with en-

ergy. As shown in in Figure 3.4, APs overlap considerably more than MFCCs across
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Figure 3.4: (a) Projection of 13 MFCCs using Fisher LDA into a one-dimensional
space with front and back vowel contexts as discriminating classes, (b) Similar pro-
jection for the three APs used to distinguish +labial stops from —+alveolar stops.
Because APs for stop place considerably overlap in different vowel contexts, they
are more invariant of the vowel context. Samples of only the sound /t/ were used

to obtain these plots.

the two vowel contexts showing that they are more invariant than the MFCCs.
Second, the case where the invariance of the acoustic correlates 2/t with the
place features of the neighboring sounds is investigated when the feature f; is not
known. The experiment of discriminating the the vowel contexts was repeated but
instead of using only the sound /t/, both the stop consonants /p/ and /t/ were
used, that is, the value of the features labial and alveolar were not known. That
is, only the features f}, ..., fi_, were given. It can be seen from Figure 3.5 that the
APs for distinguishing the place labial and alveolar of stop consonants is still more

invariant than MFCCs even when the stop place is not known.
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Figure 3.5: (a) Projection of 13 MFCCs using Fisher LDA into a one-dimensional
space with front and back vowel contexts as discriminating classes, (b) Similar pro-
jection for the three APs used to distinguish +labial stops from +alveolar stops.
Because APs for stop place considerably overlap in different vowel contexts, they
are more invariant of the vowel context. Samples of both the sounds /p/ and /t/

were used to obtain these plots.

APs are compared with MFCCs for the performance on the classification of
the features labial and alveolar in Table 5.1. The three APs mentioned above
perform reasonably well (78.24%) compared to the 13 MFCCs (84.53%) but the
gap in performance is significant. Therefore, APs may not be truely sufficient for

recognition but with certain improvements sufficiency can be reached.
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Chapter 4

Landmark Detection Experiments

4.1 Database

The phonetically rich ’si’ sentences from the training section of the TIMIT database
was used for training and development. The ’sx’ sentences from the test section
of the TIMIT database were used for testing. The 2230 isolated digit utterances
from the TIDIGITS training corpus were used for cross-database limited vocabulary
testing. For the purpose of training, TIMIT phoneme labels were mapped to broad

class labels.

4.2 Experiments and results

For binary classification experiments, one SVM was trained for each of the phonetic
features and the corresponding positive and negative samples shown in Figure 3.1.

Syllabic sonorant consonants (/em/, /el/, /en/, /er/ and /eng/) and diphthongs
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(/iy/, Jey/, Jow/, Jay/, /aw/, and /uw/) were not used in the training of the
feature syllabic, and affricates (/jh/ and /ch/) and glottal stops were not used
in training of the feature continuant, but these sounds were used for frame-based
testing. The APs in Table 4.1 were used for classification and both linear and
Radial Basis Function (RBF) SVMs ( Vapnik, 1995) were used for all the nodes in
the feature hierarchy (see Figure 3.1) - speech, sonorant, syllabic, and continuant.
For the feature continuant, the stop burst frame identified as the first frame of a stop
consonant using TIMIT labeling was trained against all fricative frames. For the
other features, all frames for each of the classes were extracted as training samples.
Training was performed on randomly picked samples from the ’si’ sentences of the
TIMIT training set, and testing was performed on randomly picked samples from
the 'sx’ sentences of the TIMIT test set. The number of adjoining frames used for
classification of each feature were optimized by minimizing the error on a separate

set of randomly picked frames from the training ’si’ sentences.

4.2.1 Frame-based results

Figure 4.1 shows how the classification results vary as the number of previous frames
s is varied for each of the four manner classifiers. Similar plots were obtained for
the number of following frames e. The optimal values were chosen as the ones where
tthe first dip in the plots appeared. The values of the two variables were then used to
get binary classification results on the complete 'sx’ portion of the TIMIT database

(instead of using randomly picked samples). The binary classification results at the
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Table 4.1: APs used in broad class segmentation. f, : sampling rate, F3 : third

formant average, [a,b]: frequency band [aHz,bHz|, E[a,b]: energy in the frequency

band [aHz,bHz]

Phonetic ~ Fea- | APs

ture

Silence (1) E[0,F3-1000], (2) E[F3,fs/2], (3) ratio of spectral peak in
[0,400Hz] to the spectral peak in [400,fs/2], (4) Energy onset
(5) Energy offset

sonorant (1) Temporal measure of periodicity, (2) Temporal measure
of aperiodicity (3) Ratio of E[0,F3-1000] to E[F3-1000,f;/2],
(4) E[100,400]

syllabic (1) E[640,2800] (2) E[2000,3000] (3) Temporal measure of pe-
riodicity (4) Temporal measure of aperiodicity (5) Total en-
ergy

continuant (1) Temporal onset measure, (2) Temporal offset measure, (3)
E[0,F3-1000], (4) E[F3-1000,f,/2]
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Table 4.2: Binary classification results for manner features in %

Feature s | e | Accuracy on middle frames | Accuracy on all frames
sonorant 4 11 96.55 94.39
syllabic 16 | 24 86.44 81.69
Speech/silence | 3 | 2 94.74 93.47
continuant 4 14 - 95.58

optimal values of s and e are shown in Table 4.2 in two cases - (1) when all the frames
were used for testing and (2) when only the middle one-third portion of each broad
class was used for testing. The difference in the results indicates the percentage
of errors that are made due to boundary or coarticulation effects. Note that in
the presented landmark-based system, it is not important to classify each frame
correctly. The results on the middle one-third segment are more representative of
the performance of the system because if the frames in a stable region are correctly
recognized for a particular manner feature, this would mean that the corresponding
landmarks may still be correctly obtained. For example, if the middle frames of
an intervocalic sonorant consonant are correctly recognized as —syllabic, then the
correct recognition of frames near the boundary is not significant because landmarks
for the sonorant consonant will be obtained accurately. For the feature continuant,
the classification error on middle frames is not relevant because the SVM is trained
to extract the stop burst as opposed to a certain stable region of speech.

Figures 4.2 and 4.3 show the most significant sources of error for each of the

phonetic features. The errors include misclassifications of the + feature sounds
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Figure 4.1: Variation in error with the number of preceding frames

as — feature, and vice versa. For the feature sonorant, it can be seen that the
sounds /v/ and the glottal stop /q/ are often detected as +sonorant. A separate
detector is required either at the broad class recognition level or further down the
hierarchy to recognize glottalization because it can be significant for lexical access,
especially in the detection of the consonant /t/. The sound /v/ is many times
manifested as a sonorant consonant so that the assignment of +sonorant for /v/
is expected. For the feature syllabic, classification accuracy for nasals as -syllabic
is above 90%. But the semivowels - /y/, /r/, /1/ and /w/ have lower accuracies
which is expected because of the vowel-like behaviour of these sounds. About 15%
of the frames of reduced vowels are also misrecognized as sonorant consonants. This
typically happens when there is a sonorant consonant in the intervocalic context of

a stressed vowel and a reduced vowel such that the reduced vowel is confused as a
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continuation of the sonorant consonant. A similar result was shown earlier (Howitt,
2000) where the reduced vowels showed maximum error in the deletion of vowel
landmarks. The performance of the feature continuant is 95.58% which indicates
the accuracy on classification of onset frames of all non-sonorant sounds. That is,
an error was counted if a stop burst was wrongly classified as —continuant or a
fricative onset was wrongly classified as a stop burst. The major source of error
is the misclassification of 13.74% of fricative onsets as stop bursts. This is usually

expected in word-initial fricatives.

4.2.2 Sequence-based results

The SVM models obtained in the frame-based analysis procedure were used to ob-
tain broad class segmentation as well as the corresponding landmark sequences for
the 840 ’sx’ sentences of the TIMIT test set using the probabilistic segmentation
algorithm. Not all broad class sequences were allowed as the segmentation paths
were constrained using a pronunciation graph such that (1) SCs only occur adjacent
to vowels, (2) ST is always preceded by SIL and (3) each segmentation path starts
and ends with silence. The duration probability for each broad class was modeled by
a mixture of Rayleighs using a single Rayleigh density for the classes SC, V, Fr and
ST, and a mixture of two Rayleigh densities for SIL (one density targets short silence
regions like pauses and closures and the other density targets beginning and ending
silence). The parameter for each Rayleigh density was found using the empirical

means of the durations of each of the classes from the the TIMIT training data.
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Table 4.3: Allowed splits, merges and substitutions

Reference Allowed Reference Allowed
hypothesis hypothesis
V+V \Y% SC + SC SC
Fr + Fr Fr SIL + SIL SIL
/a/ + V,V + /q/ \Y% /a/ ST, SC
/t//v/; %/, /g/, /4] | ST+Fr v/ SC, Fr
Jem/, /en/, Jer/, /el/ | V4SC /ch/, /ih/ ST+Fr
/hv/ SC, Fr /dx/ SC
/dx/ SILEN + ST || /iy/, /Jow/, Jey/, | V+SC
joy/, [aw/, Juw/,
Jow/

All allowable broad class sequences were considered to be equiprobable, that is, pri-
ors were not used in the landmark detection procedure. The ’score’ of a particular

sequence of broad classes B and its durations was thus computed as

PSP p it f o f)
t Lk 15y JEk—1
U %

t=1+3""}) D; k=1

P(B|O) = HPD|B)

