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ABSTRACT

Acoustic modeling and analysis of speech based on phonetic features is explored
in the current research for speaker-independent speech recognition. Phonetic features
are minimal speech units that describe the manner and place of articulation of the
sounds of a language. In this research. it is shown that phonetic features have acoustic
signatures in the speech signal that can be reliably extracted in a manner that reduces
the effects of speaker-differences. Moreover. it is postulated based on the conducted
experiments that using phonpetic features as the basic speech units allows for the
modeling of contextual variability in a general and natural way.

A major thrust of this thesis is in the development of algorithms that extract the
acoustic properties of the phonetic features. These algorithms make measurements on
the speech signal that are motivated by acoustic phonetics and spectrographic analy-
sis. A measurement is made at a time-instant relative to its value at another instant
and/or is made in a frequency band relative to another. Such relative measurements
focus on the linguistic content of the speech signal reducing the etfects of interspeaker
variability.

[n one part of this thesis. acoustic measurements were developed based on sub-

v



Jective acoustic analysis. An event-based recognition system that uses these mea-
surements. combined by “fuzzy” rules. was developed and compared to a Hidden
Markov Model (HMM) system using (1) the same measurements but modified to fit
the frame-based HMM system and (2) Mel-cepstral parameters. The results show
that the event-based approach produces comparable results to the HMM frame-based
syvstem for the undertaken task of broad-class speech recognition. In addition. it is
shown that the developed measurements perform better than the cepstral parameters
in this task.

An automatic optimization procedure based on the Fisher criterion and classifica-
tion trees was developed to automate the derivation of acoustic measurements. Using
this procedure. manner and place-of-articulation acoustic measurements were devel-
oped. These measurements were evaluated in phonetic-feature classification tasks and
in a 10-class recognition task using an HMM system. Recognition results compared
favorably to those obtained with Mel-cepstral parameters. The results show that the
developed measurements target the intended linguistic information and are robust to

speaker differences.
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Chapter 1

Introduction

Speech is the natural means of communication among humans. However. the medium
of communication between machines and humans has been largely limited to kev-
boards and CRT displays. Thus. there is a great desire for enabling machines to
recognize human voice. to understand it and. whenever appropriate. to respond back
using speech. Embedding these capabilities in machines has been the center of re-
search for many decades. This research can be divided into four main areas: (1)
speech synthesis. (2) speech recognition, (3) speech understanding and (4) speech
generation. The area of speech synthesis has progressed much faster than the other
three. Speech synthesizers of high intelligibility such as Dectalk and Klattalk [I]
have appeared in the market place since the mid 80’s. In contrast to speech svn-
thesis. speech recognition products have not appeared in the market until recently.
Examples of these products are the Dragon Dictate which is a discrete word recog-
nition svstem. customer designed applications such as fill-in-blank reports by voice.

discrete digit recognition over the telephone line implemented by AT&T and oth-



ers as well as the voice-operated Apple Macintosh. However. these applications are
very limited and speech recognition technology is still far from allowing a human to
converse freely with a machine. This is not to undermine the fact that this area
has evolved tremendously in the last decade. Today. speaker-independent continuous
speech recognition systems can achieve word recognition accuracy near 95%. on read
and quiet speech involving a 5 k-word closed vocabulary (results reported on 3-I word
WSJ task {2]). The trend is moving towards more challenging tasks involving larger
and open vocabulary as well as casual speech. as opposed to read speech. in addition
to dealing with speech in noise. These advances in speech recognition are mainly due
to a better understanding of speech and. more importantly. to improved statistical
modeling methodologies coupled by the availability of large training corpora. The
best performing systems today utilize the Hidden Markov Model ( HMM) as the basic
structure and in some cases they include the Stochastic Segment Model (SSM) [3]
in multistage recognition and Neural Networks (NN) in a hybrid approach (c.f. [4]
[3]). These structures are used to model the acoustic manifestation of English sounds
and/or to model the language using statistical training methods. It is notable. how-
ever. that the performance of these systems tends to sharply degrade on tasks that
involve casually articulated speech such as the switchboard database where reported
word recognition rates are about 60 — 70%. Furthermore. moving across databases
usually requires a lot of tuning and training to achieve good performance.

Despite the advances of the last decade. there are still outstanding challenges that
call for further research at many levels of the speech recognition process. There is now
an effort to evaluate the contributions of different acoustic modeling methodologies

in order to gain an understanding of their advantages and disadvantages. Further-
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more. there is general understanding that dealing with more challenging tasks such
as casual non-read speech requires a better understanding of speech variability and
coarticulation phenomena [6]. Perhaps. one of the main disadvantages of the ap-
proaches employed by current systems is that little can be gained in terms of our
understanding of the speech process since the relationship between a phoneme and
its acoustic manifestation is not represented explicitly. In this thesis. we deal with
acoustic modeling of speech for speech recognition. However. we undertake the acous-
tic phonetic approach whereby speech units are modeled explicitly. The objective of
this research is threefold: (1) develop a signal representation that consists of acoustic
parameters that target linguistic information represented by phonetic features in the
speech signal. (2) explore the viability of a new speech recognition paradigm based
on phonetic features and acoustic events. (3) use this paradigm as a tool for speech
analysis so that a better understanding of the acoustic manifestation of sounds as
well as a better understanding of coarticulation can be gained. and (4) integrate and
test the developed signal representation in the HMM framework.

[n Chapter 2. the different methodologies used in acoustic modeling are briefly
discussed in order to motivate the research presented in this thesis. The phonetic fea-
ture theory that forms the backbone of this approach is briefly reviewed in Chapter 3.
[n Chapter 3. the undertaken approach to acoustic modeling is also motivated and
discussed. In Chapter 4, the database used in this thesis is discussed and justified. In
Chapter 3. acoustic parameters that target manner-of articulation phonetic features
are presented. The performance of these parameters in an event-based paradigm for
manner-class speech recognition is presented. analyzed and compared to the perfor-

mance of a slightly adapted form of the same parameters in an HNMM framework and



to Mel-cepstral parameters in the HMM framework. In Chapter 6. a procedure based
on objective criteria is defined to automate the derivation of acoustic parameters that
target phonetic features. This procedure was used in Chapter 7 to derive acoustic pa-
rameters for the phonetic features: sonorant. syllabic and strident in addition to the
anterior phonetic feature that distinguishes among strident fricatives and the labial.
velar and alveolar places of articulation that distinguish among the stop consonants.
The performance of these parameters was evaluated in classification tasks. A subset
of the derived parameters was used in a manner-place recognition task within the
HMM framework. The performance of these parameters was compared to that of
Mel-cepstra using the HMM recognition paradigm. The place-manner recognition
experiments are presented in Chapter 8. Finally, the main conclusions from this re-

search are summarized in Chapter 9 and directions for future research are suggested.



Chapter 2

Acoustic Modeling of Speech:

Background

This chapter is a review of the main issues encountered in the acoustic modeling
of speech and of the approaches that have been taken in addressing this problem:
the Hidden Markov Model (HMM), the Stochastic Segment Model (SSM) and the
acoustic-phonetic approach. The assumptions made in each approach as well as the

advantages and the disadvantages of these methodologies are discussed.

2.1 Issues in Acoustic Modeling

A complete speech recognition system is shown in Figure 2.1. Many knowledge sources
contribute to the recognition process of a received speech utterance. One of these
knowledge sources is the acoustic model. The acoustic model is an integral part of
a recognition system since it provides the link between the acoustic signal and the

recognition lexicon represented in terms of linguistic units. Acoustic modeling of
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(knowledge sources: acoustic models, language models)

|

speech signal ————t speech recognizer

]

grammar recognition
lexicon

hypothesis in
terms of speech
linguistic units

Figure 2.1: A diagram depicting the different knowledge sources contributing to the

recognition of a spoken utterance.

speech is mainly concerned with the following three issues:
e Choice of speech units to be modeled.

e A signal representation that appropriately captures speech acoustic properties.

Such a representation is traditionally referred to as the feature space.

e A modeling methodology or structure that allows the mapping from the signal

representation to the selected speech units.

Choice of speech units: Speech can be described as a hierarchy of different linguis-
tic units. For instance, phonetic features form phonemes (sounds of the language)
which combine to form syllables, then words. phrases and finally a discourse. The
question of what constitutes minimal speech units is a theoretical one that puzzled
linguists as well cognitive scientists for decades. Minimal speech units ranging from

phonetic features up to words have been considered. However. there is a general con-



sensus in speech recognition research that phonemes are the speech building blocks
although several others have argued for the phonetic features [7] [3] and syllables[9].
The choice of minimal speech units for the purpose of speech recognition by machine
is limited for three reasons. First. the minimal speech units must be chosen so that
they can uniquely describe lexical items which are usually words. Second. the chosen
speech units must allow for the generalization of the different phonological processes
that take place in fluent speech. Finally. it must be possible to develop reliable acous-
tic models that sufficiently describe the acoustic manifestations of these speech units
from a limited amount of data. In this regard. words best fit the first constraint but
fail the second and the third. On the other hand. phonemes may satisfy the first
and third requirements but fail the second one!. However. we observe that phonetic
features satisfy all three requirements equally well.

Signal representation: There are a variety of acoustic properties that characterize
the different sounds of the language. Some of these properties are more apparent in
the time domain while others are more evident in the frequency domain or in the
evolution of the frequency content as a function of time. Therefore. time-frequency
distributions that simultaneously describe the time-frequency structure of speech sig-
nals have been used. However, the acoustic structure of the different sounds impose

different requirements. that are often conflicting, on the time-frequency representa-

'Triphone models try to capture the effect of phonological processes on the acoustic realization
of phonemes. However. two limitations of such models are that (1) they only capture the effect of
the left and right phonemes on the modeled phoneme although a phonological process may spread
over more than one phone and (2) they do not model or gain advantage of the fact that phonological

processes act at a sub-phonemic level rather than at the phoneme level.
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tion. For instance. the stops and affricates are realized with a fast transient that
occurs over a short time interval. Thus, the detection of such an event requires time
resolution that is finer than a pitch period (8 to 10 ms for a tvpical male). On the
other hand. vowel sounds (e.g.. /a/) are quasistationary sounds which share the pe-
riodicity attribute. Detecting periodicity requires analysis over a time interval that
spans two or more pitch periods so that the harmonics can be resolved. The require-
ments of fine time-resolution and fine frequency-resolution cannot be simultaneously
satisfied as asserted by the Heizenberg’s uncertainty principle. This uncertainty prin-
ciple states that the frequency bandwidth of a signal is inversely proportional to its
duration. Therefore. two frequency components of a signal can be resolved if the
durations of both components are sufficiently large so that their bandwidths do not
smear. Different time-frequency representations that provide different tradeoffs in
time-frequency resolution have been proposed [10]. Among the time-frequency rep-
resentations are the short-time Fourier transform (STFT) [11]. Wavelet transform
[12] and Wigner distribution [L3]. Moreover. models of the peripheral auditory sys-
tem that take into account speech characteristics have been developed and applied
in speech research [14]. The most widely accepted signal representation for speech
recognition today consists of Mel-warped cepstral coefficients. This signal represen-
tation has produced the best recognition results so far. The Mel-warped cepstra are
obtained by first computing the STFT of the signal and then computing the energy
within Mel-warped frequency bands at each time-frame [15]. The cepstral coeffi-
cients at each time-frame are obtained from the discrete-cosine-transform (e.g.. [16])
of these energy parameters. Mel-warping accounts for the human auditory system

that has high frequency resolution in the low frequency bands and poor frequency
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resolution in the upper frequency bands. The cepstrum transformation results in a
signal representation with independent components or no redundancy.

Spectrogram reading experiments coupled with the waveform suggest that the
STFT is sufficient to extract the acoustic properties of the different speech sounds 2.
Thus. the STFT is the transformation of choice in the current research. Acous-
tic properties that correspond to the different sounds are extracted from the STFT
and/or the time-waveform.

Model Structure: The model structure is a link between the lexical-representation
component and the signal-representation component of a speech recognition svstem.
The most popular structures employed in today’s speech recognition svstems are
the HMM. SSM and Neural Networks. The advantages and disadvantages of these
structures are discussed in Section 2.2.1. In this thesis. the HMM is utilized in some
experiments. In addition, rule-based models of phonemes in terms of phonetic features
are developed. These models make explicit use of speech knowledge as discussed in

Section 2.2.2.

2.2 Acoustic Modeling Methodologies

[n acoustic modeling. two approaches have been undertaken: the mathematical mod-
eling approach and the acoustic-phonetic approach. [n this section. these two ap-

proaches are brieflv reviewed illustrating their advantages and disadvantages.

*A spectrogram is a two-dimensional representation of the STFT with frequency on the vertical

axis. time on the horizontal axis and amplitude is represented by a grev scale or a color scale.



2.2.1 Mathematical Models

The most popular and widely adopted structure in acoustic modeling is that of the
Hidden Markov Model (HMM) [17]. In this structure. 2 speech unit is represented
by an automatum (a sequence of states). Transitions between states are governed by
transition probabilities and are only allowed left-to-right. The mapping between the
acoustic representation of the speech signal and the HMM is done through observation
probabilities conditioned on the state only. That is. the acoustic model assumes that
the consecutive speech frames are conditionally independent given the state sequence
and therefore uncorrelated. This unrealistic assumption represents a major drawback
in the HMM framework since the correlation between adjacent time instants is evident
by the continuous motion of the articulators. Thus. the HMM does not model this
aspect of the speech process despite the fact that it is the most successful in speech
recognition applications by machines. To have a model for a speech unit. the different
probabilities involved have to be obtained. In this regard. issues that relate to the
type of distributions (parametric versus non-parametric, Gaussian or Laplacian. etc.)
and the estimation of these distributions have been addressed. Due to mathematical
ease. Gaussian distributions have been used. One of the major research issues has
been whether unimodal multivariate Gaussian is better than multimodal {mixture)
Gaussian. Related to this decision is the amount of data needed to train these models
(i.e.. estimate the different parameters). It has been found that when enough data is
available. the latter results in better acoustic models which yield higher recognition
performance. To deal with the problem of data requirement. tied mixtures have been

used.
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The Stochastic Segment Model (SSM) was proposed in [L8] to model feature tra-
jectories that persist throughout a speech unit such as a phone. The advantage of
the SSM is that. in contrast to the HMM framework, it allows capturing the corre-
lation between consecutive speech frames. In the SSM framework. there are issues
common with the HMM that are related to the type of observation distributions and
their estimations. However. there are also issues specific to the SSM such as model
duration and the correlation between the consecutive micro-segments that constitute
the SSM 3. Since phonemes have variable durations. corresponding models may have
variable durations. or number of microsegments. proportional to phone durations.
Alternatively. SSM’s of all phones may have the same number of microsegments with
linear-time warping used in mapping the speech frames to the microsegments. The
correlation between consecutive micro-segments can be captured with a probability
distribution of the SSM that has a non-diagonal covariance matrix. Such a probability
distribution. however. requires a lot of training data and is rarely used in practice. A
disadvantage of the SSM is that it is computationally expensive. This computational
expense prohibits the use of the SSM as a framework for word recognition. In word-
recognition applications. the SSM has successfully been used as a second-pass within
the N-best rescoring paradigm [3]. In this paradigm. the top N candiadte sentences
that correspond to a spoken utternace are obtained using an HMM svstem. Each of
these sentences is then rescored using SSM’s of the constituent phones. The sentence
that receives the highest score is chosen as the hypothesis.