For the purpose of scoring, the reference phoneme labels from the TIMIT
database were mapped to manner class labels. Some substitutions, splits and merges
as shown in Table 4.3 were allowed in the scoring process. Specifically, note that two
identical consecutive broad classes were allowed to be merged into one since the dis-
tinction between such sounds is left to the place classifiers. Also note that affricates
were allowed to be recognized as ST+Fr as well as Fr, and similarly diphthongs -
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/iv/, Jey/, Jow/, Jay/, /Jaw/, and /uw/ - were allowed to be recognized as V+SC
as well as V because the off-glides may or may not be present. Scoring was done
purely on the sequences of hypothesized symbols without using time information.
The same knowledge based APs were used to construct a 14-parameter front-
end for an HMM based broad class segmentation system. The comparison with
the HMM-based system is not for the purpose of establishing that the presented
system performs better than the HMM-based systems, but to show an acceptable
level of performance. All the HMMs were context-independent 3-state (excluding
entry and exit states) left-to-right HMMs with diagonal covariance matrices and 8-
mixture observation densities for each state. All the ’si’ utterances from the TIMIT
training set were used for training the HMM broad classifier. The segmentation was
identically constrained for both the HMM system and EBS while testing on TIDIG-
ITS as well as TIMIT. The results are shown in Table 4.4. The results are also
shown for EBS for two different front-ends - AP and MFCC. The performance of
all the systems, except when EBS is used with MFCCs, is comparable although the
HMM-MFCC system gives the maximum accuracy. However as shown in the next
section, the MFCC based systems show worse generalization in cross-database test-
ing. The inferior performance of MFCCs with EBS is perhaps because of the better
agreement of APs with the invariance assumptions of the probabilistic framework
(Juneja and Espy-Wilson, 2004). Similarly, better performance of MFCCs in the
HMM framework may be because of better agreement with the diagonal covariance
assumption of the HMM system applied here. That is, APs are not processed by

a diagonalization step prior to application to the HMM systems while MFCCs go
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Table 4.4: Broad class segmentation results

EBS (RBF) | EBS (linear) | HMM

Corr/Acc Corr/Acc

AP 86.7/79.5 84.3/77.8 | 83.4/78.1

MFCC | 76.4/68.0 - 87.7/80.3

Table 4.5: Confusion matrix for segmentation with exclusion of affricates, syllabic

sonorant consonants, /v/, glottal stop /q/, diphthongs and flap /dx/

Total | Fr SILEN V SC ST Deletions| Correct

(%)
Fr 3627 | 3179 |6 0 80 115 247 88.20
SILEN 6102 | 7 5614 | 11 56 0 414 92.00
\Y 6565 | 34 35 5724 | 10 23 739 87.19
SC 5504 | 81 30 0 4565 | 32 796 82.94
ST 3417 | 195 0 10 75 2755 | 382 80.63
Insertions 394 520 167 616 520

through such a process. These are possible explanation of these results and they are
open to further investigation.

An example of landmarks generated by EBS on a test sentence of TIMIT
is shown in Figure 4.4 which also shows how errors in the system can be easily
analyzed. Two kinds of errors are shown in this picture. First, based on the dip in
the measure E[2000,3000], the pattern recognizer detects an intervocalic SC, even

though the SC is postvocalic. Second, based on the AP E[2000,3000] which is meant
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Table 4.6: Confusion matrix for affricates, syllabic sonorant consonants (SSCs),
/v/, glottal stop /q/, diphthongs and flap /dx/. Empty cells indicate that those
confusions were scored as correct but the exact number of those confusions were not

available from the scoring program.

Total Fr/ SILEN V/ SC ST Deletions| Correct

ST+Fy V+SC (%)
/a/ 534 2 0 5 99.63
Diph || 2557 23 17 2310 |9 2 196 90.34
SSCs || 789 7 14 647 12 1 107 82.00
/v/ 392 15 0 0 39 86.22
Jdx/ | 336 11 |2 0 51 80.95
Jeh/, || 396 393 |0 1 0 0 2 99.24
/ih/
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Table 4.7: Broad class results on TIDIGITS
EBS (linear) | EBS (RBF) | HMM-AP | HMM-MFCC

Constrained 91.8/85.1 91.5/85.1 | 91.3/85.8 92.3/84.2

Unconstrained | 93.3/74.6 92.3/78.2 | 88.7/79.5 88.3/74.8

to find /r/-colored regions, the pattern recognizer proposes a SC at the beginning
of the sonorant region of ”Charlie” (ellipse 2). Inspection of the spectrogram shows
that the vowel and /r/ are completely merged and further analysis is required to
unravel the merged sounds.

The confusion matrix for EBS using the AP front-end is shown in Table 4.5
without including the sounds - diphthongs, syllabic sonorant consonants, flaps, /v/,
affricates and the glottal stop /q/. For these latter set of sounds the confusion

matrix is shown in Table 4.6.

4.2.3 Word-level results

Figure 4.5 shows an example of the output of the unconstrained probabilistic seg-
mentation algorithm for the utterance 'two’ with canonical pronunciation /t uw/.
The two most probable landmark sequences obtained from the algorithm are shown
in this figure. The landmark sequence obtained with the second highest probability
for this case is the correct sequence. It is hoped that once probabilistic place and
voicing decisions are made, the second most probable sequence of landmarks will
yield an overall high posterior word probability for the word ”two”.

To get the results on constrained segmentation, the segmentation paths were
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Figure 4.4: (a) E[2000,3000], (b) Spectrogram of the utterance, "don’t do Charlie’s
dirty dishes”, (c¢) Landmark labels, (d) broad class labels, and (e) phoneme labels.
Note that the broad class and phoneme labels are marked at the beginning of each
sound, and the landmark labels show the time instant of each landmark. The
ellipses 1 and 2 show the two errors made by the system on this utterance. In 1,
E[2000,3000] dips in the nasal region and then rises sharply indicating the presence
of a vowel although no vowel is present. In 2, E[2000,3000] does not dip in the
region of vowel /aa/ (although the vowel is /r/-colored as shown by low F3) but the

pattern recognizer gets a syllabic dip.
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constrained using the broad class label pronunciation models for the digits - 0, 1, 2,
3,4,5,6,7,8,9. Using the models trained on TIMIT, 2230 isolated digit utterances
were tested using the constrained segmentation algorithm. The results are shown in
Table 4.7 for EBS (with linear as well as RBF kernels) and for the HMM systems
trained on TIMIT and tested on TIDIGITS. On moving from unconstrained to
constrained segmentation, a similar improvement in performance of the EBS (RBF)
and HMM-AP systems can be seen in this table. This result shows that EBS can be
constrained in a successful manner like the HMM systems. The overall performance
of EBS using RBFs is also very close to the HMM-AP system, and considerably
better that the HMM system that uses the MFCC front-end. The improvement
over the latter may solely be due to the better speaker independence of the APs as
compared to the MFCCs (Deshmukh et al., 2002). Note the relative performance of
the HMM-AP and the HMM-MFCC systems.

Finally, word level accuracies were obtained for all the systems. A segmenta-
tion for a digit was scored as correct if it was an acceptable segmentation for that
digit. A word-level correctness of 70% was obtained using the EBS-AP system and
about 85% of the digits had a correct segmentation among the top 2 choices. The
result is substantial since no information from the TIDIGITS database was used in
training. A correctness of 72% was obtained by the HMM-AP system and a correct-
ness of 63% was obtained by the HMM-MFCC system. These results further confirm
the equivalent performance of EBS and HMM-AP system, and better performance

of EBS over HMM-MFCC system.
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Figure 4.5: A sample output of the probabilistic landmark detection for the digit

two’.  Two most probable landmark sequences (a) and (b) are obtained by the

probabilistic segmentation algorithm. The first most probable sequence (a) has a

missed stop consonant but the second most probable sequence gets it.
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4.3 Discussion

A system has been described for generating multiple landmark sequences of a speech
utterance along with the posterior probability of each utterance. The landmark
sequences can be constrained using broad class pronunciation models. For uncon-
strained segmentation on TIMIT, an accuracy of 79.5% is obtained assuming certain
allowable splits, merges and substitutions that may not affect the final lexical access.
The results assume a correct labeling of the phonemes although the TIMIT labeling
has some incorrect labels. Higher performance indices and better trained models
may be obtained if databases correctly labeled for landmarks are available. EBS
performs significantly better with APs than with MFCCs because APs satisfy the
assumptions of the probabilistic framework more closely. Moreover, the EBS-AP
system shows a performance very similar to the HMM-AP system even though it
uses the parameters selectively for each decision. On cross database constrained
detection of landmarks, a correct segmentation was obtained for about 70% of the
words. An incorrect most probable segmentation of a word does not show that the
final word recognition will be wrong since the place probabilities may significantly
affect the overall posterior word probabilities. But the overall performance can only
be verified after complete implementation of the system.

The comparison with previous work on feature detection is very difficult be-
cause of the different test conditions and definitions of features used by different
researchers. The 94.39% classification accuracy on the sonorant feature compares

well with Bitar (Bitar, 1997) who obtained an accuracy of 94.6% for sonorancy de-
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tection on all the ’si’ sentences from the TIMIT database. The continuant result of
95.58% 1is not directly comparable with previously obtained stop detection results
(Bitar, 1997; Liu, 1996; Niyogi, 1998) because this only shows the frame accuracy
on binary classification with only stops and fricatives as the two competing classes.
A 81.69% accuracy on the syllabic feature may seem low, but note that there is
usually no sharp boundary between vowels and semivowels. Therefore, a very high
accuracy at the frame level for this feature is not only very difficult to achieve, but

also it is not very important as long as sonorant consonants are correctly spotted.
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Chapter 5

Classification of features at

landmarks

This chapter focuses on classification of place and voicing phonetic features and the
manner phonetic features - nasal and strident at the acoustic landmarks. Knowl-
edge based acoustic parameters are compared with MFCCs for the performance at
the classification of the distinctions (1) labial/alveolar for stop consonants and (2)
anterior for strident fricatives. Experiments were also carried out on conversational
telephone speech in preparation for and the Johns Hopkins University CLSP sum-
mer workshop of 2004 and these are presented here as well. While experiments were
conducted for classification of a large number of phonetic features, special attention
was given to stop place and fricative place classifications and these are discusses in
extra detail. A major reason for focusing on stop place and fricative place classifi-
cation is that knowledge-based APs were available for these features. The APs are

still under development for nasal place, fricative voicing and some other phonetic
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features.