In addition to HMM and SSM. other mathematical models such as neural networks

*An SSM consists of several micro-segments. usually between 5 and 8. where each observed speech

frame is mapped to any of these segments based on the linear time-warping procedure.
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(NNs) have also been used. NNs have proved effective when used along with the MM
in a hybrid framework [5] [4]. an NN consists of lavers with several nodes in each
laver. Each node in the input layer corresponds to a dimension in the acoustic-feature
space (e.g.. a component of a vector of Mel-frequency cepstra). Each node in the
output layer corresponds to a phone being modeled. Nodes from one laver are usually
connected to each node in a successive layer. The problem lies in estimating the
outputs of each layer and the weights on the connections between nodes in successive
lavers. [n the hybrid framework. NNs are used to estimate the observation probability
of an HMM state whereas the HMM captures the time evolution of a phone. NNs offer
the advantage of estimating complex observation probabilities and eliminate the need
for making assumptions on the shape of these probabilities (e.g.. Gaussian or multi-
model Guassian. diagonal covariance matrix or not). These observation probabilities
are estimated in the training stage so that the error of guessing the wrong phone based
on that observation phone is minimized. Correlation between consecutive frames can
be implicitly modeled by including as input to the NNs. speech frames that surround
the speech frame whose probability given the HMM state is being estimated. A
disadvantage of NNs is that they are expensive in training as they take long time
to converge. In addition. an assumption needs to be made regarding the number of
nodes at each stage of a NN and on the number of stages (usually. two intermediate
stages between the input and output stages are assumed).

Vital to all of the acoustic models is the set of features used in modeling and recog-
nition. I[n this respect. all statistical systems that we know of utilize Mel-cepstra and
cepstrum-related coefficients. Several other signal representations have heen tried.

keeping everything else fixed. such as the Fourier transform and auditory transforms.
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The Mel-cepstral coefficients yielded the best results and therefore became the stan-
dard. That is not to say that other representations are not as good since other factors
such as the type of observation distributions may affect performance. There is still
ongoing work on auditory models and their applications in speech recognition (c.f.
[L4]. [19]. [20]. [21]). In addition. other methods for computing a signal representation
for speech recognition are still explored (c.f. [22]).

[n computing cepstra. a 10-30 ms segment of the received speech signal is trans-
formed to the cepstral domain every 5-10 ms (frame rate) resulting in a sequence of
cepstral vectors regularly spaced in time. To capture some of the correlation between
adjacent frames and the dynamics of the speech process. these vectors are augmented
by the time derivatives of the cepstral coefficients and the energy profile. The cep-
stral coefficients capture the energy concentration in some frequency bands relative
to others (e.g.. the first coefficient measures the high-frequency energy concentration
relative to that of the low frequency). The time difference of the cepstral coefficients
captures the change in time of these different energy concentration measures. Once
the cepstral vectors are computed. they are used as observation vectors.

[n modeling. these observation vectors are used to estimate the different model
parameters. Sophisticated training techniques and large sets of training data are
relied upon to automatically capture, from these cepstral features. the characteristics
that discriminate the different speech units. This is one of the cited advantages
of these statistical modeling techniques since they offer the advantage of automatic
training and optimization while avoiding the need of acquiring and explicitly modeling
acoustic-phonetic knowledge. Knowledge about speech is mainly manifested in the

training stage when acoustic models are built. For instance. knowing that the acoustic
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manifestations of phones vary depending on the context. a separate model is built for
a phone depending on what phone precedes it and what phone proceeds it (triphone
model)*. [n recognition. the models are searched for the most likely one that may

have produced the observed cepstral values.

2.2.2 The Acoustic-Phonetic Approach

The acoustic-phonetic approach to speech recognition relies on explicitly modeling our
knowledge of the speech signal. This knowledge is reflected in determining the set
of features to be extracted. the signal processing tools and methods to extract these
features and the decision making that interprets the extracted features in terms of
speech events or units. Thus. the acoustic-phonetic approach draws from many areas
concerned with human speech such as linguistics and speech perception. Linguistics
is concerned with language organization and the determination of the aspects of the
speech signal that deliver the intended linguistic message. Particularly. phonology.
a branch of linguistics. deals with sound categorization into abstract units. the rela-
tionship between these units and with modeling the different phonological processes
that result from coarticulation. [n addition. phonetics. another branch of linguistics.
deals with the motor activity involved in the production of sounds. Speech percep-
tion studies are concerned with the psycholinguistic aspects of the signal and with
the signal representation in the human auditory system. Motivated by studies on

the most powerful speech recognition/production system to date. which is the human

*Clustering algorithms are used to reduce the number of triphone models by pooling several
context-dependent models of a phone into one. Clustering is automatic but usually takes advantage

of linguistic knowledge in the form of hand-specified candidate questions
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being. early researchers in speech recognition have advocated the application of the
acoustic-phonetic approach. This approach dominated the area of speech recognition
from the mid 50’s (earliest work in speech recognition) to the late 70s [23]. but it lost
ground to the mathematical-based approach (e.g.. HMM) mostly pursued today for
reasons that will be discussed later in this section. Rather than reviewing the history
of speech recognition. the problems that limited the acoustic-phonetic approach will
be discussed to motivate this research.

The acoustic-phonetic approach to speech recognition relies on two premises. The
first premise is that each sound of the language or phone can be described by a bundle
of abstract linguistically-distinct features [24]. The second premise is that each of
these features has an acoustic signature in the speech signal. As the linguistic feature
theory was evolving, Halle and his colleagues adopted the principle of linearity and
researchers in speech recognition adopted the principle of invariance. The linearity
principle suggests that words are made up of concatenated phonemes. The invariance
principle suggests that a specific set of features describing a sound must always be
present (invariant) so that the specific sound is perceived as such. These two principles
drove early researchers in speech recognition and speech sciences. Thus. a large
effort was dedicated to detecting these invariant distinctive features. Moreover.
segmentation and labeling of speech intervals. in terms of phonemes. as implied by
the linearity principle was the center of any acoustic-phonetic strategy prior to lexical
access. A lexicon usually consists of words each of which is described by a sequence of
phones. Lexical access is the mechanism by which a word from the lexicon is selected.

[n their early investigations. researchers were looking at limited problems such as

recognizing some vowels in fixed phonetic contexts (e.g.. CVC) or recognizing words
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from a small vocabulary. Limited data was available and the task of data analvsis was
very time consuming and laborious due to many technological limitations. Bound by
these restrictions. acoustic-phonetic knowledge was far from being complete. Thus.
success achieved with the acoustic-phonetic approach dealing with a small vocabulary
and a limited number of speakers. became a disappointment shen more ambitious
tasks (SUR ARPA project [23]) were undertaken. It became evident that a spoken
word is more complex than the mere concatenation of phonemes so the linearity prin-
ciple does not hold. Coarticulation. sound deletion and other phonological processes
appeared to be the major obstacles arguing against the existence of speech invariant
units. As a result. a better understanding of speech was gained and lists of phono-
logical processes were compiled by the completion of the SUR project. However. in
the SUR project. more emphasis was put on the use of higher speech knowledge (svn-
tax. semantics and pragmatics) and on developing appropriate svstem architectures
that control the use of the different knowledge sources for speech recognition. (‘onse-
quently. acoustic-phonetic research was not the main focus. Around that time period.
HMM and pattern-recognition approaches started emerging as powerful techniques
for speech recognition [25] and emphasis was on developing automatic learning algo-
rithms rather than learning more about the acoustic manifestation of speech sounds.
So signal processing was kept simple (cepstra). as opposed to the detailed signal
analysis required for phonetic-feature extraction.

What are the reasons that caused the acoustic-phonetic approach to lose ground
to the mathematical-based approach despite the former’s appealing ideas? This ques-
tion has not been rigorously addressed. However. several reasons are cited that lure

people away from taking the acoustic-phonetic path. especially when comparing it
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to the mathematical modeling strategy. To build acoustic-phonetic front ends. an
extensive knowledge about the speech signal has to be collected a priori. Such knowl-
edge acquisition is time consuming and, to date. it is argued to be at best incomplete
and at worst unavailable (e.g.. how to recognize devoiced vowels). Moreover. it has
been argued that the choice of features and the design of classifiers (decisions deduced
from features) are based on ad hoc considerations and methods. That is. there are
no optimality criteria in selecting the acoustic parameters or designing the classifiers.
Moreover. segmentation and labeling that used to be at the heart of the acoustic-
phonetic approach proved to be the center of the problem since rhey assume that
speech is a linear process. In this research. each of the cited problems of the tra-
ditional acoustic-phonetic approach is addressed. However. more emphasis is given
to the design of acoustic parameters that combine acoustic-phonetic knowledge and

statistical methods.



Chapter 3

Phonetic Features and Acoustic

Modeling

The approach to acoustic modeling and analysis of speech. pursued in this research.
is based on the linguistic theory of phonetic features. Phonetic features are directly
related to the way that humans phonate and perceive speech as briefly described in
Section 3.1. Furthermore, phonetic features can be described in terms of acoustic
properties. as discussed in Section 3.2, that make them suitable speech units for
acoustic modeling. The adopted methodology to extract these acoustic properties
from the speech signal is addressed in Section 3.3. In Section 3.4. the fuzzy logic and
probabilistic approaches are proposed to model the phonetic features in terms of the
acoustic properties. The fuzzy logic approach is explored in Chapter 5. whereas the
probabilistic approach is proposed here as an alternative although it was not explored.
These approaches allow modeling the uncertainty that arises in interpreting the speech

signal in terms of the designated phonetic features.



3.1 Phonetic Features: an overview

Phonetic features describe the phonetic capabilities of the human heing. A phonetic
feature system that sufficiently describes the different sounds of languages was first
described by Jacobson et al. [24] and later modified by Halle and Chomsky [7]. These
phonetic features mainly capture the manner and place of production of the different
phonemes and they were suggested as appropriate units for lexical representation
based on phonological considerations and across language studies. According to Halle
and Chomsky. a phoneme is an abstract symbol that labels a specific feature vector
whose different components are assigned binary-values (~+~ if a feature is present
and --" if it is not). This role of phonetic features is referred ro by Halle and
("homsky as the classificatory role which is used in the representation of lexical items.
[f lexical items are words, each word will thus be represented by a sequence of phonetic
feature vectors. each of which corresponds to a phone in the word. There are different
inventories of linguistic features motivated by different purposes (e.g.. [26]). However.
one can usually draw the correspondence between one feature in an inventory and one
or more features in another inventory. This fact suggests that the different feature
inventories have the same acoustic consequences which are our main concern. Thus.
we select the feature inventory proposed in [7] since it is sufficient for the description
of the different English sounds. However. the traditional places of articulation for the
stop and nasal consonants (labial. velar. alveolar) supplant the features coronal and
anterior in describing these sounds in the feature set used in this research. In addition.
we follow the lead of recent advances in phonological theory which suggests that the

phonetic features are hierarchically organized [27]. The hierarchical organization of
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Figure 3.1: The hierarchy of phonetic feature organization.

the different features that we use is depicted in Figure 3.1. This hierarchy suggests
that phonemes can be grouped into major classes that dominate the nodes in the tree
as depicted in Figure 3.1. Furthermore, the hierarchy also illustrates the dependence
among the features (e.g., a syllabic sound must be sonorant) and the discriminatory
role that the features play at each node. The articulatory correlates of the different

phonetic features are stated in Table 3.1 and Table 3.2.

3.2 Acoustic Properties of Phonetic Features

Phoneticians and researchers in different branches of speech science have been in-
vestigating the acoustic properties of the different phonetic features and phonemes.
The relevant studies include: (1) perceptual studies that are concerned with the

ability to distinguish between sounds [30]. (2) spectrographic studies that look at



Table 3.1: Phonetic features and articulatory correlates based on Chomsky and Halle

[7]. and Ladefoged [28].

Phonetic Feature

Articulatory Correlate

sonorant No pressure build up in vocal tract. allowing spontaneous vocal
fold vibration.

svllabic A peak in vocal tract opening.

high Tongue body is raised above the neutral position.

back Tongue body retracted back toward the pharvnx and tongue
tip is not in contact with lower teeth or gum ridge.

low Tongue body is lowered beyond the neutral position so that
contact is severed with the teeth.

front Tongue body is pulled towards the front of the mouth.

round Lip orifice is narrowed.

lax Vocal tract is in a neutral or central position.

consonantal Radical obstruction in the midsagittal region of the vocal tract.

The obstruction is at least as narrow as that for the fricatives.




Table 3.2: Phonetic features and articulatory correlates based on (thomsky and Halle

[7]. and Ladefoged [28] (cont.).

Phonetic Feature

Articulatory Correlate

nasal

Lowered velum allowing air to escape through the nose.

rhotic

oral constriction formed by either tongue tip or tongue
bunching with a sublingual cavity created between the

created between the underside of the tongue and the jaw.

noncontinuant

Complete blockage of air flow through the lips.

strident Air stream is directed towards an obstruction at a great flow rate.
labial Constriction made at the lips.

dental Constriction is made at teeth by tongue tip.

alveolar Constriction made at the alveolar ridge

velar Constriction made in the velum region

anterior Constriction in front of the palato-alveolar region.

coronal Tongue blade is raised above neutral position.

lateral Air passage is created around the sides of the tongue blade.
voiced Vocal folds are vibrating.

fricated Turbulent noise is generated in front of the constriction

(]
(L]




the time-frequency characteristics of sounds [31] and (3) acoustic modeling studies
which attempt to provide theoretical models for the production of different sounds
such as the acoustic-tube modeling of the vocal tract [32] [33]. All of these studies
have a bearing on the determination of the acoustic properties of the different sounds
and phonetic features. A summary of the acoustic properties for the selected pho-
netic features is presented in Table 3.3 and Table 3.4 [34]. These acoustic properties
may sufficiently describe the acoustic realization of the phonetic features although
refinements of some of these properties may be needed. In this research. the acoustic
properties listed in Tables 3.3 and 3.4 are used.The difficulty lies in designing acoustic
measurements that extract the acoustic properties of the different phonetic features
from the speech signal in a speaker-independent manner. This problem is discussed

in the following section.

3.3 Philosophy in Designing Acoustic Parameters:

Relative Measures

Acoustic parameters (APs) are measures performed on the speech waveform and its
time-frequency transformation(s) in order to seek evidence for the acoustic properties
of phonetic features. Although the acoustic properties of phonetic features are qualita-
tively understood. reliable acoustic-measures that provide evidence for these features
are still far from being complete. Several attempts have been made to determine the
best set of measures needed for the classification of different sounds or sound classes

and/or phonetic features. For instance, Glass [35] lists acoustic measures that char-
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Table 3.3: Phonetic features and their acoustic correlates.

Feature Acoustic Correlate
=

sonorant Periodicity and high energy at low frequency.

No frication noise.
svllabic A peak in acoustic intensity in the low to mid frequency range.
high Low first formant.
back Low second formant.
low High first formant.
front High second formant.
round Lowering of formant frequencies.
lax Central formant frequencies (e.g. neither low or high)

Relatively short duration.
consonantal | A rapid spectrum change at the release of the consonantal contiguration.
nasal Low first formant.

Energy is concentrated at low frequency.

Energy losses in mid-frequency range due to antiresonances.




Table 3.4: Phonetic features and their acoustic correlates (cont.).

Feature Acoustic Correlate

rhotic General lowering of F3 so that it is close in frequency to F2.

are close together.

noncontinuant | Rapid onset of energy across all frequencies.

strident High intensity of turbulent noise.

labial Lowering of formants.

Flat or falling spectrum.

dental High third and fourth formants.

alveolar Rising spectrum.

velar Energy concentrated in the middle part of the spectrum

anterior Energy is concentrated in the high frequency part of the spectrum.
coronal Dominant high frequency energy.

lateral High F3 and low F2.

Formants higher than F3 are considerably reduced in intensity.

voiced Periodicity.

Longer duration of vowels preceding voiced consonants.

fricated High zero crossing rate.

Concentration of energy in high frequency bands.




acterize nasal sounds and differentiate them from voice bars and semivowels. Chen
[36] lists a set of acoustic measures that distinguish between the different phones that
occur in the set of digits. These acoustic measures are related to the acoustic prop-
erties of phonetic features that distinguish among the underlying phones. Lahiri et
al. [37] proposed acoustic measures that distinguish between the labial and alveolar
stops. These measures for separating labial and alveolar stops were later modified
by Zierten and Espy-Wilson [38] [39]. In addition. phonetically-motivated acoustic-
measures that distinguish among the semivowels were developed by Espy-Wilson [40]
[1] in the context of a semivowel recognition system. Small databases obtained from
a few speakers were usually used to derive these different measures. Furthermore.
these measures were not optimized [37] and [38].

A major thrust of this thesis is the development of acoustic measures that ac-
curately extract the different acoustic properties for phonetic features. For speaker-
independent speech recognition. the design of these acoustic measures must take into
account the intraspeaker and interspeaker variability which can greatlyv affect the
speech signal. Variability is used here to refer to the large number of ways in which a
speech utterance can be acoustically realized. Interspeaker variability is due to phys-
iological differences among speakers. For instance. it is well known that the formant
frequencies are inversely related to the length of the vocal tract. Consequently. males
have lower resonances than females. On the other hand. intraspeaker variability can
arise because of changes in the emotional state of the speaker. For instance. the pitch
of a person is higher when he/she is in an angry state relative to a normal state.
Change in pitch may effect the measurements of periodicity and the spectral balance

of the person’s speech such as energy at low frequency relative to energy at high
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frequency (these acoustic measurements are used to detect the sonorancy feature). A
change in a speaker’s pitch can be thought of as resulting in another persons voice.
Such variability seems to have minimal effects. if any. on the ability of a human lis-
tener to decode the acoustic signal and recognize what has been said. Therefore.
the acoustic measures must be designed in a way that diminishes the effects of the
extralinguistic information on the recognition process. We postulate that this can be
achieved by making each acoustic measure relative to a reference value of that mea-
sure in time and/or frequency [40] [42]. Furthermore. making relative measurements
provides a way to capture the long and/or short term correlation in the speech signal
in a natural manner. a weakness in current approaches to speech recognition.

One of the most important characteristics of the undertaken approach lies in ex-
plicitly making acoustic measurements that correspond to linguistic units in a manner
that follows the phonetic-feature hierarchy. Such explicit measurements can be used
to learn about the acoustic signature of a phonetic feature in the speech signal. Fur-
thermore. the feature hierarchy takes into account the dependence among the different
phonetic features. For instance. acoustic measurements for syvllabicity are carried out
in sonorant regions only. Stridency is sought in frication regions and so on. Gov-
erning this property extraction strategy is the concept of acoustic events. established
by the manner features, that constitute landmarks around which additional acous-
tic measures can be made. It has been observed [40] [8] [43] that such events are
marked by changes in the values of one or more of the acoustic measures from low to
high or vice-versa. and often correspond to changes in one or more of the phonetic
features. Thus. these acoustic events which occur hierarchically. as implied by the

phonetic-feature hierarchy. indicate which features should be sought next as well as
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how and where additional measurements should be made to extract these features.
Such an approach is demonstrated within the event-based framework to manner-class
speech recognition presented in Chapter 5. The conclusion from this work is that the

considered phonetic features can be extracted reliably from the speech signal.

3.4 Uncertainty Modeling

The sources of uncertainty to be modeled are discussed in Section 3.4.1. Two different
approaches are proposed for modeling uncertainty. The first approach is based on the
fuzzy logic framework and is discussed in section 3.4.2. The second approach is hased

on the probabilistic framework and is discussed in section 3.4.3.

3.4.1 Sources of Uncertainty in the Speech Signal

The sources of uncertainty in the speech signal stem from variability in speech pro-

duction and they include:

Physiological differences among speakers
e (hanges in the emotional state and/or physical status (sickness) of a speaker.
e Dialect effects.

Lenition: undershooting in the articulation of sounds such as weakening of

constrictions in consonant production.

e coarticulation: temporal overlap of adjacent phones.



¢ Allophonic variations: systematic context-dependent variation in a phoneme
(e.g.- an allophone of a word final /t/ is a glottal stop) that does not change

the meaning of a word.

Design of relative acoustic measurements was suggested in section 3.3 as a way to
diminish the effects of the first two types of variability. These acoustic measurements
are used to decide upon the presence or absence of a phonetic feature as implied by the
phonetic feature hierarchy. The remaining sources of uncertainty. however. complicate
the decision making process. For instance. it is predicted from the lenition process
that phonetic features are realized with different degrees of strengths which affect
corresponding measurement values. Consequently. the decision about the realization
of a feature becomes clouded with ambiguity or uncertainty. Two approaches. the
fuzzy logic approach and the more popular probabilistic approach are methods that

can be utilized to model such sources of uncertainty.

3.4.2 Fuzzy Logic Framework

Motivation:

The proposition of this approach is motivated by the reasoning of spectrogram reading
experts who attempt to decode a spoken utterance represented by its spectrogram
into phonemic units. Such an expert looking at a spectrogram will use clauses such
as: there is a strong dip in energy in this region and there is a sharp onset at this time
instant. [n doing so. the expert uses the labels: strong. sharp etc. to describe speech
events as he/she sees them in the spectrogram. The question that one asks is how

strong is strong and how weak is weak? There are no sharp boundaries that define
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an interval within which the value of a measurement (e.g. energy dip) is strong and
outside of which it is not. There are measurement values that are definitely strong
and others that are definitely weak. but there are those cases where no such firm
decision can be made. In such borderline cases. one tends to attribute the svmbol
strong with more confidence as the measurements values move closer to the definitely-
strong region. Thus. through this argument. one can see that there is vagueness or
“fuzziness” in assigning linguistic values (strong. weak. etc.) to a set of numerical
values. This fuzziness is a source of uncertainty. *Fuzziness seems to pervade most
human perception and thinking processes™ as Parade and Dubois have stated [44].
The fuzzy set theory developed by Zadeh [45] and later expanded by others [{4] [46]
is a tool designed to deal with such fuzziness that arises in human centered syvstems.

What is a fuzzy set? A fuzzy set is a linguistic label assigned to a set of objects in
a discourse where the boundaries of the set are not well defined. Thus. the elements
of the fuzzy set are assigned membership values that describe the compatibility of
that element with the linguistic label. Traditionally. the value 1 is assigned to those
elements which are definitely compatible with the label. 0 to those which are detinitely
not compatible with the label and values between 0 and [ for all other elements.
The more an element is compatible with the fuzzy set label. the closer to | is its
membership value. Thus. a fuzzy set A defined on a universe ) is completelyv described
by the pairs

A= (z,pa(z)), £ €0 (3.1)

where p 4( ) takes values in [0, []. The membership function thus reflects an ordering

of the elements of the universe with respect to the linguistic label. [n addition to the
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fuzzy set theory. there is a fuzzy logic framework defined on fuzzy sets that allows
the representation of the expert’s linguistic information. We make use of this fuzzy

logic framework in the current research.

Fuzzy modeling of a phonetic feature:

A phonetic feature F; is characterized by a set of acoustic properties (e.g. strong
low-frequency energy) Fi;.7 = 1.2.....[. Each of the acoustic properties. F;;. has an
acoustic measurement procedure m; and a predetermined membership function that
assigns to each measurement value of m; a degree of compatibility with the property
Fi;. This membership function will be referred to as pf, (m;). the compatibility of
the j** measurement value with the j** acoustic property of the phonetic feature F.

The fuzzy model of F; is given by:

HFE. = f(/"ﬁl(ml)vﬂﬂz(m?.)v-'-'/-‘F.z(ml)) (‘3~2)

where pg, is a measure of the degree of compatibility of feature F; wirh the considered
acoustic pattern. [n equation 3.2. F; is regarded as a fuzzy variable whose membership
function is some logical expression. f. that aggregates the membership functions of
the acoustic properties in some manner. The function f uses the A and Vv operations
defined between two fuzzy variables z and y with respective member functions . and
py,; by:

£ Ay = min(pz. i)

and

LV y=max(pz, fiy)
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Each phonetic feature F; is thus modeled by a fuzzy rule pr of the form shown
in equation 3.2. During phonetic feature recognition. the objective is to assign a
phonetic feature to an acoustic object. p. that may consist of one or more speech
frames. Thus. the compatibility of p with each of n competing features is computed

using the feature models. The feature Fy such that
BF = mja.xup, J=L2....n (3.3)

is assigned to the pattern p.

3.4.3 Probabilistic Approach

The problem at hand is that of sequential decision making represented by the hi-
erarchy of phonetic features. At each node in the hierarchy. a hvpothesis is tested
regarding the value of the phonetic feature(s) at that node. Accordingly. this problem
can be formulated using the traditional Bavesian approach.

Let Fy and F, be the two competing acoustic features at a given node in the
hierarchy. Let M be the set of acoustic measurements m,. m.. ...... m, relevant
to the considered phonetic feature. Each measurement can be considered to be a
random variable drawn from a probability distribution conditioned on the phonetic
feature. These acoustic measurements form a d-dimensional random vector. The
probability distribution for each measurement vector given the feature. P(\M/F}).
can be estimated a priori from training data. The probability distributions constitute
the phonetic feature models. During recognition. a feature can be assigned to the

acoustic object p in the following manner:

if  P(M/F\)* P(F1) > P(M/F,;)« P(F2). decide F,
it P(M/F)* P(F2) > P(M/F,) « P(F1). decide F
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Chapter 4

Database

The TIMIT database [47] was used throughout this research. TIMIT is a speech
corpus developed by the Massachusetts Institute of Technology (MIT) and Texas
[nstrument (TI) for phonetic studies. This chapter provides a brief description of
TIMIT and discusses its advantages and disadvantages in the context of this research.

The development and evaluation of acoustic parameters that target phonetic-
features can best be accomplished when the database is labeled in terms of such
features. Phonetic-feature labeling identifies the acoustic realization of a sound at
the phonetic-feature level capturing (1) the modifications that a phonetic feature.
canonically associated with a phoneme, may incur (e.g. going from sonorant to non-
sonorant) and (2) coarticulation phenomena that cause phonetic-features associated
with one sound to overlap with adjacent sounds. These phenomena are not captured
by phone-level labeling where each speech segment is associated with a phone. To the

best of our knowledge. a speech database labeled at the phonetic feature level does
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not currently exist'. [n existing databases. the phone is the smallest linguistic unit
used for labeling. The choices were to either use an existing database labeled in terms
of phones. relabel an existing database or to create a new one. The latter two options
are time-consuming and costly as a large number of speakers are required to generate
the speech material and well trained phoneticians are needed to label speech. Due
to lack of resources. the choice was to use an existing database labeled at the phone
level and compensate for this disadvantage in the best way possible as explained later
in this chapter. Among the available phone-labeled databases. TIMIT was chosen for
the following reasons: (1) it has been widely accepted in the speech recognition com-
munity as the database of choice for phoneme recognition tasks (c.f. [43]. [22]) and
(2) it covers a large number of speakers from many geographical regions as opposed
to privately collected databases that usually feature very few speakers. all sharing the
same or similar dialect.

The TIMIT database consists of 6300 sentences spoken by 630 speakers from eight
major dialect regions of the United States. A speaker’s dialect region was determined
by the geographical area where he/she lived during his/her childhood vears. As
opposed to speakers from the first seven dialect regions. speakers bhelonging to the
eighth dialect region are people who moved around the United States during their
childhood. About 70% of the speakers are male and the rest are female. Each speaker
“read” 10 sentences. The sentences are of three types: (1) dialect sentences labeled

as “sa  sentences. (2) phonetically compact sentences labeled as ~sx~ sentences and

'A database labeled in terms of phonetic features is presently being developed by Professor
Kenneth Stevens at the Massachusetts Institute of Technology. However the process is a lengthy

one and only 50 sentences have been labeled so far.
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(3) phonetically diverse sentences labeled as “si” sentences. Each speaker read the
same two “sa~ sentences. which were designed to examine inter-dialectal and intra-
dialectal differences among speakers across the same phonetic environment. -=sx”
sentences were designed to provide a good coverage of pairs of phones. There are a
total of 450 “sx” sentences. Each speaker read 5 of the “sx™ sentences and each ~sx”
sentence was spoken by 7 speakers. The “si” sentences were selected from existing
text to maximize the variety of allophonic contexts. There are a total of 1390 -si”
sentences. Each speaker read 3 of these sentences none of which was read by more
than one speaker. Thus. TIMIT is a rich database in terms of (1) number of speakers.
(2) dialect diversity and (3) gender diversity.

The TIMIT database is divided into two sets: a training set and a test set. The
training and test sets are independent such that no utterance or speaker appears in
both. The training set consists of 462 speakers from the eight dialect regions whereas
the test set consists of 168 speakers from the eight dialect regions. In the development
of acoustic parameters and training of classifiers/recognizers. only materials from the
training set were used. In evaluating the performance of the acoustic parameters and
classifiers/recognizers. only the ~si” sentences of the TIMIT test set were used.

Speech in TIMIT was recorded in a quiet environment using a close-talking micro-
phone and was digitized at a 16-kHz sampling rate. Trained phoneticians hand-labeled
all sentences. The labels were chosen from a set of 61 symbols. The svmbols consist
of 52 phones. a pause label, an epithentic silence label. 6 stop-closure labels and a
label used to mark the silences at the beginning and end of a sentence.