In general parameters were extracted from multiple frames centered at the
landmarks to get reasonable accuracies. When parameters like MFCCs are extracted
from multiple frames the dimension of the acoustic feature space becomes very high
- sometimes comparable to or greater than the number of training samples - and
SVMs are shown to not have an adverse effect of the increase in dimension, as

expected from the theory. Experiments were conducted on three different databases

o TIMIT was used for experiments on 16kHz read speech

e NTIMIT was used for telephone bandwidth read speech experiments

e ICSI transcribed part of Switchboard database was used for conversational

telephone speech (Greenberyg et al., 1996)

All the three databases had the phoneme labels although the ICSI labels had the stop
consonants marked as one single segment instead of separate closures and releases.
Unmarked stop releases made the experimentation difficult on switchboard data,
therefore, using the phone labels along with the output of a stop burst detector,
stop release labels were automatically generated. The original ICSI labels marked
the stop consonants as one big segment starting at the closure and ending at the
vowel onset in case there was a following vowel. The stop burst was hypothesized
at the location of the maximum value of the probability of the stop burst obtained
using the phonetic feature hierarchy and manner SVMs. Figure 5.1 shows that very

accurate alignments were obtained for stop release labels. When there were two
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Figure 5.1: Top: spectrogram, Middle: phone labels from ICSI transcriptions, Bot-

tom: realigned labels with stop releases marked. In the ellipse to the left, the
segment /p/ is split into the closure /pcl/ and /p/ . In the ellipse to the right a
sequence of /k/ and /t/ is split into the sequence /kecl/, /tcl/ and /t/ such that the
release of /k/ is not marked. The figure shows that the stop release labels gener-
ated using the phone labels along with the outputs of the manner SVMs are very

accurate.

consecutive stop consonants, the release of the first consonant was not marked, as

shown by consecutive stops /k/ and /t/ in the figure.

5.1 Stop place classification

The problem of stop place of articulation classification has been addressed a number
of times in the past by various researchers on data sets of different sizes. The goal in
this section is not to invent new acoustic observations for stop place of articulation
but it is to test various acoustic features for performance with SVMs on different

data sets that are in general larger than the ones previous researchers have used.
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For each SVM classification, an equal number of positive and negative samples are
used so that results are not unnecessarily biased. Experiments were first conducted
on TIMIT with SVMs trained on the ’si’ sentences of the train set and tested on
the ’si” sentences of the test set.

APs were first compared with MFCCs for performance on stop place of ar-
ticulation classification. Two APs have been suggested for the distinction of labial
and alveolar stop consonants - Ahi-A23 and Av-Ahi. Ahi captures the amplitude
of the high frequency peak at the burst spectrum, Av is the low frequency peak of
the vowel spectrum and A23 is the amplitude of the burst spectrum in the range
of F3. Table 5.1 shows the results with these APs when the Av was computed at
the vowel onset and Ahi and A23 were computed at the stop burst. In a different
experimental setup, Ahi and A23 were computed across 5 frames starting at the stop
burst and going toward the vowel. Similarly Av was computed at multiple frames
starting at the vowel onset. In the third experiment, the energy ration parameter
E[0,F3]/E[F3,SF/2] was added. Finally, formant measurements are added in the
fourth experiment in each of the frames. Table 5.1 also shows the results when 13
MFCCs with and without their delta and acceleration coefficients replace the APs
but the frames where the parameters are picked up are kept identical. The classifi-
cation results show that APs perform considerably well and close to MFCC based
classifier even though they are very small in number. The slight drop in results
when formant estimates were added to the APs can be explained by the fact that
the formant tracker used in the classification tasks is far from perfect. MFCCs, on

the other hand, are implicitly modeling formant measurements by the distribution of
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Acoustic parameters Accuracy | Number of | Number
parameters | of context

per frame | frames

Ahi-A23, Ahi, Av 70.66 3 1
Ahi-A23, Ahi, Av 78.24 3 5
Ahi-A23, Ahi, Av, | 81.34 4 5

E[0,F3]/E[F3,SF /2]
Ahi-A23, Ahi, Av, | 81.24 7 5

E[0,F3]/E[F3,SF/2], F1, F2,

F3
13 MFCCs 84.53 13 5
13 MFCCs + delta + acceleration | 87.62 39 5

Table 5.1: Classification of labial/alveolar place of articulation on the TIMIT
database. The number of context frames indicate the number of frames at both
the stop burst and the vowel onset from where the APs mentioned in the first col-
umn. The total number of APs used in SVM classification is two (vowel onset and

stop burst) times the number of parameters times the number of context frames.
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energies in various frequency bands. Although MFCCs cannot model formant move-
ments exactly, these parameters are measured consistently in all cases and there is
no scope of ”error” in their measurement.

In another experiment, it was tested whether computing Ahi and A23 at a
resolution higher than the usual frame step of 5ms helps in stop place of articula-
tion classification. In a separate classification experiment, values of Ahi and A23
computed at all 1ms frames that were being skipped when these were computed at
the rate of 5ms. A drop in performance to 81.04% was observed indicating that the
higher resolution of these acoustic observations may not be as necessary as it has
been hypothesized (Stevens et al., 1999).

There have been experiments (Hasegawa-Johnson et al., 2005) where a large
number of context frames starting at the stop burst frame were used instead of
separately selecting frames from the stop burst and the vowel onset. To test if
this helps, MFCCs were extracted from ten consecutive frames starting at the stop
burst and the classification results were compared with the earlier case where these
parameters were extracted from 5 context frames each at the stop burst and the
vowel onset. A classification accuracy of 87.33% was obtained which is slightly
and insignificantly lower than the accuracy obtained with with separate parameter

extraction from the stop release and the vowel onset.
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Acoustic parameters Accuracy Number of parameters
per frame

Ahi-AF3, E|[0,F3]/E[F3,SF/2], E[F3- | 83.91 4

187,F3+584], E[F341500, f5/2]

Ahi-AF3, E[0,F3|/E[F3,SF/2], E[F3- | 84.78 4

187,F3+584], E[F341500, f5/2]

13 MFCCs 91.96 13

13 MFCCs + delta + acceleration 92.17 39

Table 5.2: Classification of anterior place of articulation for strident fricatives. Four
context frames were used in each classification. Two frames were picked from each
of the fricative and the adjoining vowel. The two frames were picked at the distances

of bms and 15 ms from the boundary in each of the vowel and the fricative.

5.2 Fricative place of articulation classification

Similar experiments comparing APs with MFCCs were conducted for the anterior
place of articulation of strident fricatives. Table 5.2 shows the results on the TIMIT
database with APs as well as MFCCs. Same pattern as with stop place of articu-
lation was observed, that is, MFCCs perform somewhat better than the APs. But
even though the number of APs used is very small, the performance is comparable.

For this feature too, there is further scope of improvement in the design of the APs.
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5.3 Classification of various features: results from

JHU CLSP workshop 2004

In this section, the drop in performance of phonetic feature classification is stud-
ied when speech is filtered by the telephone channel. Performance is compared on
TIMIT and NTIMIT on a number of features in tables 5.3 and 5.4 for pre-vocalic
and post-vocalic contexts respectively. All classifications were conducted using 13
MFCCs and their delta and acceleration coefficients extracted from the landmark
and the nearby frames listed in the last columns of these tables. Equal number of
samples for each of the +1 and —1 classes were used in training as well testing. The
classification accuracies in prevocalic contexts vary from about 79% to about 95%
on the TIMIT database, and from 73% to 93% on the NTIMIT database. Even on
the TIMIT databse, certain features require significant improvement in classifica-
tion performance, for example, the feature velar for stop consonants and the feature
labial for nasals. The drop in performance from TIMIT to NTIMIT is particularly
significant when information above 4000Hz is important for classiifcation of a fea-
ture, for example, fricative strident classification. For classification of nasal place,
the drop is insignificant since much of the information is contained in the movement
of the formants and the spectrum of the nasal murmur. Numbers in postvocalic con-
texts are generally lower than those in prevocalic contexts perhaps because syllable
codas are usually less stressed than syllable onsets.

Experiments were also conducted at WS04 to compare the relative effectiveness

of using MFCCs with that of using the rate-scale representation motivated by the
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Feature NTIMIT TIMIT Landmark and context

frames
Stop Voic- 81.09 85.93 Stop burst: [-5,-
ing 3,+1,+3,+5,+7], Vowel on-

set: [+1,4+2,43,+4,+5,+6]

Stop Velar 73.21 79.82 Stop burst: [0,2,4,6,8,10]
Stop 76.30 87.11 Stop burst: [0,2,4,6,8,10
Labial/Alveolar

Fricative 76.35 81.01 Release: [-3,-2,-1,0,1,2,3]
voicing

Fricative 82.30 88.31 Release: [-3,-2,-1,0,1,2,3]
strident

Fricative 84.48 83.37 Release: [-3,-2,-1,0,1,2,3]
anterior

Nasal 92.74 94.81 Release: [-3,0,3]

Nasal 78.60 79.88 Release: [-3,-1,1,3,5,7,9]
Labial

Table 5.3: Results on NTIMIT and NTIMIT for various classifications at prevocalic

landmarks
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Feature NTIMIT TIMIT Landmark and context
frames

Stop Velar 67.53 72.12 Closure: [-7,-5,-3,-1]

Stop 64.64 76.02 Closure: [-7,-5,-3,-1]

Labial /Alveolar

Fricative 77.84 83.08 Closure: [-3,-2,-1,0,1,2,3]

voicing

Fricative 72.52 92.26 Closure: [-3,-2,-1,0,1,2,3]

strident

Fricative 83.19 86.94 Closure: [-3,-2,-1,0,1,2,3]

anterior

Nasal 95.74 97.78 -3,0,3]

Nasal 67.30 71.95 Closure: [-7,-5,-3,-1,1,3]

Labial

Nasal 82.44 86.99 Closure: [-7,-5,-3,-1,1,3]

Alveo-

lar /Velar

Table 5.4: Results on NTIMIT and NTIMIT for various classifications at postvocalic

landmarks
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auditory cortex (Mesgarani et al., 2004). Identical number of context frames were
used for the classification of each phonetic feature at the landmarks and the APs
relevant for each task were appended to the parameters. APs have not been explicitly
designed for telephone bandwidth speech and some of them use information above
4000Hz. This made the direct use of APs impossible in the form they were available
before the workshop. A simple ad hoc change was carried out in the computation
of APs to make them more suitable for the telephone bandwidth speech. A number
of APs involve computation of energy in a frequency band starting at a certain
frequency and ending at half of the sampling rate or above 4kHz. The computation
of energies in these bands was forced to end at the frequency of 4kHz. This change
represents a significant change in the APs and for certain classifications, for example,
the feature strident for fricatives, it might have had an adverse effect in classification
performance. The change is not optimal since there may be a frequency band
available that may provide better classification performance.