For the development of acoustic parameters that target phonetic features and

for training and testing phonetic-feature classifiers/recognizers. each occurrence of a
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phone in the TIMIT database was mapped to its canonical feature representation [7].
This strategy was adopted as it is impossible to predict a priori how a canonical feature
is modified and acoustically realized. Furthermore. it was expected that the analvsis of
errors declared in classification/recognition results would help us gain insight into the
validity of the acoustic parameters and reliability of the phonetic feature classifiers.
as well as insight into the effects of context on the phonetic features. For instance.
a phone labeled as the fricative “v” is canonically nonsonorant. If the time segment
corresponding to this phone is detected by the sonorant phonetic-feature classifier as
a sonorant. an error would be declared. However. a “v” can be acousticallyv realized
as a sonorant in certain contexts due to the lenition phenomenon as discussed in
(‘hapter 3. This type of error analysis would also improve our understanding of the
coarticulation effects at the phonetic feature level. Error analyvses of this tvpe are
presented in Chapters 5, 7 and 8. On the other hand. one can argue that the use of
contaminated data. i.e. a sonorant "v” considered as "nonsonorant . would negatively
effect the development of acoustic parameters and that of the classifiers. We contend
that these contaminating cases are very small in comparison to the canonical cases.
In addition. a large number of phones that are not affected by such phenomena
are lumped in the same set as those phones modified from their canonical form to
develop the parameters for relevant phonetic features. For instance. “v”s. as well as
other voiceless fricatives that cannot be modified to become sonorant. are lumped
into the nonsonorant set. Furthermore. a good portion of the "v”s are still realized as
nonsonorant. Thus. the effect of the sonorant “v”s will be minimal on the developed

parameters. Results obtained in this thesis support this argument.
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Chapter 5

Manner-Class Recognition Based

on Phonetic Features

[n this chapter. acoustic parameters (APs) that target the manner phonetic features:
sonorant. syvllabic. fricated and noncontinuant are derived and discussed. [n addition.
an event-oriented approach to speech recognition is explored. Particularly. an event-
based system (EBS) that uses the APs was developed to recognize speech into the
manner classes: sonorant consonant, syllabic, noncontinuant and fricated in addition
to silence. This event-based system resulted in 72.8% recognition accuracy on the
designated task. The confusion errors suggest that a good percentage of them could
be explained by contextual variability that alters the acoustic manifestation of a
phoneme from its canonical form.

The event-based approach to recognition is based on a signal representation of

speech in the phonetic-feature space. This signal representation is obtained by first
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making acoustic measurements on the speech signal that capture the acoustic cor-
relates for phonetic features. and then mapping these measurements to evidence in
phonetic features. The acoustic measurements themselves are obtained via acoustic
parameters as discussed in Section 5.1. The mapping from acoustic measurements
to a belief in the implementation of the phonetic features and the event-oriented
approach to recognition are discussed in Section 5.2.

In Section 5.3. The performance of EBS is compared to that of a Hidden Markov
Model (HMM) system. In this comparison, the undertaken task was also manner-class
recognition. In one experiment, the signal representation in the HMM syvstem was
composed of Mel-cepstral parameters. In another experiment. the front-end in the
HMM system consisted of the APs developed in this chapter. [n these experiments.
EBS performed better than the HMM system when only cepstral parameters (no
derivatives) were used as the front-end to the HMM system. However. the HMM
system performed better than EBS when the observation probability distribution
given an HMM state was an 8-mixture Gaussian and the cepstral parameters were
augmented by their first and second derivatives. In order to compare the APs to
Mel-cepstra independent of the recognition strategy, both were separatelv tested in
the HMM framework for the task of manner-class recognition. In these experiments.
the APs performed better than the Mel-cepstra when the observation probability
distribution given an HMM state was assumed to be unimodal Gaussian. However.
Mel-cepstra and APs were similar in performance when they were augmented by their
derivatives and 8-mixture Gaussian probabilities were assumed as the observation
distributions given an HMM state. Furthermore. gender experiments were conducted

whereby speech models were trained on one gender and tested on another. These
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experiments showed that the APs are more robust to gender differences than the

Mel-cepstra !.

5.1 Acoustic Parameters

Acoustic parameters (APs) are exact measures performed on the signal or its time-
frequency representation to provide evidence for the acoustic correlates of phonetic
features. The computation of the APs is carried out in a relative rather than absolute
fashion to focus on the linguistic information in the speech signal and diminish the
speaker-dependent effects (see discussion in Section 3.3). For instance. the nonsyl-
labic measures are intended to measure the energy minimum in a sonorant consonant
relative to the energy maximum in the preceding and/or succeeding vowel. This
measure accounts for the energy decrease observed in a sonorant consonant. relative
to a neighboring vowel, due to the constriction in the vocal tract during sonorant
consonant production. As another example, the 100-400 Hz energy measure. being
normalized with respect to the maximum in that frequency band across the utterance.
accounts for the fact that the sonorant speech segments involve the voicing source of
the same speaker.

The benefits of capturing time-correlation are evident by (1) the improvements in
recognition accuracy when M FCC 812 coefficients are used as opposed to M FCC
and (2) the fact that the different speech frames are naturally correlated when they are

produced by the same speaker. However. §1 and 62 coefficients implicitly capture the

't should be noted that in all experiments. raw Mel-cepstra were used with no processing. such

as cepstral-mean subtraction which may have produced better results.
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correlation within only a few frames. In our computations. the acoustic parameters
usually capture the correlation within a wider time-window delimited by acoustic
events as will be discussed later.

[n the research reported here. we determined the acoustic parameters that corre-
spond to the acoustic correlates of the phonetic-features: sonorant. svllabic. fricated
and noncontinuant as shown in Table 5.1.

The parameters were determined based on an acoustic analysis of the training set
in the TIMIT database and on acoustic studies found in the literature [40] [31]. [n the
analysis. phones were first described in terms of binary-valued phonetic features (i.e..
a feature is present or not) assuming canonical realization. Then. for each feature. all
phones that have that feature marked present were clustered in one group while those
with that feature marked absent were clustered in another group. The parameters
that provided the best separation between the two groups. based on visual analvsis of
histograms. were selected. Some other parameters were determined based on visual
inspection of spectrograms. The fact that this process was done manually greatly
limited our ability to investigate a large set of parameters. This problem was later
alleviated by the automatic parameter design procedure described in Chapter 6.

The parameter computation was carried out in an event-seeking strategy [49]
guided by the feature hierarchy depicted in Figure 5.1. The APs were of two tvpes.
Some APs established landmarks that divided the speech waveform into regions. For
instance. the parameters related to the feature “sonorant™ were computed at every
time-frame to segregate regions that are sonorant from those that are not. Other
APs established landmarks that pointed up particular instants in time. specifying

when the acoustic property of a feature is most evident. For example. the parameters
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related to the feature “syllabic® marked energy maxima within sonorant regions.
Svllabicity/nonsyllabicity parameters were computed at a 5-ms frame-rate within a
25.6-ms window. The rest of the APs were computed at a 5-ms frame rate within a
10-ms window. The energy parameters were computed with a Hamming window and

speech was not preemphasized.

5.2 APs and EBS

[n Section 3.1. we discussed how the computation of the APs for the manner phonetic-
features mark events in the speech signal. Some of the events divide the speech wave-
form into regions while others mark particular instants in time. These events taken
together provide landmarks for the computation of additional APs related to other
phonetic features. For instance. since syllabic events generally occur in the middle
of a vowel region. they could be used as landmarks around which further analysis
is done to capture the acoustic correlates of vowel-related phonetic features such as
back. low. high. round and front. This type of event-oriented strategy is derived from
spectrogram-reading experiments where experts read spectrograms by first locating
landmarks and then asking different questions around these landmarks that pertain
to the acoustic properties of the underlying signal. Such a strategy involves event-
locating rather than segmentation of the speech signal into phoneme-size units as in
the traditional acoustic-phonetic approaches. Thus. no assumption needs to be made
regarding speech being composed of juxtaposed phoneme-size segments. As a result.
coarticulatory effects may be handled in a straightforward manner.

[n Section 5.2.1. combining the APs to provide evidence for the implementation
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Table 3.1: The

features, their acoustic correlates and the corresponding acoustic

parameters.
Feature Acoustic Correlate Acoustic Parameter(s) Parameter
Property
Sonorant strong low-frequency | 0.1-0.4 kHz strong
energy! 0-2 kHz energy relative strong
to 2-8 kHz energy
periodic Voicing probability [60] strong
Syllabic strong mid-frequency | peak in 6.4-2.8 kHz strong
energy and 2-3 kHz energies
Nonsyllabic weak mid-frequency | dip in 0.64-2.8 kHz weak
energy and/or 2-3 kHz energy
Fricated turbulent noise zero-crossing rate high
in mid-to-high energy in 0-2 kHz relative weak
frequency range relative to energy in (2-8 kHz)
R1: 1% cross-correlation coefficient*
normalized by the zeroth low
dip in R1 strong
Noncontinuant | Closure followed Closure:
by an abrupt (1) 0.2-3 kHz energy’ weak
spectrum change (2) 3-6 kHz energy’ weak
over some frequency | (3) first normalized low
range cross-correlation coefficient
Abrupt Onset:
sum of positive large

first-difference values
across the STFT channels

i Each of these parameters is normalized with respect to the maximum value of the param-

eter across the utterance.
1 This parameter was not part of the fricated rule but was part of the silence detection
algorithm and was chosen to detect weak fricatives.




of phonetic features is discussed. The EBS for manner-class recognition and experi-

mental recognition results are discussed in Section 5.2.2.

5.2.1 Mapping the APs to the phonetic-feature space

The objective of mapping the speech signal to the phonetic-feature space is to ex-
plicitly extract the linguistic-bearing components of the signal while discarding the
extralinguistic information. This mapping provides a signal representation for di-
rect lexical access in a feature-based approach to speech recognition” or for modeling
higher linguistic units such as phones. This is in contrast to the strategy in today’s
state-of-the-art speech recognition systems based on HMM where the signal repre-
sentation is kept simple in terms of cepstra. while sophisticated statistical training
algorithms with large bodies of training data are relied upon to filter out the extralin-
guistic information. Although our general approach is to access the lexicon based on
the phonetic-feature representation, we believe that such a representation will also
lead to a better use of training data to build context-dependent statistical models of
phonemes.

The representation of a speech signal in the phonetic-feature space is obtained
by mapping each set of acoustic parameters to the associated phonetic-dimension.
Although phonetic features are traditionally considered binary-valued (either present
or not) for the purpose of lexical representation. their acoustic correlates can be man-

ifest with different degrees of strength. This variation is due to the speech variability

“In a feature-based approach to speech recognition, words in the lexicon are represented in terms

of phonetic features.
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yes no
sonorant Silence
yes R0
syllabic continuant
yes 1o yes 10
Vowels. syllabic nasals Nasals, fricated Stops and affricates
and syllabic I/ semivowels yes 1o

Fricatives  Aspiration

Figure 5.1: The hierarchy of manner feature organization adopted in parameter de-

velopment.

that arises from the differences among speakers (e.g. dialect. physiological construct.
speaking style) and from the different phonological phenomena (e.g coarticulation)
that affect the acoustic manifestation of speech sounds. Such speech variability leads
to uncertainty in acoustic-to-feature mapping.

Uncertainty modeling can be handled by a probabilistic framework or a fuzzy logic
framework as discussed in Section 3.4. In this work. we chose the latter because (1)
it corresponds better to the reasoning of expert spectrogram-readers who use fuzzy
terms (e.g. strong. weak) in order to describe acoustic properties and (2) it provides
us with a direct control over the mapping which helps us gain a better understanding
of the speech process at this stage.

Using the fuzzy logic framework (see Section 3.4). fuzzy rules were developed to
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Figure 5.2: (a) parameter: normalized energy (100-400 Hz) (b) membership function
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map the APs to phonetic features. For instance. the “sonorant™ feature model is:

Hsonorent = ((,ustrong( 100 — 4004 = energy)

V(ftstrong(vOtcing probability))

energy(0 — 2k H =)
energy(2 — 8kH =)

A(/‘strong( )

A(fnot very weak( votcing probability)).

Each membership function has range [0.1] with a domain that spans the possible
values of the considered measurement. There are several shapes of membership func-
tions but we use the S-shape piecewise linear one as illustrated in Figure 5.2.1 (b).
[n this figure. we also show an example of mapping an acoustic parameter to its com-
patibility function with an acoustic property. The cutoff points in the membership
functions. such as —22 and —20 in Figure 5.2.1. were determined by cousidering the
measurement values obtained from the samples that canonically possess the consid-
ered phonetic-feature versus those that do not [50].

Figure 5.3 depicts an example of the representation in the phonetic-feature space

for the word “amorist” using the fuzzy rules that we developed. As depicted in the
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figure. we start by first segregating speech from silence using our modified version
of Rabiner’s end-point detection algorithm [51]. This is a binary decision. i.e.. ei-
ther silence or not. Then, the nonsilence regions are divided between those that
are sonorant and those that are not. Sonorant regions consist of sonorant speech
frames that have a degree of sonorancy of 0.5 or higher. In the sonorant regions. we
seek events that indicate syllabicity and nonsyllabicity. These events are peaks and
dips. respectively. detected using Mermelstein’s convex-hull algorithm [52] and the
frequency bands listed in Table 5.1. Note that these events are particular instants
in time which indicate the extrema of syllabicity and nonsyllabicity. This is the case
since it is often hard to draw boundaries between vowels and adjacent sonorant con-
sonants. In the nonsonorant regions. the degrees of noncontinuancy and frication are
measured. A noncontinuant event is detected after a silence and around the boundary
of a nonsonorant region if the degree of abruptness is higher than or equal to 0.5.
[f such a noncontinuant event is detected. the degree of frication is measured during
the remaining of the nonsonorant region if that duration is greater than 20 ms and
the duration of all the nonsonorant region considered is greater than 50 ms. If no
noncontinuant event is detected. the degree of frication during the nonsonorant region
is measured. Based on the spectrogram and hand-labeled phonetic transcription. one
can see that the signal representation accurately describes the phonetic-content of

the underlving utterance.
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5.2.2 EBS

For comparison with current approaches in speech recognition. an event-based svstem
(EBS) was developed to recognize speech as a sequence of the manner classes: svllabic
(vowels. syllabic nasals and /}/). sonorant consonant (nasals and semivowels ). fricative.
noncontinuant (stops and affricates) and silence (includes stop closures).

The recognition strategy of the manner-class EBS follows the feature-hierarchy of
Figure 5.1. Based on this hierarchy. EBS computes a feature-based signal represen-
tation as discussed in Section 5.2.1. Then. EBS associates manner-class labels with
the events detected in this signal representation. In the context of the hierarchy.
the manner-class labels are associated with the hierarchy terminal nodes. At each
node in the hierarchy, if the degree of belief in a phonetic feature. as determined
from the feature-based signal representation. is 0.5 or higher. EBS decides that the
feature is present. Table 5.2 summarizes how the phonetic features are mapped to
manner-classes. For the example of “amorist™ shown in Figure 5.3. EBS will produce
the class sequence -silence syllabic sonorant-consonant syllabic sonorant-consonant
svllabic fricative silence noncontinuant silence™.