Table 5.5 shows the accuracies obtained using SVMs on the test part of the
NTIMIT database using either combination in both pre-vocalic and post-vocalic
contexts. It can be seen that the performance of the two kinds of parameters -
MFCC and rate-scale - is similar and no significant pattern can be noticed. APs
perform better for some features while MFCCs perform better for other features.
Rate-scale representation has been shown to be more robust to noise (Mesgarani
et al., 2004) and these results may provide a starting point for comparing noise
robustness of the two kinds of parameters.

Table 5.6 shows the performance of some of the classifiers on the Switchboard
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database and compares it with the NTIMIT database. There is drop in performance
from read speech to conversational speech but it should be noted that a combination
of NTIMIT and Switchboard databases was used for training. The reason to use a
combination of data was that only a small part of Switchboard has been carefully
transcribed at the phonetic level. It can be expected that when a large amount of
phonetically transcribed Switchboard data is available, significant improvements in

classification of features may be obtained.

5.4 Summary

Classification results for place and voicing features have been obtained on different
databases using APs, MFCCs, rate-scale representation and combinations of these
parameters. Binary classification accuracies range from 70% to 95%. An average
absolute drop of about 5% is observed when switching from 16kHz studio speech to
telephone speech. Further drop is observed when testing on conversational telephone
speech. In spite of a lot of research that has been reported on detection of place of
articulation of stop consonants, there is still a tremendous scope of improvement,
especially on telephone bandwidth speech. The amount of phonetically labeled
data for conversational telephone speech is small compared to the amount of data
available for read speech. Further improvements in classifications will also require

phonetic annotation of large amounts of conversational telephone speech.
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Pre-vocalic contexts Post-vocalic contexts

Feature MFCC+ Rate- || Feature MFCC+ Rate-
APs scale+ APs scale+
APs APs
Stop Voicing 83.15 85.26 || Stop Velar 66.37 67.50
Stop Velar 72.55 82.20 || StopAlveolar 62.95 63.30
Stop Alveolar 73.90 73.13 || Stop Labial 65.00 73.05
Stop Labial 71.48 69.85 || Fricative voicing 77.25 77.95

Fricative voicing 79.72 75.75 || Fricative strident 78.50 73.20
Fricative strident 83.05 82.15 || Fricative anterior 83.04 82.67

Fricative anterior 85.92 78.10 || Fricative Labial 70.15 74.96

Fricative Labial 73.50 84.74 || Nasal 88.83 87.45
Nasal 88.89 75.45 || Nasal Labial 67.05 66.03
Nasal Labial 74.14 86.50 | Nasal Alveolar 74.02 73.85
Nasal Alveolar 75.86 74.29 | Nasal Velar 80.22 80.76
Nasal Velar 83.33 77.03 | Lateral 76.65 75.55
Lateral 73.20 78.70 || Rhotic 83.48 79.09
Rhotic 82.39 70.73 || Round 80.48 83.97
Round 78.06 73.25 || Palatal 91.04 90.30
Palatal 91.20 76.00

Table 5.5: A comparison of MFCCs with rate-scale representation for classification

of features at landmarks
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Feature NTIMIT Switchboard  Context
Fricative anterior 82.67 75.71 Prevocalic
Nasal Labial 74.29 77.00 Prevocalic
Nasal Alveolar 77.03 72.00 Prevocalic
Nasal Velar 78.70 72.22 Prevocalic
Fricative Labial - 77.50 Postvocalic
Fricative Labial - 69.50 Prevocalic

Table 5.6: Comparison of results on read speech and conversational speech
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Chapter 6

Word Recognition

The design of the isolated word recognizer that combines the landmark detection
module with the place and voicing detectors is described in this chapter. The isolated
word recognition data set used in this chapter has equal probabilities for all of
the words, therefore, the priors were neglected. The landmark detection module
described in Chapter 4 provides the probability of landmarks without the prior
probabilities included. That is, it provides the following probability (denote it by

P(B|0))

Di+YiZ1 Dj Np,

M .
= A xt S i
pBlo)=[]rw@iB) ][] 1] f‘f|f T fi fif‘“) ), (6.1)
i=1 t— 1+Ez 1D k=1 klJ1y - Jk—1

where B is the broad class sequence corresponding to the landmark sequence L and
other variables have their usual meaning as in Chapter 4. To obtain a score of each
word, the above probability of the landmark sequence was multiplied by the proba-
bility of the sequence of phonetic features given the landmarks. The probability of

the phonetic feature sequence was computed without the priors as well (denote this
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Table 6.1: Classification of place and voicing features on E-set utterances

Feature Accuracy (APs) | Accuracy (MFCCs)
Stop voicing 98.08% 98.73

labial /alveolar for unvoiced stops 100% 96.16%
Fricative voicing 84.21% 88.16%
strident 83.75% 88.75%
anterior 87.50% 88.75%
labial /alveolar for voiced stops 88.46% 89.74%
aspiration/frication distinction 86.54% 94.23%

probability by P(U/OL)

Mo P(% L z,+1|fk7fNB SEPREE Sfin Lou )

pw/on) =1 1]

i=1 k= Np,+1 P(‘(Ell 1,0 ll+1|fNBi+1a"'7fk717L7u7 )

(6.2)

The score obtained by multiplying the two probabilities above has also been applied
to rescoring of lattices from an HMM based large vocabulary continuous speech
recognizer as described in Section 6.2. In lattice rescoring experiments, the stream
weight was provided by the language model and hence the score obtained by multi-

plying the above two expressions was used as an acoustic score.

6.1 E-set experiments

The probabilistic framework was first applied to recognition of eight E-set utterances
-B,C,D, G, P, T, V,Z. This is a small but challenging task because a small transient

region at the beginning of the utterance is where all of the word confusions lie. For
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initial experiments, the SVMs were trained on the speakers F1-F4 and M1-M4 of
the TI46 database and the models were tuned for good binary classification with the
development set consisting of the speakers F5, F6, M5 and M6. Table 6.1 shows the
binary classification results on these features on the development set using the APs
described in Chapter 5. This table also shows the classification accuracies obtained
using 39 MFCC coefficients including the delta and acceleration coefficients. The
accuracies are considerably better than the corresponding accuracies obtained on
the TIMIT database in Chapter 5 because all of the classifications in Table 6.1 were
in the context of the vowel /iy/.

The APs for the feature aspiration were not available, therefore, for distin-
guishing the aspiration following the stop consonants from the frication noise in the
sounds /z/, /s/ and /jh/, the APs for the feature strident were used. Exact APs
have also not been developed for the feature woiced for fricatives, and the follow-
ing measures were used for this feature (1) E[100,400], (2) E[0,F3]/E[F3,SF/2], (3)
Pitch, (4) zero crossing rate and (5) zero crossing rate of high pass filtered signal. All
of these acoustic measurements target the presence of periodic or sonorant energy
in the signal.

Once manner and place classifiers are available, a number of system parameters
can be varied in the implementation of the probabilistic framework. Some of these

system parameters and their effect on the system performance is studied here:

e Fixed or flexible manner class representation

Two sets of experiments were conducted with E-set recognition. In the first
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experiment, the fixed manner class representation of each of the phonemes -
/b/, Je/, /d/, v/, Jv/, [ih/, [v/, /z/ - was assumed except that /jh/ was
allowed to have a stop burst with an unspecified place and appearance of
aspiration after stop releases was kept optional. These settings gave a word
recognition accuracy of 77.22%. A large number of the sounds /z/ and /s/ were
recognized as /jh/ because many of the speakers pronuounce these sounds with
a sharp onset. Therefore, in the second set of experiments, all of the fricatives -
/z/ and /s/ - were allowed to have a stop burst with an unspecified place. This
increased the word recognition accuracy to 78.48%. This is consistent with
the results in the previous chapter where manner of the digits of TIDIGITS
was shown to be highly variable. Both of these experiments were conducted
with linear SVMs, no optimization of regularization parameter C, and using
the histogram method of conversion of SVM discriminant to probabilities.
It should be noted that for this small vocabulary and the small lengths of
broad class sequences involved, such knowledge-based changes in broad class
representations of sounds is easy but it becomes difficult in large vocabulary
systems. To be more specific, when the vocabulary is large it is difficult to
store a large number of different broad class representations, and a way must
be found to predict flexible pronunciations in a generative manner similar
to (Livescu and Glass, May 2004). An attempt to integrate EBS with the
generative model in (Livescu and Glass, May 2004) is discussed in Section

6.3.1.
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Figure 6.1: Variation of error with number of bins

e The number of bins in histogram method
Four values of the number of bins in histogram method of conversion of SVM
discriminant to probability were tested and the effect was studies on the word
error rate. It was expected that the error would first drop with the increase in
the number of bins and then it would rise. This is because for low number of
bins the resolution and hence the accuracy of the mapping of discriminant to
probability is low. For very high number of bins, the probabilities become erro-
neous again because the number of samples in each bin is not sufficiently high.
But as observed in Figure 6.1(a) the behavior is more erratic possibly because
the accuracy of bins vary largely with the number of training samples, and the
number of training samples were very different for the manner classifiers as

compared to the place classifiers. Especially, there were many more number
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of frames available for sonorant classification than the number of landmarks
available for stop place classification. In the second experiment, the number
of bins for each classifier were varied as a factor of the number of training
samples. That is, the number of bins were calculated as Nyampies/Nsampies bins
where Nyumpies is the number of training samples and Nyumpies/pins 15 the ex-
pected number of samples in each bin. The variation of word error rate with
Namples/vins 18 shown in Figure 6.1(b). The variation in word error rate is as

per expectation in this case, that is, it first drops and then rises.

The choice of probability conversion method

The histogram method was compared to the mapping of SVM discriminant to
probability using a sigmoid function. The function tried in this experiment was
flg(z)) = 1/(1 + exp(—g(x))) where g(x) is the SVM discriminant. A word
recognition accuracy of 69.93% was obtained which is sign ificantly inferior
to the accuracy of 80.69% obtained using the best histogram settings on the

development data.

Optimization of the regularization parameter C

Now using the optimal parameter settings of the histogram method along
with the linear SVMs, the effect of the optimal choice of C was studied on the
word error rate. The development data was split into two parts - one with
speakers M5 and F5 and other with speakers M6 and F6. The optimal value
of C for each SVM was chosen such that the binary classification accuracy

was minimum on the first set. The optimal values were then used for word
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Manner Place Word accuracy

Linear Linear 80.69
RBF RBF 63.29
Linear  RBF 75.63
RBF  Linear 77.85

Table 6.2: Effect of SVM kernel on word accuracy

recognition on the speakers M6 and F6. Accuracies of 77.98% and 83.02%
were obtained with and without C optimization respectively. The reverse was
expected but this behaviour may be because of the hold-out cross validation
method used here. That is, C was optimized to minimize error on a data
set separately held out from the training data. C optimized using leave-one-
out cross validation may provide a better value of C. But in the rest of the
experiments, C was not optimized and the default value provided by the SVM

Light toolkit was used.

Choice of SVM kernel

Four sets of experiments were conducted to study the effect of the SVM kernel
on word recognition - by combination of linear and RBF kernels for manner de-
tection and landmark classification. The results are shown in Table 6.2 which
compares the four combinations. The combination that has both kinds of clas-
sifiers as linear gives the lowest error rate on the development set, therefore,

all linear classifiers are used in the rest of the experiments.
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Table 6.3: Word recognition performance on E-set development set using TIMIT

trained models

EBS HMM

APs 80.69 80.12

MFCCs | 75.64% | 88.23%

6.1.1 HMM-based system

An HMM system was built to recognize the E-set and the performance of EBS with
the system. Context independent monophone models similar to (Deshmukh et al.,
2002) were built for all of the consonants - /b/, /d/, /g/, /t/, /p/. /v/, 2/, /c/
- as well as the vowel /iy/ and the closures - /bcl/ and /dcl/ - and the closures
for unvoiced stop consonants - /pcl/ and /tcl/. These models are significantly
different from the standard monophone models where there is a single HMM for a
stop consonant. Separate models were built here for the closures and releases of
the stop consonants to model the detailed dynamic acoustic manifestation of stop
consonants. All models were three-state 8-mixture Gaussian density models with
one skip transition from the first state to the third state. Models were first trained
using the segment boundaries specified by the phonetic labels and then embedded
re-estimation was conducted without using the hand-transcribed time boundaries.
Figure 6.2 shows the variation of error with the number of re-estimation steps with
‘0’ steps referring to the case where the models were trained only using the manual
phonetic transcriptions. It can be seen that embedded re-estimation increases the

recognition error substantially. It’s hard to say whether this result shows that

107



Ertor wariation with embedded re-estimation
Errar (#)

= T T T T T

L]
line 1 ——

95

50

45

40

30

30

20

20

15

10

1 2 3 4 5 G 7 ]

Number of iterations

Figure 6.2: Variation of error with re-estimation iterations

the lack of time aligned phonetic labels in HMM based speech recognition hurts
the performance seriously in general. This result is in agreement with (Hosom,
2000) where it was shown that for connected alpha-digit task the knowledge of
accurate phonetic labels can significantly improve performance. For the final test
data evaluation the models trained with no re-estimation were used.

The word recognition results on the development data are shown in Table 6.3.
Similar pattern as in landmark detection is observed, that is, the HMM system with
MFCCs performs better than the HMM system with APs. EBS performs better with
the APs than the MFCCs. Overall HMM-MFCC system gives the best performance

that is considerably better than all other systems.
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Table 6.4: Word recognition performance on E-set test set

EBS | HMM

APs | 84.64 | 77.14

MFCCs | 80.29 | 90.93%

6.1.2 Test data results

The trained models were finally applied to the test data composed of the E-set
utterances from the TI46 speakers that were not used in either training or develop-
ment, that is, F7-F8 and M7-M8. The word error rate of isolated word recognition
is shown in Table 6.4. The HMM system using 39 MFCCs including the delta and
acceleration coefficients gives the best performance on word recognition, followed by
EBS using the knowledge-based APs. The EBS-AP system again performs signifi-
cantly better than the EBS-MFCC system showing that EBS is able to utilize the
interesting properties that APs possess and MFCCs do not. This is more apparent
from the fact that the EBS-MFCC system does not give better performance than
the EBS-AP system even though MFCCs give better classifications accuracies on
phonetic features (see Table 6.1). Table 6.5 shows the confusion matrix of the E-set
utterances from the results generated by EBS. It is easy to observe from these con-
fusions that most of the errors - confusions between B and V, and G and T - are
due to unreliable classification of the feature aspiration. Because the APs for the
feature aspiration have not been developed, there is no reliable way of distinguish-
ing the frication in the sounds /v/ and /jh/ from the aspiration that may follow

/b/ and /t/. Development of APs for this feature may lead to significant gains in
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Table 6.5: Confusion matrix of the E-set test data
B S D G P T V Z

performance.

6.2 Rescoring of switchboard lattices

The experiments in the previous sections were limited to read speech with very small
vocabulary. At the CLSP workshop of 2004, EBS was applied to rescore the lattice
output of the SRI speech recognizer (Stolcke et al., 2003). Lattices were available
for the RT03 development and evaluation data (NIST). Each branch in the lattice
consisted of a word, its phone-level representation, the acoustic score and the lan-
guage scores of the word from the SRI recognizer. The task of the rescoring process
was to provide a score from EBS to supplement the scores already in the lattice.
An algorithm was then used to find optimal stream weights for each of the scores in

the lattice including the EBS scores (Hasegawa-Johnson et al., 2005) such that the
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WER was minimized. A fixed phonetic feature bundle representation of each phone
was used with the mapping of the manner features given in Chapter 4, and the place
features as listed in Appendix B were used. The lattice had different branches for
different pronunciations of words and these were scored separately using EBS so that
some variation in pronunciation was taken into account while rescoring. The SVMs
trained on NTIMIT (listed in Chapter 5) were used for the phonetic feature classi-
fications. The duration statistics were recomputed using the ICSI transcribed part
of the switchboard database before application to the probabilistic segmentation
algorithm.

Figure 6.3 shows the broad class output of EBS forcedalignment on the multi-
word sequence ”i_think_it”. The labels are very well aligned and there is only one
problem in the broad class outputs. Since a fixed mapping of phones to manner and
place features was assumed, the /t/ in the word final position was forced to have a
separate burst and a closure. A lack of pronunciation variability rules made EBS
produce forced alignments that can significantly affect the likelihoods generated by
EBS for many of the words. A stream weight of 107> was assigned to EBS that was
negligible compared to the weights of approximately 1 and 8 of the acoustic model
and the language model respectively. This stream weight did not lead to any drop

in the word error rate.
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Figure 6.3: A example of a landmark forced alignment by EBS on RT03 development

data on the utterance ”i_think_it”

6.3 Application to discriminative lattice rescoring

A system was designed and implemented by Kirchoff (Hasegawa-Johnson et al.,
2005) for reducing substitution errors in the lattices using phonetic feature classifiers
for selecting among confusable words. In this method, the most common word
confusions were identified and each confusion was converted to a binary relation
either between two broad classes of sounds or between a broad class and a place
feature. The task of EBS was then to carry out constrained detection to give out
probabilities of each of the features. Figure 6.4 shows how EBS was constrained to
compute the probabilities of the feature pair {vowel, +low}. The beginning and the
final states were allowed to take any broad class and their probabilities were ignored,
and the probabilities were picked only from the relevant states in the middle. The
probabilities thus generated were used in a maximum entropy classifier by Kirchoff
to rescore the lattices. On the RT03 development data, a statistically insignificant

reduction in word error rate of less than 0.05% or about 14 words was acheived.

112



Figure 6.4: A FSA for computation of probabilities of a pair of features

6.3.1 Combination with a generative pronunciation model

The lack of availability of a phonetic feature based pronunciation model and the
assumption of canonical pronunciations was largely responsible for poor performance
of EBS in lattice rescoring. A Dynamic Bayesian Network (DBN) based generative
pronunciation model (Livescu and Glass, May 2004) that models pronunciation
variability by allowing overlapping of articulatory features was applied by Livescu
(Hasegawa-Johnson et al., 2005). EBS outputs were used in two different ways by

Livescu at the workshop:

1. Manner segmentations were generated by EBS using the probabilistic segmen-
tation algorithm. The probabilities of the manner phonetic features sonorant,
continuant, syllabic and silence were provided to the DBN in each frame of
speech and the probabilities of the place and voicing features were provided

at the landmarks.

2. In this system, the probabilities of all phonetic features, whether place, manner
or voicing - were provided to the DBN in each speech frame and the task of
locating the landmarks and using the place probabilities at the appropriate

landmarks was left to the DBN.
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Excellent alignment of the articulators was obtained by in this work in both the
cases and a drop in WER from 27.9% to 27.2% was reported on a subset of the

RTO03 development set consisting of three speakers.