[n testing EBS. the “si” sentences from the TIMIT test set were used. For com-
parison. the same task was carried out by a commercial HMM recognition svstem
[533]. A set of 3573 ~si” and “sx” TIMIT training sentences was used to build manner
class context-independent. 3-state. left-to-right HMM models. In doing so. each of the
TIMIT phone labels was relabeled in terms of one of the manner classes based on the
canonical feature descriptions of the phonemes [7]. Separate HMMs were built for the

affricates and stop consonants but were both counted as noncontinuant in recognition.



Table 5.2: Mapping between phonetic features and manner classes.

Phonetic Features Manner Classes
sonorant + syllabic syllabic

sonorant + nonsyllabic sonorant consonant
nonsonorant + fricated fricative

nonsonorant + noncontinuant | noncontinuant

nonsonorant + nonfricated aspiration
l

(i.e.. no manner class label)

The TIMIT labels /2/. /h/ and /hv/ were deleted prior to training the HMMs and
the flaps were mapped to the sonorant consonant class. [n the HMM experiments.
several HMMs were built. In one experiment. the signal representation consisted of
the first 12. after the zeroth, Mel-frequency cepstral coefficients ( M F('(") and nor-
malized energy. WFCC_E. a total of 13 coefficients. The observation probability
given an HMM state was unimodal Gaussian (I-mixture) with a diagonal covariance
matrix. [n the second experiment, M FCC _E was also the signal representation or
front end but the observation probability given an HMM state consisted of a mixture
of 8 Gaussians (8-mixture models), each with a diagonal covariance matrix. In the
third and fourth experiments. the signal representation was M F('C'_E_51.62 (i.e..
the WFCC_E’s were augmented by their first and second derivatives). However.
in the third experiment. the observation probability given an HMM state was a I-
mixture Gaussian and in the fourth experiment it was an S-mixture Gaussian with

diagonal covariance matrices. M FCC_E was computed at a 5-ms frame rate with
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Table 5.3: Recognition results comparing EBS with APs to the HMM system using
M FCC_E. In scoring, the splits. merges and synonyms in Table 5.5 were counted as

correct.

EBS | HMM (I mix) | HMM (8 mix)

% correct | 84.6 69.6 4.5

65.7 69.6

=~
o
(7]

% accuracy

a 10-ms Hamming window while speech was preemphasized with a 0.97 preempbhasis
coefficient.

The recognition results from these experiments are summarized in Table 5.3 and
Table 5.4. In obtaining these results, the splits. merges and svnonvms listed in Ta-
ble 5.5 were allowed. The justification for allowing a syllabic sonorant consonant or
a diphthong to split into a syllabic segment followed by a sonorant consonant is dis-
cussed in Section 7.4. An affricate. being a composite sound that consists of a stop
followed by a fricative. was allowed to be split into a noncontinuant followed by a
fricative. In addition, two contiguous sounds that belong to the same manner-class
were allowed to be merged®. i.e. recognized as one manner-class. The EBS requires
additional mechanisms to detect the occurrence of two contiguous sounds that belong
to the same manner class. Such a mechanism may be based on energy change in some
frequency bands.

As the recognition results indicate, EBS recognition accuracy was 7% higher than

the I-mixture HMM system and 3% higher than the S-mixture HMM svstem with

*The scoring algorithm will also allow one manner class to be split into two as a result.
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Table 5.4: Recognition results comparing EBS with APs (13 parameters) to the HMM
system using M FCC _E_§1_82 (39 parameters) as the front-end. [n scoring. the splits.

merges and svnonyms in Table 5.5 were counted as correct.

EBS | HMM (1 mix) | HMM (8 mix)

% correct | 84.6 75.2 33.8

% accuracy | 72.8 68.5 776

MFCC_E as the front-end. However. when M FCC _E_§1.82 were used as the front-
end to the 8-mixture HMM system (number of parameters was increased from 13 to
39). the accuracy of the HMM system was 5% higher than that of EBS. This result
may be due to the HMM using more information. 39 parameters. than the EBS which
used 13 APs reduced to the 4 phonetic features. However. it is a fact that a statis-
tical approach. such as HMM. makes it easy to modify modeling assumptions (e.g..
signal representation) and experiment with them relying on the automatic training
procedures to discover relevant information. On the other hand. an approach that
does not rely on statistical and automatic learning methods. but requires the designer
to discover information and explicitly model it. such as our rule-based EBS. makes
such changes complex. Thus, although the experiments reported in this chapter show
that an event-based approach is worth pursuing, automatic procedures to help de-
velop various components of a system based on this approach are needed. especially

as more complex recognition tasks such as word recognition are considered.



Table 5.5: Splits. merges and synonyms that were scored as correct. Category | +

category 2 means a sequence of categoryl and category?.

TIMIT Labels allowed to be recognized as

syllabic sonorant consonants syllabic + sonorant consonant

(I~ 1 Iy /)

diphthongs syllabic + sonorant consonant

(/a¥/. [a™ /. [e¥].[o% [.[3¥[.[u/)

[2/. [/ syllabic + sonorant consonant

affricate noncontinuant + fricative

/hv/ sonorant consonant or fricative

/h/ fricative

glottal stop (?2) stop or sonorant consonant

7+ svllabic svilabic

fricative + fricative fricative

vowel + vowel svllabic

sonorant consonant + sonorant consonant

sonorant consonant i
—

/dx/ silence 4+ noncontinuant

silence + silence silence

(W]
[N



5.2.3 Error Analysis

An analysis of the event-based results was conducted to determine the error sources.
There were three potential error sources identified: contextual variability. scoring

algorithm and the decision process. These error sources are:

o Contextual variability: a partial analysis of the declared errors obtained from
the EBS recognition results suggests that a good percentage (see Table 5.2.3)
of them could be attributed to well known contextual changes that are not
traditionally reflected in a phoneme-based hand transcription. For example.
many researchers (e.g. [34], [55], [41]) have observed that voiced fricatives and
voiced stops many be manifest as sonorants. especially when they occur between
two sonorants in a falling stress environment. These acoustic changes. however,
have not been traditionally captured in hand transcriptions. On the other hand.
other phonological processes such as the flapping of /t/’s and /d/s are repre-
sented. Thus. it is probably the case that most. if not all. of the declared errors
listed in Table 5.2.3 are really not errors. but are the result of variability that
occurs in speech production and, consequently, in the acoustic manifestation of
the articulated sounds. Many of these errors were checked by hand to verify
that the acoustic properties had indeed changed. First. voiced stops and voiced
fricatives. particularly in intervocalic positions, are often realized as sonorant
consonants (c.f. [35], [41]). Second, the fricatives /8/ and /3/ are sometimes
produced as dental stops as often happens in words like ~this™ and ~the™ [31].
Third. semivowels are often coproduced with preceding unvoiced consonants so

that they can be partially or completely devoiced (c.f. [55]. [56]). Thus. these

53



semivowels for the most part will be realized as nonsonorant {the devoiced por-
tion). Finally. the reduced vowel /a/. when occurring between two unvoiced
consonants. is often devoiced (c.f. [31]) and may be manifest as a fricative.
especially when it is surrounded by two fricatives as the second vowel in the

word “thesis™.

Scoring alignment: analysis of the system results revealed problems in the way
alignment is done by the scoring algorithm. The scoring algorithm matches
the sequence of manner-class labels generated from the TIMIT phonetic tran-
scription with the sequence of recognized labels. This scoring is done without
reference to time information. Thus. a recognized “syllabic™ label that is correct
for a vowel occurring in a particular time region can be matched to a TIMIT
“noncontinuant” label for a stop occurring during a different time span. even

when there is no time overlap.

Decision errors: some of the errors were due to wrong decisions made on the
basis of the parameters used. For example, the voicing probability measure
often had difficulty detecting voicing during /s/’s that lasted for only one or
two pitch periods. Half of the vowels recognized as noncontinuants or fricatives
were these short /3/’s. As another example. the latter portion of front vowels
occurring near the end of a sentence were often recognized as nonsonorants. [n
these cases. the amplitude of F1 at the end of the vowel usually decreased a
great deal so that F1 was much weaker than the higher formants. This situation
resulted in an error since the sonorant algorithm expects strong energy in the

region of F'l. As a result. the ends of these vowels were incorrectly recognized
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as a noncontinuant or a fricative.

[t is our belief along with others [57] that an understanding of contextual effects at
the phonetic-feature level will result in better modeling of contextual variability. Such
variability modeling can take place in the representation of lexical items by allowing
the binary value of a phonetic-feature to be altered depending on the context [3]. In
recognition systems utilizing context-dependent phone models to deal with variability.
we expect that this knowledge coupled with the feature-based signal representation
can improve data sharing among phone models and can lead to a reduction in the

model size.

5.3 HMM Recognition System and APs

[n this section. the APs are compared directly to the Mel-cepstral coefficients using
the HMM framework. The task is again that of manner-class recognition of speech
into the manner-classes: syllabic. sonorant-consonant. noncontinuant. fricative and
silence. In Section 5.3.1, the modification of the APs developed for an event-based
approach to fit into the frame-based HMM framework is discussed. In Section 3.3.2.
the conducted experiments are described. The results of the experiments are discussed

in Section 5.3.3.

5.3.1 Modification of the APs for the HMM framework

Table 5.1 shows the phonetic features, their corresponding acoustic correlates and
acoustic parameters developed in this study. While the APs in Table 5.1 were designed

for an event-based system so that they do not necessarily provide information in every
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Table 5.6: Error analysis. The errors listed here were deduced from the manner-class

recognition results obtained using the EBS. These errors may be explained by speech

variability well documented in literature.

TIMIT-labeled Recognized % of total errors
Category as in each category
Fricative Sonorant Consonant 83% are weak voiced fricatives
/v/. /8]
Fricative Noncontinuant 77% are word-initial /3/. /8/.
Fricative undetected 78% are weak fricatives /f/. /8/. /8/. [v/.
Sonorant Consonant Fricative 62% /1/ and /r/ occurring
after voiceless stop consonants.
Sonorant Consonant Fricative 9% /y/ and /w/ occurring after
voiceless stop consonants.
Vowel Fricative 56% /af. [¥/. [9/.
Stop Sonorant Consonant 81% voiced stops /b/. /d/. /g/.
Closure Sonorant Consonant | 69% voiced stop-closures /bel/. /gcl/. [/decl/.




frame. they can be modified to do so. The only parameters that need modification
are the ones that mark particular instants in time which include the peak and dip
measures for the phonetic features “syllabic™ and “nonsyllabic™ and the dip in R1. a
measure for the phonetic feature “fricated”. The dip parameters are modified to be
dip_to_peak (dtp) measures and the peak parameters are modified to be peak_to_dip
(ptd) measures. The modified parameters are listed in Table 5.7.

The dip-to_peak and peak_to_dip APs attempt to estimate the energy levels in a
sonorant consonant relative to a neighboring vowel and vice versa. These parameters
are based on the assumption that the mid-frequency energy in the vowel region will
have a peak relative to an adjacent sonorant consonant since the vowels are realized
with a more open vocal tract (i.e.. no constriction). On the other hand. sonorant
consonants are realized with a mild (e.g.. semivowels) to a severe constriction in the
vocal tract (e.g.. nasals) leading to a decrease in the mid-frequency energy relative to
the neighboring vowels. The peak_to_dip and dip_to_peak APs are hased on detecting
peaks and dips in the appropriate energy profiles (computed at each time frame in
the designated band). Significant peaks and dips are detected using the convex-hull
algorithm [52] computed recursively across the energy profile. Ouce peaks and dips

are located. the peak_to_dip AP computation proceeds as follows.

[. Assign a zero value to each time instant at which a dip occurred (this zero value
in the AP can be thought of as encoding the fact that an energy dip was located

at that time instant).

[
’

For the time stretch between a peak and the immediate dip to its right. compute

the difference in dB between the energy profile and the energy value at that dip

-1
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location.

3. For the time stretch between a peak and the immediate dip to its left. compute
the difference in dB between the energy profile and the energy value at that dip

location.

4. The procedure is repeated for each peak resulting in the peak_to_dip AP which

measures the strength of a peak relative to the immediate dips.

The dip_to_peak AP is computed in a similar manner. First. a zero value is
assigned to AP at each time instant where a peak was located to encode the fact that
a peak was detected at that time instant. Then. for the time stretch between a peak
and a dip to its right, the difference in dB is computed between the energy profile
and the energy value at the peak time location. For the time stretch between a peak
and a left-dip, the difference in dB is also computed between the energy profile and
the value and the energy value at the peak time location. At the dip location. the
dip_to_peak value is computed as the difference in dB between the energyv value at
that instant and the average energy values of the two immediately surrounding peaks.

Figure 5.4 depicts an example of the APs computed from the utterance ~biblical
scholars™ extracted from the TIMIT database. As this figure shows. the APs cap-
ture important characteristics of the speech signal. For instance. the abrupt onset
parameter in part (a) shows the highest values at the burst release of the stop con-
sonants /b/ and /k/. The voicing probability. the energy measure in the frequency
band 0 — 2 kHz relative to that in the frequency band 2 — 8 kHz and the 100-400 Hz
energy measure in parts (k),(1) and (m) of the figure. respectively. have fairly high

values during sonorant segments. Furthermore. the peak-to-dip parameters in parts
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Table 5.7: The phonetic features. their acoustic correlates and the corresponding

acoustic parameters.

Feature Correlate Acoustic Parameter
Sonorant strong low-frequency | E0.1-0.4: 100-400 Hz energy '
energy E0-22-8: eng(0-2 KHz)-eng(2-X KHz
periodic Voicing-probability [60]
Svllabic strong mid ptd0.64-2.8: peak in 0.61-2.8 kHz energyv
frequency energy ptd2-3: peak in 2-3 kHz energy.
Nonsyllabic | weak mid-frequency | dtp0.64-2.8: dip in 0.64-2.8 kHz energy.
energy dtp2-3: dip in 2-3 kHz energy.
Fricated turbulence zcr: zero-crossing rate
in mid to E0-22-8
high frequency range | R1: first cross-correlation
range coefficient normalized by the zeroth.
dtp_R1: dip-to-peak values of R1
Noncont. Closure followed by | Closure:
an abrupt spectral E0.2-3: 0.2-3 kHz eng. '.
change E3-6: 3-6 kHz eng. f
R1.
Abrupt onset :
sum of first-difference
values across the STFT channels

7 normalized with respect to its maximum value across the utterance.

(f) and (g) have peaks during the syllabic segments: /1/. /|/. /a/ and /2-/. Thus.
the peak-to-dip parameters coupled with those related to sonorancy will help identify

syllabic segments (as indicated by the phonetic-feature hierarchy in Figure 5.1).

5.3.2 Recognition Experiments

In the current work. two sets of experiments were performed to evaluate the acous-

tic parameters and compare them to cepstral-based parameters. [n the first set of



kel Time (sec)

Figure 5.4: This figure illustrates the set of parameters listed in Table 5.7. These
parameters are: (a) abrupt onset. (b) E3-6, (c) E0.2-3. (d) dtp_2-3. (e) dtp_0.64-2.8.
(f) ptd2-3. (g) ptd.0.64-2.8, (h) dtpR1, (i) RI. (j) zcr. (k) voicing-probability. (1)
E0-22-8 and (m) EO0.1-0.4.
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experiments. HMMs for the manner-classes were built in the same way described in
Section 5.2.2. Recognition tests were carried out using the TIMIT -si” test sentences.
[n the second set of experiments. to examine robustness to interspeaker variability and
more specifically to gender differences, HMM models were built using the TIMIT *si”
and “sx” training sentences spoken by females from the New England dialect region
(drl). For testing, recognition was performed on the “si” and “sx” training sentences
spoken by males from drl. All manner-class models were context-independent 3-state

HMMs with diagonal-covariance Gaussian mixtures.