6.4 Summary

Experiments on word recognition using the probabilistic framework developed in
Chapter 3 have been presented. It has been shown that EBS performs better than
the HMM system using APs but worse using MFCCs. EBS is better able to utilize
the properties of the APs than the HMM system, and that was the motivation in
the design of the probabilistic framework. The system has been applied to lattice
rescoring over the ouptut of an HMM based large vocabulary recognizer. No reduc-
tion in word error rate was observed when EBS was directly applied to rescoring
of lattices. Some positive trend in recognition performance was observed by other
researchers when they applied the output of EBS with their pronunciation models

(Hasegawa-Johnson et al., 2005).

114



Chapter 7

Conclusions

An acoustic-phonetic speech recognition system has been developed with various
exciting properties. To the best of our knowledge, this is the first statistical rec-
ognizer which uses only relevant knowledge-based acoustic observations at relevant
locations in time. Moreover, the system provides a mathematical framework for
understanding context-invariance of acoustic parameters. For place phonetic fea-
tures, invariance is assumed with variation of the place of neighboring sounds. For
example, the acoustic cues of stop place are assumed to be independent of the place
features of the following vowel. For manner phonetic features, invariance of acoustic
cues for a feature in a particular frame is considered with respect to the variation of
manner features below that feature in the phonetic feature hierarchy. The probabilis-
tic framework formalizes the need for the search of high accuracy context invariant
acoustic parameters that acoustic phonetic researchers have tried to find over many
years. Some of the knowledge-based APs have been shown to approximately satisfy

the invariance property required by the probabilistic framework. Especially it has
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been shown that APs satisfy the invariance property significantly better the the
mel-frequency cepstral coefficients.

Performance very close to HMM based systems has been achieved on segmen-
tation of continuous speech and detection of acoustic landmarks. A number of errors
in the landmark detection system are due to the reductions and the coarticulations
that usually occur in continuous speech. For example, the sound /r/ may merge
completely with the adjacent vowel to cause an /r/-colored vowel that may not show
a dip in energy in the sonorant region of the syllable under investigation. Similarly
word initial fricatives are often released with a sudden burst that is classified as
a stop burst by the landmark detection system, but that is counted as an error
by the scoring program. This variation in manner with context and speaking rate
or style, that leads to reductions of coarticulation, poses a significant challenge for
landmark-based speech recognition. For example, if a stop burst is detected along
with frication noise following it, a separate module is required to check whether
the stop release is lexically distinctive or whether it was produced due to a sudden
release of a fricative. High level information can be very useful in disambiguation
of such cases. For example, if it is known that the burst is at the beginning of the
word, then it is likely that the stop burst is not lexically distinctive. But if the
stop burst-frication noise pair occurs in the middle of a word, the burst and the
noise are parts of separate sounds and the stop burst is distinctive. This indicates
that a significant amount of work is required in integrating high level information
in landmark-based speech recognition.

Classifiers have been developed for a number of phonetic features and their ac-
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curacies have been tested on read speech as well as conversational telephone speech.
Reasonable accuracies have been obtained on classifications of most of the phonetic
features, but the scope of improvement is tremendous in both the knowledge-based
design of acoustic parameters as well as the performance of the statistical classi-
fiers. The probabilistic framework for word recognition system has not performed
as well as the HMM based system. The results on word recognition are consistent
with how well the acoustic features satisfy the invariance assumptions of the prob-
abilistic framework. APs perform better than MFCCs with the EBS probabilistic
framework because they satisfy the invariance assumption better. On the other
hand, MFCCs perform better than the APs in the HMM framework because they
satisfy the property of lack of correlation across feature dimensions.

The system has been applied to telephone speech for lattice rescoring and
good alignment of landmarks has been obtained. Because of the assumption of
canonical pronunciations, an insignificant stream weight was assigned to EBS in
lattice rescoring on the RT03 development set. Significant improvement may be

expected with an appropriate pronunciation model.

7.1 Suggestions for future work

There is a huge scope of improvement that provides a lot of opportunity for further
research in all aspects of landmark-based speech recognition. Many of these ideas

are listed below.
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1. Better acoustic observations
Most of the phonetic feature classifiers need a lot of improvement before
landmark-based speech recognizers can be applied to practical speech recogni-
tion tasks. A lot of this improvement can arise from design of better knowledge
based acoustic parameters. Significant progress was made in phonetic feature
classification at JHU 2004 summer workshop (Hasegawa-Johnson et al., 2005)
but most of this improvement was achieved by combination of a large number
of diverse acoustic observations. While improvements have been reported us-
ing that method, such a large number of acoustic observations are not likely
to be invariant of context, especially since the same measurements were used

for classifications of most of the place phonetic features.

2. Manner independent cues for place recognition
As it has been observed, manner can be highly variable from speaker to speaker
for the same speech sound. For example, a stop release may be weak enough
to look only like an aspiration segment. What may really distinguish it from
the sound /h/, for example, is the strong movement of formants. Therefore,
whether or not a sudden energy burst is observed in the speech signal, a way
should be determined to find stop consonants, for example, by directly using
the formant movements. Those formant movements may then be directly used

to find the place of the stop consonants.

3. Pronunciation modeling

Significant advances are required in pronunciation modeling for landmark
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based speech recognition. Conventional approach to handle pronunciation
variation is to store many possible phone-based pronunciations for each word.
This approach lacks systematic knowledge of how pronunciations can be var-
ied and therefore, cannot predict unseen pronunciations. A generative model
has been developed (Livescu and Glass, May 2004) that has the capability of
predicting many different pronunciations on the basis of an overlapping artic-
ulatory feature model. While this model was designed to handle frame-based
observations, it has also been fused with the landmark-based approach so that
it used only relevant observations at each landmark. Promising results were
reported, but further research is required in combining the landmark-based
approach with such generative pronunciation models to build a stand-alone
speech recognition system. Other possibility in pronunciation modeling is to
incorporate all the feature-based pronunciation rules (Zhang, 1998), but this
approach may encounter the same obstacle as the one that stores many differ-
ent pronunciations. This approach may still be worthy of further investigation

because it fits really well with the landmark-based approach.

. Better probabilistic modeling

Support vector machines were not designed to be Bayesian classifiers even
though we have used them in a Bayesian framework by converting the SVM
discriminant to a posterior probability. To the best of our understanding, this
computation of posterior using a histogram method is not well studied. Bet-

ter methods of converting SVM outputs to probabilities are available (Kwok,
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2000) that may be more compatible with the Bayesian probabilistic framework
presented in this work. Also, the Bayesian framework may be avoided entirely
and a new statistical framework may be designed entirely on the idea of the VC

dimension as shown by the label sequence training method for force-aligning

labels (Altun and Hofmann, 2003).

. Relative significance of each phonetic feature

The probabilistic framework developed in this work gives equal weight or im-
portance to each phonetic feature. Different phonetic features may have differ-
ent weights in their contribution to speech understanding. It was demonstrated
by Kirchoff (Hasegawa-Johnson et al., 2005) in a lattice rescoring framework
that certain phonetic distinctions may be more significant for removing confu-
sions in the output of an HMM based speech recognizer as compared to other
phonetic features. While this was tested in a rescoring framework instead of a
direct decoding framework, methods may be devised to put different weights
on different phonetic features in a direct landmark-based recognition method.
The significance of different features may change considerably with the en-
vironment, for example, in noise, and methods may be found to adapt the

weights to changing environment.
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Appendix A
Tables of place and voicing

features

Feature Articulatory correlate | v | f dh [ th |z zh | s sh
voiced Vocal vold vibration | 4+ | - + |- + |+ |- |-
strident Airstream from the |- |- |- |- |+ |+ |+ |+

constriction hits an

obstacle

alveolar Tongue tip against | - - + |+ |+ |- + |-

alveolar ridge

labial Constriction at lips + |+ |- - - - - i,

Table A.1: The features strident, voiced and the place features for fricative conso-

nants
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Feature Articulatory correlate | w ng
nasal Closed oral cavity, | - +
flow through nasal
cavity
labial Constriction at lips -
alveolar Tongue tip against -
alveolar ridge
rhotic Curled up tongue -
lateral Lateral airflow around | -
one or both sides of
tongue
round Lip rounding +
Table A.2: The place and manner features for sonorant consonants

122




Feature Articulatory iy |ih | ey |eh |ae | aa | ao | ow

correlate

back Tongue po- | - - - - - + |+ |+
sitioned to-
wards back

of mouth

low Low - - - - + |+ |+ |-
tongue

position

high High + |+ |- - - - - -
tongue

position

tense Tense ar- | + |- + |- - +

ticulators

round Lip round- | - - - - - - + |+

ing

Table A.3: The place features for vowels
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Appendix B
User manual of the toolkit of

landmark-based speech recognition

The following is a manual of a part of the landmark based speech recognition toolkit
written to implement and test the ideas presented in this thesis. The complete
manual can be found at http://www.ece.umd.edu/~juneja/apfactmanual.pdf . This
manual does not include help on the part of the code for word recognition but the
online version will eventually contain that help. The following manual is for the

part of the code that can be used for binary classification experiments.

B.1 Synopsis

System Requirements:
A. SVM Light must be installed on the system B. Phoneme label files in TIMIT
format must be availabe C. Frame-by-frame computed acoustic features in binary

format (explained below) or HTK format D. Python 2.2 E. *nix (Unix, Linux, etc.)
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. It may run on Windows but I never tested it.

1. train_config.py

Usage: train_config.py <Config File>

This is the main executable for phonetic feature classification. It can (a) create
files for use with MATLAB, SVM Light and LIBSVM by picking up acoustic
parameters either by frame-by-frame basis or on the basis of landmarks, (b)
train SVM classifiers (available only for SVM Light, and LIBSVM has to
be run separately) while optimizing the kernel parameter and the penalty
(bound on alphas) with different methods - minimum XiAlpha estimate of
error, minimum number of support vectors, minimum cross-validation error,
(c) do SVM classification on test files created by the code in a separate pass,
(d) create histograms. SVMs for multiple phonetic features can be trained
and tested at the same time. Please read the help in README.config for

formatting the config file because this is the most crucial step.