5.3.3 Results and Discussion

Table 5.3.3 summarizes the experimental results where the signal representation
(front-end) was varied while the modeling and recognition strategy remained the
same. The splittings. mergings and synonyms in Table 5.5 were not allowed in ob-
taining these results. /?/, /h/ and /hv/ were also deleted during recognition. The
results for | and 8 mixtures show that the acoustic parameters. relative to the cepstral
parameters. are better able to reduce speaker variability and target the linguistic in-
formation in the speech signal. This is deduced by comparing the small improvement
in results going from | to 8 mixtures in the case of the APs to the substantial im-
provement in the case of the cepstral-based parameters. Furthermore. by comparing
the AP results and the M FCC_E results to those obtained using AP + W FCC_E.
one can argue that the acoustic parameters contain more relevant information than
the cepstral parameters.

The results obtained with the APs and their first and second derivatives. in com-
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Table 5.8: Recognition results. M FCC_E refers to Mel-frequency cepstral coeffi-
cients & normalized energy, M FCC_E _§1.62 refers to MFCC _E & their lst and
2nd derivatives. AP refers to acoustic parameters. AP_J1_42 refers to AP and their
Ist and 2nd derivatives. Each entrv contains % correct/% accuracv. No splitting or

merging was allowed in scoring.

Signal Representation | | mix 8 mix

MFCCE 68.2/61.8 | 73.3/65.2
MFCC_E_$1.62 73.5/63.7 | 82.8/7L.5
AP 75.2/63.9 | 17.5/66.3
AP51.52 78.5/68.1 | 84.1/71.5
AP+ MFCC_E 75.2/63.9 | 78.1/66.7

parison to APs alone. show that the additional parameters improve results substan-
tially. A preliminary analysis showed that this improved performance was due in large
part to better modeling of speech dynamics. For instance. an 11% absolute increase
of stop consonant recognition was observed when the probability distribution given
the HMM state was assumed to be an 8-mixture Gaussian.

Table 5.9 summarizes the experimental results obtained when the recognizers were
trained on speech produced by females and tested on speech produced by males from
dialect region drl. Compared to the results obtained with the cepstral parameters
(a 1.7 % absolute degradation from the system trained on both genders). the results

obtained with the APs are much closer to the corresponding results listed in Ta-



ble 5.3.3. indicating more robustness to gender variability. Additional experiments
were conducted with the APs and their derivatives. In the first experiment. a I-
mixture system. instead of 8§ mixtures, was trained using the -=si” and -sx~ female
sentences in the TIMIT training set and tested on the “si” male sentences in the
TIMIT test set. An absolute 1% performance degradation was observed compared to
the system trained on both males and females. In the second experiment. the same
system was trained on all “si” and “sx” male sentences in the TIMIT training set and
tested on the “si” female sentences in the test set. No degradation in performance was
observed. These experiments indicate the robustness of the APs to gender differences.

[n order to compare the HMM framework to the event-based framework. both
using APs as the front-end, the HMM results with APs were rescored allowing the
splits. merges and synonyms listed in Table 5.5. These results are summarized in
Table 5.10. As this table shows, EBS performed better than the HMM svstem.
However. when AP_J1 62 was the front-end to the HMM system. HMM outperformed
EBS. but note that EBS only uses the APs without their derivatives. The advantage
of the HMM framework in this case is that it allowed the “blind~ addition of the

derivatives to the APs. This cannot be done with the current EBS.

5.4 Concluding Remarks

In this chapter. we discussed a signal representation in the phonetic-feature space.
This signal representation was obtained by mapping acoustic parameters that target
the manner-of-articulation phonetic features to degrees of belief in these features.

We compared an event-based system utilizing this representation to an HMM system
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Table 5.9: Recognition results using 8 mixtures. Training done with speech produced

by females. Recognition done with speech produced by males.

Signal Representation | %correct/%accurate

MFCC_E_61.62 81.1/66.8

AP51.862 83.3/70.7

utilizing M FCC_E 6162 in a manner-class recognition task. We found that the two
systems were comparable. In addition, we compared the acoustic parameters { without
mapping them to the phonetic-feature space) to the cepstral parameters in the HMM
framework. The task was also manner-class recognition. The results indicate that
the signal representation we developed better extracts relevant linguistic information
from the speech signal and that relative measures across time or frequency diminish

speaker-dependent effects.

Table 5.10: Recognition results obtained when HMM was used as the recognition
framework. In scoring, the splittings. mergings and substitutions listed in Table 5.5

were allowed.

Signal Representation | HMM 1 mix | HMM 8 mix EBS

AP 76.7/69.3 78.9/72.4 | SL.6/72.8

AP 1.2 80.2/73.6 85.4/78.0 -
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Chapter 6

Parameter Optimization

6.1 Motivation

[n Chapter 5. several parameters that relate to the manner-of-articulation features
were presented and tested in a manner class recognition task. The recognition re-
sults showed that the philosophy of designing parameters based on acoustic-phonetic
knowledge and based on relative measures can vield a signal representation that fo-
cuses on the phonetic content of the speech signal while reducing all other information.
Two shortcomings of the presented parameters are (1) the parameters were designed
based on subjective criteria represented by acoustic phonetic knowledge. spectrogram
analysis and histogram analysis. and (2) the extent of correlation among the differ-
ent parameters was not studied to objectively determine whether all used parameters
were needed.

[t is usually the case that the acoustic measures that distinguish among speech

classes are qualitatively known. However, the problem lies in quantifying these mea-
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sures. For instance. a sonorant sound has strong low-frequency energy compared to a
nonsonorant (obstruent) sound. Thus. low-frequency energy is a qualitative acoustic
measure that characterizes sonorancy/nonsonorancy. The problem is to quantifyv such
a measure. i.e.. determine the frequency band(s) that should be used in its compu-
tation. Therefore. a criterion needs to be used for the selection of a frequency band
over another and for eliminating redundant parameters. In this chapter. the problem
of acoustic parameter design using objective criteria is addressed. In Section 6.2. the
adopted procedure in parameter design is outlined. Two components of this proce-
dure. the Fisher criterion and classification trees are discussed in Section 6.3 and

Section 6.4. respectively.

6.2 Procedure

The parameter optimization algorithm has its roots in [38]. The differences between
our approach and that in [58] are (1) the APs are based specifically on acoustic cues
relevant to phonetic features, (2) the APs are defined in relative terms to reduce the
effects of interspeaker variability and (3) classification trees for eliminating redundant
parameters are deployed. The objective is to develop parameters that best character-
ize a phonetic feature and separate it from its antonym(s). To accomplish this task.
the Fisher criterion [59] was chosen along with classification trees. Another criterion
that was tried in addition to the Fisher criterion is the Fuzzy Evaluation [ndex (FEI)
described briefly in Appendix A. However, preliminary experiments with the FEI
suggested that outliers or samples that are realized differently from their canonical

form due to contextual variability greatly effect the results of the optimization. Al-

66



though there are ways to counter the FEI deficiencies as it was defined. the work in

this thesis proceeded with the Fisher criterion leaving the possibility of investigating

other objective criteria for later work.

The procedure that is used to derive a set of acoustic parameters consists of the

following steps:

(1]
h

Group the set of all sounds that have a phonetic feature in one group and the

sounds that do not have that feature in another group.

Based on acoustic phonetics. define a set of generic parameters. with free pa-
rameters that are intended to separate the classes from each other. For instance.
E[fi : f2] is an energy measure between frequencies f; and f, (free parameters)

with the condition f; < f5.

The range of frequencies from which f; and f, are selected is specified from

acoustic-phonetic knowledge.

For each generic parameter, determine the set of free parameter pairs that result

in local maxima in the Fisher criterion (FC) surface.

Feed the parameters generated from the previous step as well as anv addi-
tional parameters obtained through other methods to a classification tree. The
objective of the classification tree is to select a subset of these parameters. Clas-

sification trees are greedily grown and then pruned back using cross validation.

As an example of acoustic parameter design. consider the place-of-articulation

feature that differentiates the anterior stridents (alveolars) /s/ and /z/ from the
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nonanterior stridents: /8/,/%/. /¢/ and /}/. The parameter design procedure in this

case was based on the following steps:

L.

(S
'

All /s/. [z/ samples from the TIMIT training set were placed in the anterior

group while the /§/, /%/. /¢/ and [J/ samples were placed in the nonanterior

group.

Based on acoustic phonetic knowledge. generic parameters were designed to
distinguish between the two classes of sounds. This knowledge specifies that the
energy of the nonanteriors is concentrated in the third formant ( £'3) region while
that of the anteriors is concentrated in the fifth formant ( F5) region. Based
on this information, generic parameters were chosen so that energy in a mid
frequency band (around F'3) is measured relative to energy in higher and lower
frequency bands and relative to the overall energy. Some of these parameters are
computed within the obstruent boundaries relative to the maximum. minimum

and average values of the same parameters computed across the utterance.

The mid-frequency band, [f, : f2] of the generic parameters was chosen so that
fi can take any value in the frequency band [F3—1000.F3+1700](H =) while
f2 can take any value in the frequency-band [F3—700.F3+2000]( H =) with the
condition that (fo— f1) > 300( Hz). F3 was estimated for each TIMIT utterance
in the training set separately using the Waves [60] formant tracker. To minimize
the effects of errors in formant tracking, the average F'3 value was computed
in two stages. In the first stage, an average F'3 value was computed in the
sonorant regions (as determined from the Waves voicing probability). Then.

in the second stage, formant values that deviated by more than a standard
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deviation from the average F'3 value were disregarded and the average F3 value

was recomputed.

For each of the generic parameters. a Fisher surface was computed. As an
example. the Fisher surface obtained by computing the energyv in the band
[fst : fena] relative to the overall energy at the same time frame and then
averaged accross the utterance is shown in Figure 6.1. From each of the Fisher
surfaces. the local maxima were picked. The frequency bands corresponding to
these maxima specify a set of candidate parameters that distinguish between
the anteriors and nonanteriors. In this case, there were 19 such parameters

generated from the 16 generic parameters.

The final parameter set is obtained by feeding all 19 parameters. obtained from
the previous step. to a classification tree and selecting the ones that significantly
contribute to the intended discrimination. As a result. the parameter that
measures the energy in the frequency band [F3 — I8TH=z. F3 + 594 H =] relative
to the overall energy within the obstruent was chosen as the best parameter
vielding 91% correct classification. Two additional parameters were chosen by

the tree that increase the overall classification rate to 93%.

In order to emphasize the importance of reducing interspeaker variability and

specifically gender differences, the density of the best classification parameter ob-
tained with F'3 normalization and that obtained without F3 normalization for the
anterior sounds are plotted in Figure 6.2 (a) and (b), respectively. [n comparing these
two figures. it is clear that the normalized parameter is better able to reduce gender

differences.
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Figure 6.1: Fisher criterion for the parameter which computes the energy between
fst and fenq relative to the overall energy at a given frame instant. The origin is

F3 — 1000 (Hz).

6.3 Fisher Criterion: First Stage

The Fisher criterion [59] can be used to evaluate the capability of an .V-dimensional
feature vector to characterize several competing classes while separating them from
each other. The idea of the Fisher criterion is illustrated in Figure 6.3 where samples
from three classes denoted by the symbols (x, o and *) are considered. The objective
is to have the samples from class C; clustered around its sample mean m; while
maximizing the distance between the individual m; ’s and the sample mean of the
pooled data. The Fisher criterion is defined as the ratio of a measure of the between~
class scatter to a measure of the within-class scatter. The within-class scatter is

characterized by the matrix:

1.E
Sw=1%s; (6.1)
Lt
where.
Si = Z(.‘L‘(i)j - m;)(z(i)j - m,—)T. (62)

=1



probability density
0.0 0.02 0.04 0.06 0.08

probability density
0.0 0.02 0,04 0.06 0.08

40 -30 -20 -10 0 40 -30 -20 -10 0
E[F3-187:F3+594)/E[0:8000] (dB) E[1594:2125)/E[0:8000] (dB)

(a) (b)

Figure 6.2: Distribution of best parameter computed using the anterior samples for

males (m) and females (f). (a) Parameter was defined relative to third formant (F3)

location. (b) Parameter was independent of F3.

[n equations 6.1 and 6.2, C is the number of classes, m; is the sample mean for class
C.. J:ﬁ-i) is the j*h sample from class C; and n; is the corresponding number of observed
samples. Thus. S; is proportional to the covariance matrix for class C; while Sy is
a weighted sum of the covariance matrix estimates for the C' classes. The variable
n denotes the total number of observations and T denotes the transpose operation.

The between-class scatter is characterized by the matrix:

C ..
S5 =Y —(m —my)(m — m;)" (6.3)

=1

where the sample mean for class C; is given by



and the sample mean for the pooled data is given by

Thus. each diagonal element of Sp is the weighted sum, across classes. of the Euclidean
distance between a class sample mean and the global mean along a feature dimension.
Thus. maximizing the trace of Sg, tr(Sg), will result in maximizing the sum of these
distances across all dimensions. Similarly, each diagonal element of Sy is related to
the sum across classes of the class sample variances along a feature dimension. Thus.

one form of the Fisher criterion is:

_ tr(Sg) )
(FC)er = Gw) (6.4)

According to this criterion, a better feature vector results in a higher ( £ ("), value.
Another definition of the Fisher criterion is in terms of the determinants of Sg and

Sy and is given by:

(FC)aet = Il b:_ II (6.5)

Maximizing ( F'C)g.: results in maximizing/minimizing the variances of Sg/Syy along

n

the principle directions. In this thesis. we adopt the trace defininition of FC' and we

will refer to it simply as F'C.

6.4 Classification Trees: Second Stage

Classification trees are used in the parameter optimization procedure as a means
to prune down the set of candidate parameters obtained from the first stage based

on the Fisher Criterion. In obtaining parameters based on the Fisher criterion. no

~1
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Figure 6.3: Separation between three classes using the Fisher criterion is based on
maximizing the distances among the class centroids and the centroid of the pooled

data.

attention was given to the redundancy among the different parameters or to the joint
contribution of the parameters in making the intended distinction. ('lassification trees
are used to achieve this goal and consequently to eliminate redundant parameters or
parameters that become irrelevant when considered jointly with others. Growing
a tree is based on a set of data samples computed in the parameter space and an
objective criterion that mainly determines the tree structure. A tree growing process
first selects from a set of K* parameters computed across samples from (' classes
the parameter that makes the “best” distinction among the (' classes. splitting the
samples into two groups (see Figure 3.1). Then, the process selects a parameter that
distinguishes best among the samples from the group in the left branch of the tree
and a parameter that distinguishes best among the samples from the group in the
right branch of the tree. The split continues until a split-stoppage criterion is met. As
a result. the nodes of the tree will contain the set of parameters. out of the possible

K’ parameters. that distinguish “best” among the C classes.

3



A classification tree serves as a first-best-entry classifier. Other tyvpes of classifiers
were considered for this stage. Among those considered were Gaussian classifiers.
Gaussian mixture classifiers and linear regression models. The first two classifiers
make strong and often invalid assumptions regarding the distribution of the consid-
ered parameters. The linear regression models. on the other hand. strongly depend
on the way that parameters appear in the model (e.g. square of the parameter. pa-
rameter interaction etc.) and may result in unstable models if strongly correlated
parameters are considered in the modeling. Thus. to avoid the problems associated
with these assumptions, classification trees were chosen. I[n this section. the tree
growing algorithm used and the process of the selection of the final set of parameters

out of the possible A" parameters are discussed.

6.4.1 Node-Splitting Criterion:

The structure of a classification tree is mainly defined by the objective criterion used
in deciding on the “best split” during the tree growing process. Since the concern
in this case is to select a set of parameters that best distinguishes among (' classes.
it is reasonable to use a splitting criterion that is correlated with the classification
error rate. The criterion chosen is known as the “Deviance™ (D) criterion [61]. This
criterion attempts to split the data into contiguous homogeneous regions in the pa-
rameter space where homogeneity is synonymous with the considered classes. First.

the following definitions are adopted in the tree growing procedure:

¢ Y is a C-dimensional vector (C is the number of classes) such that every ob-

servation of class i is assigned the vector y; = (0.0..... 1.0.0) where the i*

4



component of y; is I and every other component takes the value zero.

The probability of an observation coming from class i and falling in the &t* tree

node is defined as p¥. where.
pi = Nf/NF, (6.6)

V¥ is the number of samples from the i** class falling in the k% node and .V* is
the total number of samples from all classes falling in that node. That is. pf is

the likelihood of a class falling in that node computed from a frequency count.
The deviance of a sample from class i and falling in the k** node is deftined as
D*(y:) = —2Un(pf). (6.7)

That is the deviance of an observation is based on the log likelihood of an

observation being in that node.

The deviance of a node & is defined as the sum of the deviances of the samples

that fall in that node. That is the deviance of the k** node is defined as:

Nk

D* =3 D (y;). (6.3)
=1

Thus. the deviance of a node is identically zero if all samples in that node have one

color (i.e. belong to one class) and increases as the node becomes more colored. The

tree growing procedure proceeds as follows:

L. At each node in the tree. consider each of the parameters as a basis for splitting

that node.

-]
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2. For each parameter-split. compute the deviance in the right and left nodes

resulting from the split as:
Dpr = Dp + Dp, (6.9)
where Df and Dp are the deviances in the left and right nodes respectively.

3. Let Dp denote the deviance of the node being split. Then. the change in

deviance resulting from the split is:
A(D)= Dp — Drpg. (6.10)

The split. i.e. the parameter, that maximizes this deviance change will result

in the best split at that node.

6.4.2 Determining Tree Size and Important Parameters

When does the tree growing process stop? Does it stop when each of the terminal
nodes has a zero deviance? This certainly can be achieved by having singleton ter-
minal nodes. However, the resulting tree will not be robust since it will be tuned to
the training data and will lack generalization to new data sets. As a result. some
parameters will appear important when they are not. On the other hand. setting a
limit on the size of the tree as a stoppage criterion may lead to the elimination of
important parameters. This can be the case due to the greedyv nature of the tree
growing process. That is, the best parameter is chosen at each node irrespective of
what will happen at later stages. In order to avoid these problems. the final tree
structure is achieved in two stages. First. a very large tree is grown by allowing

a node to be split if its size and deviance exceed some preset liberal value. I[n all
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conducted experiments, a node is allowed to be split if its size (i.e.. the number of
samples in the node) is greater than 10 and if its deviance is greater than 1% of the
root node deviance. The resulting tree will be overly large and may still be overfitting
the training data. The second stage of the tree growing process. tree pruning. is used
to alleviate this problem. Tree pruning attempts to snip off the tree branches that
are tuned to the training data and most likely will not generalize to other data sets.

How should tree pruning be performed? There are two methods to perform tree
pruning. The first method uses a totally independent data set from the one used in
tree growing while the second method uses the cross validation technique to determine
the optimum tree size. In the first method. a sequence of trees is constructed by
snipping of branches from the grown tree in the bottom-up direction. The new data
is dropped into each tree in the sequence and the corresponding tree deviance is
computed. Tree deviance is defined as the sum of all terminal nodes deviances. This
process will result in deviance-tree pairs. The tree that gives the minimum deviance
can be selected as the tree of choice. The chosen tree can be further inspected for
additional manual pruning.

The cross validation method divides the training data randomly into }" mutually
exclusive subsets. V" —1 subsets at a time are used in growing a tree while the held-out
subset is used in computing the deviance of the sequence of subtrees derived from this
grown tree. therefore the name cross-validation. The sequence of subtrees is obtained
based on a set of algorithmically derived complexity factor[62]. For each complexity

factor a. the subtree ¢ that minimizes the cost-complexity function

D, = D, + asize(t) {6.11)



is chosen as the best subtree for that complexity factor. Then. the held-out sub-
set Is dropped down the chosen subtree and the corresponding subtree deviance is
computed. For a given a. this computation is repeated across all }~ cross-validation
tests and the tree deviance for that complexity factor is compiled across the tests.
This process is repeated for all & values. Then. the o that results in the minimum
compiled deviance value is chosen as the optimum complexity-factor value. Now, a
subtree of the original tree, grown from the full training data set. that minimizes
the cost-complexity function in equation 6.11 with the chosen optimum value of a is
selected as the most robust tree or right sized tree. The parameters chosen at the tree
nodes are considered to be the optimum set of parameters. Since one of the purposes
is to have a parsimonious set of parameters. this tree is investigated further to see
what effect does snipping off branches (i.e.. reducing the set of parameters) have on
the classification error rate. The parameters that contribute onlv about 1% to the

classification rate are removed from this set of parameters.



Chapter 7

Optimized Acoustic Parameters

Several acoustic parameters were derived using the parameter optimization procedure
outlined in Chapter 6. In Section 7.1. acoustic parameters that target the ~sonorant™
phonetic feature are derived and tested. Acoustic parameters for the ~anterior™ place
of articulation. distinguishing among strident obstruents. are derived in Section 7.2.
Stop place-of-articulation parameters are derived in Section 7.3. and -svllabicity”
parameters are derived in Section 7.4. Finally. acoustic parameters that target the

~strident”™ phonetic feature are obtained in Section 7.5.

7.1 Sonorancy

In this section. acoustic parameters that target the sonorant feature in the speech
signal are derived. The selection of these parameters is motivated bv the manner in
which sonorant sounds, as opposed to nonsonorant sounds. are produced.

English sounds can be broadly classified into two categories: the sonorant sounds
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and the nonsonorant sounds (or obstruents). Sonorant sounds are produced with a
vocal tract configuration that allows spontaneous vocal cord vibration to take place
while obstruent sounds are produced with a vocal tract configuration that impedes
such vibration [7]. In sonorant sound production. the main source of excitation is a
pseudo-periodic source at the glottis while that of obstruents is a noise source at a
constriction somewhere forward in the vocal tract. The pseudo-periodic characteris-
tics of the sonorant excitation source is due to the pseudo-periodic movement of the
vocal folds opening to let air through from the lungs and closing to prevent such air
from passing through.

The vocal tract configuration determines a resonant acoustic structure while the
source determines the input to this structure. Thus. the spectral content of the
speech signal is influenced by both the resonances of the vocal tract and by the
source characteristics. For sonorant sounds. the source is a pseudo-periodic sequence
of glottal pulses. called the glottal waveform. that excites all resonances of the vocal
tract due to its location at the glottis. The time/frequency characteristics of the
glottal waveform has been studied by several researchers (e.g.. [32]). The spectrum
of the periodic glottal waveform is composed of harmonics at multiples of the pitch
frequency. the fundamental frequency at which the vocal folds vibrate. Furthermore.
the glottal-waveform spectrum decays at 12dB/octave above approximatelv 500 Hz
[32]. Thus. it is generally the case that. for sonorant sounds (e.g.. vowels). the higher
resonances of the vocal tract (F4. F'5, etc.) are less excited than the lower ones ( F'1.
£2 and F3). As a result, the spectral content of the sonorants falls in amplitude
as frequency increases and is characterized by strong energy in the region of Fl and

£2. Obstruents. on the other hand. have their primary source of excitation above
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the glottis. at the constriction. As a result. only the resonances of the vocal cavity in
front of the constriction are usually excited. Since this cavity is short. it is the higher

formants that have the most energy.

7.1.1 Acoustic Parameters that target the sonorancy feature

Based on the manner of production of the sonorant and obstruent sounds and on
several acoustic studies [40] [42], acoustic parameters whose intent is to capture the
differences between sonorant and obstruent sounds were proposed.

First. an algorithm that measures the degree of voicing in a given frame of speech
was used. This algorithm is implemented by Entropic Research Lahoratories [60] as
an integrated pitch/formant tracker. The algorithm makes a voicing decision referred
to as voicing probability, based on the maximum cross-correlation coefficient [16]
computed over a 10 ms window and the rms epergy in that window relative to the
maximum rms energy across the utterance. The correlation coefficient is intended
to capture the pseudo-periodic aspect of sonorant sounds. On the other hand. the
rms energy is intended to capture the fact that most sonorant sounds. especially the
vowels and semivowels, generally have more overall energy than the obstruent sounds
due to the relatively open configuration of the vocal tract.

Second. acoustic parameters that measure the amount of energy concentrated in
the lower part of the frequency spectrum relative to the higher part and to the overall
energy were designed. These parameters account for the fact that sonorant sounds
have strong energy in the lower part of the frequency spectrum as explained above.

Third. acoustic parameters were designed to measure the energy in the region



of the fundamental frequency, FO0. relative to the maximum. minimum and average
energy across the utterance within the same frequency region. These parameters are
based on the assumption that all sonorant sounds spoken by the same speaker are
produced with more or less the same excitation source. Thus. it is expected that the
energy from this source does not change much during an utterance on the order of a

few seconds in duration.

7.1.2 Parameter Optimization

As outlined in the parameter optimization procedure described in Chapter 6. the
frequency bands that give the higher Fisher criterion value for each generic acous-
tic parameter were obtained independently from each other. Then. all parameters
were fed to a classification tree to further reduce this initial set of parameters. All
parameters were computed over the middle two thirds of the sounds in the training
data. All sound samples except those labeled as glottal stops (/2/). /h/. /hv/. and
/ 3/ were included in this optimization process. The reasons for excluding the glottal
stops are (1) the glottal stop label is not phonemic and (2) the labelers did not dis-
tinguish between a glottal stop and glottalization which are spectrally very different.
The /h/ and /hv/ sounds are controversial in terms of sonorancy while the sounds
labeled /3/ are generally heavily aspirated /3/’s so they can be manifest as sonorant
or nonsonorant. The training data consisted of a total of 12.632 nonsonorant sounds
and 24.296 sonorant sounds.

Periodicity-based measure:

For this measure. the voicing probability algorithm described in Section 7.1.1 was

oL
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used. Figure 7.1 and Figure 7.2 show the distribution of voicing probability for each
phone. As can be seen, most of the canonically sonorant sounds have high voicing
probability values while nonsonorant sounds have low voicing probability values. Us-
ing a tree-based classifier, this algorithm resulted in 92.9% correct classification rate
when tested on the training data. Inspection of the sonorant classification errors
revealed that about 48% of the sonorants classified as nonsonorants were the nasals
(/u/. /m/. [n/. /n/. /n/. /m/). These errors occurred because of the lower rms
energy of the nasal sounds in comparison to the other sonorant sounds. The low rms
energy of the nasal sounds is due to their manner of production. Nasal sounds are
produced by letting the air flow from the lungs through the “lossy™ nasal cavity while
completely blocking the air flow out of the mouth.

Energy Concentration in Low Frequency Bands:

Two generic acoustic parameters were designed to capture the strong energy char-
acteristic of sonorant sounds in the low frequency bands. The first generic acoustic

parameter is:

E(fi: R/ E[f2 : 8000] (v.1)

where f; and f, are free parameters whose values were determined using the Fisher-
criterion optimization algorithm described in Chapter 6. The frequency f, was chosen
from the interval [0. 4000 H =] while f, was chosen from the interval [500. 1500 H =] such
that (f — fi) = 500H=z. Thus, E[fi : f;] was always computed within a minimum
bandwidth of 500H =. This restriction limits the overall number of parameters that
are spanned by the Fisher-criterion based algorithm and therefore reduces the overall

number of computations. In addition, although such a band seems to be arbitrary,
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Figure 7.1: Voicing probability distribution for (a) vowels and (b) syvllabic consonants.

The TIMIT symbols for phones are used along the horizontal axis.



Q —

" 0 & 2 B =
i .
(1] :
¥ :
Qo :
Q - : : : :
o = : : — : ’
= Qo -, . i i i == i
o

[ m n ng nx r w y

(a)

Q = — p—
=] 7 T § -
3 - - = ~ ~
] = - =
.8 = - = _ -
= W0 = - - - -
> = - = | = = = I =

= - = = o = [ I

S - = -§F-=::=_g8°z
S Al HE TERLE
>g !=|= .=|-=n . Eli'ws!
bchddhf gjh k p sshtth v z zh

(b)

Figure 7.2: Voicing probability distribution for (a) sonorant consonants and (b) ob-

struents. The TIMIT symbols for phones are used along the horizontal axis.

[vs]
Ut



Table 7.1: Parameters selected in the Fisher-Criterion stage of the parameter opti-

mization process.

Acoustic Parameter Fisher-Criterion Selected Parameters

E[fy - f2l/ E[f2 - 8000] | E[219:750]/E[750:8000]
E[94:2969]/E[2969:8000]
E[63:4000]/E[4000:8000]}

E[0 : f)/E[f; : 8000] | E[0:688]/E[4000:8000]
E[0:719]/E[1219:8000]

E[0:656]/E[1156:8000]

the minimum bandwidth chosen is not expected to miss any important parameters
because energy concentrations of the sonorant and obstruent sounds are usually in
bands wider that 500 4 z. Furthermore, the first parameter computed is the energy in
the band [0 : 500} H = relative to that in the band 500 —8000H = and this is intended to
capture in one of the parameters the effect of the glottal waveform spectrum decaying
bevond 500H: at 12 dB/octave. The second acoustic parameter was designed to
complement the first acoustic parameter by giving a more detailed description of the

spectrum. This second acoustic parameter is given by:

E[0: 1]/ E[f2 - 8000]

where f, and f, are as specified for the first acoustic parameter. The parameters
obtained from each acoustic parameter. based on the Fisher-criterion. are listed in

Table 7.1 in order of increasing Fisher-criterion values.
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Energy in the F0 Region:

Two approaches were taken in designing acoustic parameters for measuring energy
in the FO (pitch) region. The first was based on a general knowledge of the range
of F0 values for males and females without an explicit estimation of the pitch value
within a spoken utterance. The second was based on a pitch value estimated from
the signal.