2. print_landmarks.py

Usage: print_landmarks.py <Config File>

This will use the same config file as needed by train_config.py . It will create
a landmark label file for each utterance in a list of utterances provided in the
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config file. The landmarks can be generated in one of the two ways: (a) using

knowledge based acoustic measurments (b) using only the phoneme labels.

3. collate_aps.py

Usage: collate_aps.py

Combines two streams of acoustic parameters, for example, one stream of
MFCCs and one stream of knowledge based acoustic measurements, by choos-
ing only specified set of measrements from both the streams. It can also
compute and append delta and acceleration coefficients for the selected mea-
surements from both the streams. Binary and HTK format for both input
and output are accepted. To create output files in HTK format, ESPS must
be installed on the system, especially, the ’btosps’ and ’featohtk’ commands
must be available. To customize the command opent the file collate_aps.py

and follow the instructions.

4. phn2lab.py

Usage: phn2lab.py <phn file> <lab file>

Converts phn labels to ESPS format labels that can be displayed in xwaves.

5. batch_phn2lab.py
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Usage: batch_phn2lab.py <phn file list> Converts label files in .phn format to
ESPS .lab format given an input list of .phn files. It assumes that the input

files have 3 character extension.

. findScalingParameters.py

findScalingParameters.py <Config File>

Uses the same config file as in train_config.py to compute the scaling param-
eters for all of the acoustic measurements. This script must be run before

running the train_config.py if scaled parameters are to be used.

. File formats

Binary: This is plain binary format. Acoustic parameters are written frame-
by-frame with each parameter in 'float’. For example, if there are 500 frames
and 39 parameter per frame, then 39 parameters for the first frame are written
first, followed by the 39 parameters of the second frame, and so on. Note (1)
each parameter is written in float (2) as far as this toolkit is concerned, linux
and unix generated acoustic parameter files in binary format are not cross-
compatible on these systems because the two systems use a different byte

order.
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B.2 Configuration files parameters

A number of values can be set in a config file that goes as input to the executables
train_config.py . These are discusses here. Three examples of a config file are con-
fig_broadclass_hie.py, config_mfc_hie.py and context_config.py provided along with
the scripts. The config variables are set in python format which has a very easy
and obvious syntax. The code can be used for frame-based and landmark-based
training and testing. Many experiments can be carried out by both frame-based
and landmark based methods. Landmarks are computed by the sytsem automati-
cally for each phoneme by first converting a phoneme into a broad class label and
then finding a set of landmarks for each broad class. The following landmarks are
computed : Vowel (V) : [Vowel onset point (VOP), Peak] Sonorant consonant (SC
- nasal or semivowel) : For postvocalic case, [Syllabic peak of previous vowel, SC
onset, syllabic dip which is the mid point of the SC segment in this case], For pre-
vocalic case, [syllabic dip which is the mid point of the SC segment in this case,
SC offset (vowel onset), syllabic peak of the following vowel]. Intervocalic case:
[Syllabic peak of previous vowel, SC onset, syllabic dip which is the mid point of
the SC segment in this case, SC offset (vowel onset), syllabic peak of the following
vowel] Stop (ST) : [Burst, Release| Fricative: [start frame, 1/4 frame, middle frame,
3/4 frame, end frame] Silence: [Silence start, silence end] The silence landmarks are
useful for classification of the stop place features in postvocalic contexts.

The landmarks shown above for each broad class must be noted because this

knowledge is essential for doing landmark-based experiments. In landmark based
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experiments, you need to specify where acoustic parameters are to be picked at. For
example, if acoustic parameters 1,23,27 (this numbering is for the order in which the
parameters are stored in parameter files starting with 1) are to be picked at Peak
of the vowel, then the value of the Parameters variable below for such a class has
to be set as [ [], [1, 23, 27]] such that nothing is picked at the vowel onset point. In
addition if a number of adjoining frames is to be used at Peak landmark then the
value of Adjoins is set as [[], [-4, -2, 0, 2, 4]] and then the parameters [1, 23, 27] will
be picked from (Peak - 4)th frame, (Peak - 2)nd frame and so on. For a particular
classification, the current version of the code has a constraint that if the number
of parameters at a landmark for a broad class are non-zero: then the number of
parameters and the number of adjoins for that landmark must be the same as other
non-zero ones. For example, if some parameters have to be picked from the VOP,
then it should also have three parameters (considering above example) computed
using the adjoins of size five, for example [-4, -1, 0, 1, 4]. Of course, the parameters
and the adjoins may be different.

A single config file can be used for a number of SVM classification experiments.
In the config file you specify a list of SVM Light formatted data files, a list of model
files names, indices of parameters to be extracted for each classification, etc. The

i’th element of each of these lists determine how the i’th experiment is done.

1. Flags and values related to kinds of tasks and various inputs (labels and acous-
tic parameters)

outputDir
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The full path of the directory containing the acoustic parameter files. A mis-
nomer because this directory is more of an input.

labelsDir

The full path of the directory containing the label files in TIMIT format.
modelDir

The outout directory where model files and SVM Light formatted data files
will be written.

filelist

Full path of a list of acoustic parameter files.

shuffleFilesFlag

If this is set to 1, the list of files will be shuffled before use

apFileExtLen

This an integer telling the length of extension of each acoustic parameter file.
The code takes off this many number of characters and appends the label ex-
tension (refLabelExtension) to find the label file in the directory labelsDir .
refLabelExtension

The extension of the label file, for example, 'phn’

SkipDataCreationFlag

If this flag is test to 1, then no SVM formatted data files are created. This is
used to only run the SVM Light, for example, to optimize the value of gamma
or C .

SkipModelTrainingFlag

Setting this to 1 will skip model training. This can be used to (1) only create
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the SVM Light formatted data files so as to test with other toolkits such as
LIBSVM of MATLAB externally, (2) create SVM Light formatted data files
that can be used as validation files for SVM training in a separate pass.
SkipBinningFlag

Setting this to 1 will skip creation of bins for probabilistic modeling of SVM
outputs. This not relevant for this version of teh code.
binaryClassificationFlag

If this flag is set to 1, SVMs will be run on the files in the array SvmlInput-
FilesDevel

classificationType = 2

1: Non-Hierarchical 2: Hierarchical . Please ignore this flag in this version of
the toolkit. It is only relevant in the full-version

nBroadClasses

Please ignore this value in this version of the toolkit. It is only relevant in the
full-version. Give it any value but do include it in the config file.
nBroadClassifiers = 4 # Not relevant for classification

Please ignore this value in this version of the toolkit. It is only relevant in the
full-version. Give it any value but do include it in the config file.

nClasses

The number of SVMs . Not required but it can ease writing of certain vari-
ables in the config file that are same across all the SVMs to be trained. For
example in python, a=[z’|*5 will assign ['z’, 7', '7’, '2’, 'z’] to a .
selectiveTraining

131



The code allows for carrying out the designated tasks on a specified set of
features instead of all the features. Even if config file is written for 20 SVMs
(features), you can specify which features to analyze. For example, selective-
Training = [0,3,5,6]

apDataFormat

0: binary, 1: HTK .

. Values related to the names of SVM Light format files and model files to be

created

SvmlInputFiles

The names of SVM Light formatted files to be created. For example, SvmlIn-
putFiles = ['LightSonor’, 'LightStops’, 'LightSC’, ’LightSilence’]
SvmInputFilesDevel

The names of files used for validation. When optimizing a kernel related
parameter, these files will be used to minimize the error on. For example,
SvmInputFilesDevel = ['LightSonorDevel’, 'LightStopsDevel’, 'LightSCDevel’,
"LightSilenceDevel’]

modelFiles

The names of models. For example, modelFiles = ['rbf_-model_sonor’,

'rbf model stop’, 'rbf model sc’, 'rbf model sil’|
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3. Values and flags related to the parameters used in each classification

Parameters

The list of parameters to be used for each classification. For example, [[1, 2,
15, 16, 19], [4, 5, 17, 18], [8, 13, 14, 15, 16], [9, 4, 5, 6, 7]] where each list is a
list of parameter for the corresponding index of model file, SVM data file, etc.
These examples are good only for frame-based training. For landmark based
testing, parameters are specified for each landmark as exemplified in the syn-
opsis above. More examples can be found in the config_mfc_hie.py (example
file) file provided with the toolkit.

Doublets = [[]]*nClasses

Not tested in a while and better not to use. Assign Doublets = [[]]*nClasses
to have the code ignore it.

Adjoins

The number of adjoining frames along with the current frame to be used for
classification. For example, [[-4, -3, -2, -1, 0, 1], [-4, -3, -2, -1, 0, 1, 2, 3, 4], |
-16, -12, -8, -4, 0, 4, 8, 12, 16, 20, 24|, [-3, -2, -1, 0, 1, 2]]. For landmark-based
training, adjoins have to be specified for each landmark as stated in the syn-
opsis above.

numberOfParameters

133



The number of parameters per frame in each acoustic parameter file.
stepSize

The step size of the frames in milliseconds. Required for reading the labels.
classes_1

The +1 class members (phonemes/broad classes) from which the parameters
are to be extracted. For example, classes.1 = [['V’, 'SC’, "N’|,['ST’, VST,
('n’, 'm’) 'y, w1 'ng’], [start-end’, VB, ‘epi’, 'CL’]]. See the file la-
bels.py for the mapping used for phonemes to broad classes.

classes_2

The -1 class members (either phonemes or broad classes but not both in any
classification) from which the parameters are to be extracted. For exam-
ple, classes 2 = [['V’, ’SC’, "N’|, ['ST’, 'VST’], ['n’, 'm’, y’, "w’, 't’, 'I', 'ng’],
'start-end’, "VB’, 'epi’, 'CL’]] . See the file labels.py for the mapping used for
phonemes to broad classes.

useDurationFlag

A flag for each classification, for example, [0, 0, 0, 0]. A flag can take a value 1
only when the corresponding parameterExtractionStyles flag is set to 7 (land-
mark based training) .

specificDataFlags

If broad classes are used in classes_1 and classes_2 for any of the classification,
set it to 0 otherwise set it to 1, for that classification.
parameterExtractionStyles

0: Frame based training, 1: IGNORE, not tested in a while, 7: landmark-
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based testing .

useDataBound

Setting this flag to 1 will use an upper bound on the number of samples ex-
tracted for each classification . The number is set by the values maxclassl and
maxclass2 explained below .

placeVoicingSpecifications

This selects the kind of landmark training for each classifier for which land-
mark training is chosen. For vowels the options are "generic’ (all vowels will be
used), 'preSConly’ (vowels with no following sonorant consonant will be used
and postSConly (vowels with no preceding vowels will be used). For frica-
tives, the options are 'generic’ (all fricatives), ’genericPreVocalic’ (fricatives
before vowels and sonorant consonants), "genericPostVocalic’ (fricatived after
vowels or sonorant consonants), 'genericlsolated’ (fricatives with no adjoin-
ing sonorants). For sonorant consonants, the options are ’genericlnterVocal-
icSC’ (as the name suggests - note that there are five landmarks in this case),
‘genericPreVocalicSC’ (three landmarks) , "genericPostVocalicSC’ (three land-
marks). For stops, the only valid option is 'genericPreVocalic’. The variable
placeVoicingSpecifications will be removed in the forthcoming versions of the
code and the framework will allow the user to specify any context.

initl

For frame-based training this is the list of numbers of initial frames to be
extracted for each classifier. If for any classifier this value is set to non-zero,

then only that number of initial frames will be used from classes_1 . The mid-
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dleFlagl will be ignored. For example, initl = [0, 1, 0, 0] # Only relevant for
frame-based training

init2

For frame-based training this is the list of numbers of initial frames to be
extracted for each classifier. If for any classifier this value is set to non-zero,
then only that number of initial frames will be used from classes 2 . The mid-
dleFlag2 will be ignored. For example, init2 = [0, 1, 0, 0] # Only relevant for
frame-based training

delstartl

Delete an initial number of frames when picking frames for frame-based train-
ing from a label in classes_1. For example, delstartl = [0, 0, 0, 0] . Only
relevant for frame-based training. Ignored if a corresponding initl value is set
to non-zero .

delstart2

Delete an initial number of frames when picking frames for frame-based train-
ing from a label in classes 2. For example, delstart2 = [0, 0, 0, 0] . Only
relevant for frame-based training. Ignored if a corresponding init2 value is set
to non-zero.

delend1

Similar to delstartl but for end frames.

delend?2

Similar to delstart2 but for end frames.

contextFlagl

136



Specify the left and right context of eaach of the labels in classes_ 1. Only
the phonemes/broad classes with the specified context will be used. If the ith
element of the list contains ’left” or 'right’ or both, then only those phonemes
will be used that have the phonemes or broad classes specified in the contextl
dictionary in the designated context. Currently this is only implemented for
frame-based training. For landmark based training, use placeVoicingSpecifi-
cation . The example file context_config.py shows an example of how to use
context. If phonemes are specified in classes_1 and classes_2, then the context
must also be phonemes, and the same for broad classes.

contextFlag?2

Specify the left and right context of eaach of the labels in classes_ 2. Only
the phonemes/broad classes with the specified context will be used. If the ith
element of the list contains ’left” or 'right” or both, then only those phonemes
will be used that have the phonemes or broad classes specified in the context2
dictionary in the designated context. Currently this is only implemented for
frame-based training. For landmark based training, use placeVoicingSpecifi-
cation . The example file context_config.py shows an example of how to use
context. If phonemes are specified in classes_1 and classes_2, then the context
must also be phonemes, and the same for broad classes.

contextl

Specify the context . Relevant only if contextFlagl is not empty. The element
corresponding to to the ith classifier is a dictionary in python format. For ex-
ample, an element may be ’left’: [iy’, ’ow’], 'right’: ['’k’, ’g’]. Many examples
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of using context are in the file context_config.py.

context2

Specify the context . Relevant only if contextFlag2 is not empty. The element
corresponding to to the ith classifier is a dictionary in python format. For ex-
ample, an element may be ’left’: ['iy’, ’ow’], 'right”: ['’k’, 'g’]. Many examples
of using context are in the file context_config.py.
randomSelectionParameterl

Instead of picking all frames pick frames randomly. For example, randomSe-
lectionParameterl = [0, 0, 0, 0]. This feature has not been tested in a while,
so please prefer not to use it. # Only relevant for frame-based training
randomSelectionParameter2

Instead of picking all frames pick frames randomly. For example, randomSe-
lectionParameter2 = [0, 0, 0, 0] . This feature has not been tested in a while,
so please prefer not to use it. Only relevant for frame-based training
middleFlagl

Specify if only the frames from a middle portion of each label is to be used for
training. 1: middle 1/3 segment, 2: middle 2/3 segment, 3: only the center
frame. Example, middleFlagl = [0, 0, 0, 0] # Only relevant for frame-based
training

middleFlag2

Specify if only the frames from a middle portion of each label is to be used for
training. 1: middle 1/3 segment, 2: middle 2/3 segment, 3: only the center
frame. Example, middleFlagl = [0, 0, 0, 0] # Only relevant for frame-based
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training

maxclassl

Maximum number of samples to be extracted for class +1. Example, max-
class1l = [20000, 5000, 20000, 20000] # Only relevant for frame-based training
maxclass2

Maximum number of samples to be extracted for class -1. Example, maxclass2

= [20000, 5000, 20000, 20000] # Only relevant for frame-based training

. SVM parameter settings

trainingFileStyle = "Light’

Choice between 'Light’ and MATLAB . If MATLAB is chosen then a binary
file is written .

kernelType = [2, 2, 2, 2]

Same usage as SVM Light. 10 : Use known optimal gammas. Set the opti-
mumGammaValues below For example, kernelType = [2, 2, 2, 2]
gammaValues

The set of values from which optimal is to be found. For example, gammaVal-
ues = [0.05, 0.01, 0.005, 0.001, 0.0005, 0.00001]

optimumGammaValues

If optimal gamma value is known for each or some of the classifications, set it
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here. For example, [0.01, 0.001, 0.001, 0.01] will set 0.01 as the optimal value
for classification 0, 0.001 as optimal value fot the classification of index 1 and
SO on.

cValuesArray = [0.05, 0.5, 1.0, 10]

Values of C from which best C is to be chosen. For example, cValuesArray =
[0.05, 0.5, 1.0, 10]

flagCheckForDifferentC

If set to 0, default C found by SVM Light will be used .

svmMinCriterion

If set to 'numSV’ the minimum number of support vectors will be used to
get the optimum value of C as well as gamma . ’crossValidation’” will cause
the code to use validation across the files in SvmInputFilesDevel . The files
in SvmInputFilesDevel need to be created in a separate run of the code by
specifying the same names in the SvmInputFiles

BinsFilenames

The names of files that will contain the histogram binning information. For
example, BinsFilenames= ['BinsSonor30RBF’, 'BinsStops30RBF’,
'‘BinsSC30RBEF’, 'BinsSilence30RBF’] . Binning is not relevant for this version
of the code.

probabilityConversionMethod

Choice of 'bins’ or “trivial’ . Trivial will use linear mapping from [-1,1] to [0,1]
binningBound

Bins will be constructed between -binningBound and +binningBound
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5. Parameters for scaling

parameterScalingFlag

If this is set to 1, the parameters will be scaled by their empirical mean and
variance. If set to 1, findScalingParameters.py must run before train_config .
scaleParameterFile

The full path of file to be created by findScalingParameters.py and to be read
by train_config.py . For example, modelDir+’/’+’scalesFile’

scalingFactor

The value at which standard deviation of the scaled parameters is set.
scalingToBeSkippedFor

A list of indices of features for scaling is not to be used. For example, [0,4,5]

6. Parameter Addition Specifications : Deprecated: should be ignored but not
deleted

addParametersFlag = 0
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addDirectory = ’/dept/isr/labs/nsl/scl/vol05/TIMIT op/train’
temporalStepSize = 2.5
fileExts = ["aper.bin’, 'per.bin’, "pitch.bin’; ’soff.bin’, ’son.bin’]

channels = [1,1,1,1,1]

. Ap specifications for landmark detection

useLandmarkApsFlags

Before landmark-based analysis is done, the code finds out the landmarks
using the phoneme labels and optionally using knowledge based acoustic mea-
surments. Landmarks are defined corresponding to broad classes vowel, frica-
tive sonorant consonant (nasal or semivowel), silence and stop burst. If you
want to use knowledge based measurements along with the phoneme labels for
finding landmarks for any of the broad classes, set the corresponding flags as
1. For example, useLandmarkApsFlags = "V:0, 'Fr’:0, 'ST’:1, 'SILENCE’:0,
'SC”:1 will cause the code to use measements for the landmarks for ST and
SC, and only the phoneme labels will be used to find the other landmarks.
The parameters defined by the landmarkAps will be used.

landmark A ps

The index of the parameter for each of the measurements - onset, offset, total-

Energy, syllabicEnergy, sylEnergyFirstDiff - has to be set below. For example,
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landmarkAps = ’onset’: 17, ’offset’: 18, 'totalEnergy’: 18, ’syllabicEnergy’:
13, ’sylEnergyFirstDiff: 32 . Note that the first parameter is 1 and not zero.
The maximum value of 'onset” parameter will be used to find stop burst. The
maximum value of totalEnergy will be used to find the vowel landmark its
minimum value will be used to find the dip of an intervocalic sonorant conso-
nant. The maximum value of the sylEnergyFirstDiff will be used to find the
SC offset (while moving from SC to vowel) and its minimum value will be used

to find the SC onset (while moving from vowel to SC).
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