[t is generally known that the pitch frequency for a male can range between [00H =
and 300H = while females have a pitch value in the 150 H = to 400 H = range. Thus. it
seems appropriate to measure the energy in the signal in a 100 to 400 - frequency
band. Furthermore. since energy is a function of loudness which may be related to
speaker gender. dialect and other factors, we opted to measure the energy in a speech
frame in a specified band relative to its maximum. minimum and average value across

the utterance. Thus. the generic energy measures were defined as:

E[f1 :fz]/mazimum(E[fl : fz])
E[fi : fo]/minimum(E[f; - f2])
E[fi : f2]/average(E[f; : f2])

The maximum. minimum and average values are taken across the utterance. For
each sonorant and nonsonorant sound considered. E[f, : f,] was computed as the
average value of that parameter over the middle two-thirds of the sound. The op-
timal frequency band defined by f; and f, was picked using the Fisher-criterion
optimization procedure. The values that f; and f, were allowed to take were liber-

ally constrained by the speech knowledge of pitch range such that f, € [0H =. 450H z]
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Table 7.2: These parameters were selected based on the Fisher-C'riterion stage of the

parameter optimization process.

Acoustic Parameter Fisher-Criterion Selected Parameters

E[fi : fB]/mazimum(E[f, : f;]) | E[156:375]/maximum(E([156:375])
E[156:250]/maximum(E[156:250])

E[0:375]/maximum(E[0:375])

Elfi : fo]/minimum(E[f, : f2]) | E[156:375]/minimum(E[156:373])

E[63:375]/ maximum(E[63:375])

E[fi : f2)/average(E[f, : fa]) E[0:375]/average( E[0:375])

E[156:375]/average( E[156:373])

and f, € [50H=.500H =] with the constraint that (f; — f) > 50 =. The bandwidth
constraint is due to the fact that a 25 ms Hamming window was used in the analysis.
vielding a frequency resolution slightly less than 50Hz. Based on the three measures
defined in equation 7.2 and using the Fisher-criterion algorithm. the measures listed
in Table 7.2 were obtained.

Another approach was taken to capture the energy in the F0 region. In this ap-
proach. the frequency band in which the energy was measured was adapted based on
the mean F'0 value estimated from the spoken utterance. In estimating the mean F0
value. a two-pass procedure was adopted in order to reduce the effect of errors intro-
duced by false estimation of F'0 at some time instants. The procedure for estimating

the mean F'0 value consists of the following steps:

e Estimate F0 at at every speech frame. This was done using the Entropic pitch
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tracker algorithm [60] which is based on the cross-correlation method [16].

o Estimate the mean of FO0. FO. as:

Fo:1

3" Fo
0

where n is the total number of frames at which F0 was estimated.

n

e Estimate the standard deviation of F0. ogq as:

0'F0=\J

e Reestimate the mean of F0. F0 by filtering out those values of £0 that differ

:Iv—'

3 (FO, - Fop?
]

from F0 by more than oro and recomputing the average of the remaining F0

values.

A generalized acoustic parameter that measures the energy around F0 was defined

E[FO+ f, : FO + f]/mazimum(E[F0+ f, : F0)

where f; € [-50Hz.400H =] and f, € [0Hz,450H z] such that (f, < —f;) > 50H=.
The optimal parameter determined from this generic measure based on the Fisher-
criterion was E[F0 — 31 : F0 + 156].

Selected Sonorancy Parameters:

The parameters obtained in Section 7.1.1 were derived independently of each other
and therefore may contain a high degree of redundancy. [n order to obtain a more
parsimonious set of parameters. the tree classification algorithm. the second stage
of the parameter optimization process (described in Chapter 6) was applied to this

initial parameter set. In addition. since nasals were thought to have lower voicing
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Table 7.3: Parameters selected from the two-stage optimization process to distinguish

between sonorant and nonsonorant sounds.

Sonorant Feature Parameter Set

probability of voicing

E[0 : 688]/ E[4000 : 8000]

E[0 : 375]/average( E[0 : 375])

maximurm cross-correlation

probability compared to the other sonorants due to lower rms values. the peak cross-
correlation coefficient was added to this initial parameter set as a separate parameter.
Thus. a total of 17 parameters were fed to the tree algorithm. As a result. the
parameters listed in Table 7.3 were selected as the optimal set of parameters to
distinguish sonorant sounds from obstruent sounds. The resulting classification tree
had a correct classification rate of 95.1% on the training data. The distributions of
each of the selected parameters for sonorant and nonsonorant sounds are shown in
Figure 7.3 and Figure 7.4. It should be pointed out that the energy-based parameters
can well be modeled with a Gaussian distribution. However. the voicing probability
and the peak correlation coefficient are not Gaussian distributed. In order to examine
the sensitivity of each of the selected parameters to gender differences. the gender-
N

dependent distributions of each of these parameters are plotted in Figure 7.5 and

Figure 7.6 for sonorant and nonsonorant sounds separately. The figures show that

the selected parameters are insensitive to gender differences.
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Figure 7.3: Histograms of voicing probability computed over the training data (a)
sonorant samples and (b) nonsonorant samples. Histograms of the peak cross cor-
relation coefficient computed over the training data (c) sonorant samples and (d)

nonsonorant samples.
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7.1.3 Classification Results

[n order to evaluate the performance of the selected parameters for the sonorant
phonetic feature. the classification tree built in the development stage was nsed to
classify sonorant and nonsonorant samples extracted from the 504 ~si~ sentences of the
TIMIT test set. These sentences are completely independent of the training sentences
as explained in Chapter 4. The test set consists of 10730 sonorant samples and and
5324 nonsonorant samples. The classification results are summarized in Table 7.4 for
both the training set and the test set. Table 7.4. The confusions at the feature level
and at the phone level are summarized in Table 7.5. As indicated in Table 7.5. 13.6%
of the canonically labeled nonsonorant sounds were classified as sonorant. On the
other end. only 1.3% of the canonically labeled sonorant sounds were misclassified as

nonsonorant.

Table 7.4: Sonorant-Feature Classification Results

% correct on training data { % correct on test data

95.1 94.6

Table 7.5: Confusion Results among sonorant and nonsonorant sounds

Sonorant | Nonsonorant

Sonorant 98.7 % 13 %

Nonsonorant | [3.6 % 86.4 %
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Figure 7.7: This spectrogram shows a sonorant “v” and a sonorant /8/ between 0.4
and 0.5 seconds. The sentence is “I gave them several choices and let them set the

priorities” spoken by a male speaker.

An error analysis revealed that 46% of the nonsonorant sounds classified as sono-
rant were the two voiced weak fricatives /8/ and /v/. while the voiced stop conso-
nants /b/. /d/ and /g/ contributed 42.4% to this misclassification. The majority of
/v/ and [8/ that were classified as sonorant occurred between two sonorant sounds
and had either a strong voicing probability and strong energy in the FO region. as
represented by E[0 : 375]/average( E[0 : 375]). or a strong voicing probability and
relatively weak concentration of energy at high frequency relative to low frequency
(E£[0 : 688]/E[4000 : 3000]). These cases represent 80.5% of /8/ and /v/ that were
misclassified as sonorant. Examples of intervocalic /v/’s and /3/’s realized as sono-
rant are depicted in the spectrogram shown in Figure 7.7 between 0.4 and 0.5 seconds.

For comparison. Figure 7.8 shows the spectrogram of a canonical fricated /v/ occur-
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Figure 7.8: This spectrogram shows a canonical fricated “v” at about 1.2 seconds.
The sentence is “But it did print good verse and good fiction™ spoken by a female

speaker.

ing between 1.24 and 1.3 seconds. Most of the misclassified voiced stop consonants
have strong cross-correlation peak and relatively weak concentration of energy at high
frequency. as represented by E[0 : 688]/E[4000 : 8000]. The majority of these stop
consonants were followed by a sonorant sound but were preceded by a labeled clo-
sure interval. It is possible that this closure interval is also realized as sonorant and
that the stop closure and stop release occur between two sonorant sounds. Further
examination of these confusions is needed in order to determine if this was the case.
[n general, a voiced obstruent that occurs next to a sonorant sound. and most often
between two sonorant sounds, can be realized with a weakened constriction so that it
is manifest as sonorant (as reported in [54], [41]). Such weakened constriction results

in a stronger glottal source relative to the pressure source forward in the vocal tract to
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be the dominant source in the sound generation. This phenomenon has implications
for an event-based approach to recognition where this type of coarticulation must
be accounted for in the lexicon or as part of the lexical-access process. [n addition.
this observation has implications for speech synthesis by rules where the syvnthesis
of voiced obstruents. in some contexts, may sound more natural if stronger voicing
energy as compared to frication energy is used.

An analysis of the sonorant misclassifications showed that there is no outstanding
trend in the declared errors. This is perhaps due to the very few misclassifications in
this case. However, it should be noted that about 21% of the misclassified sonorant
sounds with weak voicing probability and strong high-frequency energy were labeled
as the front vowels /1/, /i¥/ and /#/. The strong high-frequency energy of these sounds
is due to that fact that they have high second and third formants. However. examining
spectrograms of some of these sounds showed that they also have weak energy in the
F0-F'1 (first formant) especially toward the end of a sentence. In addition. the nasal
sounds (/m/. /n/ and /p/) contributed about 34% to the sonorant errors with low
voicing probability and strong high-frequency energy. While the reason that some
nasal sounds have low voicing probability is justifiable, it is not clear at this time
why these sounds can have stronger energy at high frequencies as compared to low

frequencies.

7.2 Anterior Place-of-Articulation for Stridents

Acoustic parameters that target the "anterior” phonetic feature were derived to dis-

tinguish among the strident obstruents. The acoustic parameters consist of energy
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ratios that measure the energy in one frequency band of the spectrum relative to
another. Selection of the frequency band was based on the third formant value. F'3,
to reduce the effects of speaker differences on the parameters’ values. The selected
parameters are listed in Table 7.8.

Strident sounds in American English are the fricatives: /s/. /z/. /%/ aund [%/
and the affricates: /¢/ and /j/. Strident fricatives and affricates are characterized
by a “strong” turbulent noise that distinguishes them from the nonstrident or weak
fricatives: /f/. /v/. /8] and /8/. The strident sounds can be classified into two
categories: anterior and nonanterior. Anterior refers to the place in the vocal tract in
front of the alveolar ridge. Thus, anterior sounds are produced with a constriction in
front of the alveolar ridge. This is depicted for the anterior sound /s/ in Figure 7.9.
[n contrast. nonanterior sounds are produced with a constriction behind the alveolar

ridge. as depicted in Figure 7.10 for the /§/ sound.

7.2.1 Acoustic Parameters to Identify the Anterior Place-of-

Articulation for Stridents

The constriction location in the vocal tract plays a major role in determining the
spectral shape of the strident sounds. In producing these sounds. air flow from the
lungs turns into a turbulent noise source at the constriction exciting the vocal cavity
in front of it. Thus. the spectral shape of strident sounds is determined by the acous-
tic structure of this front vocal-cavity. Using acoustic-phonetic theory that models
the vocal tract as a concatenation of acoustic tubes [33] [32]. it can be shown that

the resonances of a vocal cavity are inversely proportional to its length. The longer
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Figure 7.9: This figure shows the constriction formed by the tongue in front of the

alveolar ridge during the production of the anterior sound /s/. (Taken from Kent
[63])

the cavity, the lower the frequencies of its resonances. Therefore, the anterior sounds,
with a shorter front cavity than their nonanterior counterparts (c.f. Figures 7.9 and
7.10), have higher-frequency resonances. For illustration, a spectrogram of the utter-
ance “approach your interview with statuesque composure” is shown in Figure 7.11.
Comparing the time segment associated with /s/ to that associated with /¥/ in Fig-
ure 7.11, it can be seen that /%/ contains more energy than /s/ in the lower part of
the spectrum starting around 2300 Hz.

In this study, the focus was on deriving parameters that capture the aforemen-
tioned characteristics of the strident sounds. As a result, the anterior sounds, /s/ and

/z/, that share the same place of articulation, were considered as one group while the
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Figure 7.10: This figure shows the constriction formed by raising the tongue dorsum
against the palate, behind the alveolar ridge, during the production of the nonanterior

sound /8/. (Taken from Kent [63])

nonanterior sounds /8/, /2/, /¢/ and [J/ ! were grouped into another.

Several people have studied the spectral characteristics of the fricative sounds in
English, including those of the stridents. These studies range from articulatory mod-
eling to acoustic analysis (c.f., [64], [65], [66]). Parameters that have been looked
at include the first spectral moment (or center of gravity), and the location of the
main spectral peaks. Locating the spectral peak was mainly based on linear predic-
tion analysis. These studies were generally constrained in two ways: (1) the limited
number of speakers (usually less than 10 speakers) and utterances, and (2) the con-
strained contextual environments where only fricatives in word-initial position and in

the context of a few vowels were considered.

I The affricate sounds start with an articulation at their release that is usually more fronted than
that of /$/ and /%/ but move fast to a place of articulation that is similar to that of /§/ and
/ %/. Furthermore, for most of their duration, the affricates look like the nonanterior fricatives on a
spectrogram. This is the reason for grouping the affricates with the nonanterior fricatives.
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Figure 7.11: Spectrogram of the utterance “Approach your interview with statuesque
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composure” spoken by a female speaker. The alveolar /s/ fricatives at about 1.5 and
2.1 seconds have strong energy starting at about 4000 Hz. whereas the palatal /¥/
affricates at 0.55 and 1.82 seconds and the palatal fricative /%/ at 2.77 seconds have

strong energy starting at about 2000 Hz and 2300 Hz. respectively.

7.2.2 Optimized Parameters

[n this study, the TIMIT database described in Chapter 4 was used to develop param-
eters that distinguish among the strident obstruents based on place of articulation.
All strident sounds were considered independent of context. Parameters suggested
in the literature as well as new energy-based parameters were explored. Speech was
analyzed using a 25-ms Hamming window, or 400 sample points at 16 kHz sampling
rate. and a 5-ms frame rate. The spectrum of the signal within each time window
was computed using a 512-point Discrete Fourier Transform (DFT). In this section,
the explored parameters are described.

Spectral Center of Gravity:

The spectral center of gravity. also referred to as the first spectral moment. at time



frame : was computed as:

Yigs J Adjl | 16000 _
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where A;[j] is the spectral amplitude at time ¢ and the DFT bin j. DFT bin 32 corre-

=1
I
—

sponds to 1000 Hz while DFT bin 256 corresponds to 8000 Hz. the highest frequency
for the TIMIT speech. The mean center of gravity within the strident duration was
used as a candidate parameter for identifying the anterior/nonanterior feature. [t was
expected that this parameter would have lower values for the nonanterior sounds as
they contain more energy in the lower part of the frequency spectrum in comparison

to their anterior counterparts.

Spectral Peak:

Spectral peak is the frequency location of the highest-amplitude point in the spec-
trum of a speech frame. This parameter was averaged across the duration of a strident
sound and considered as a candidate parameter for the anterior/nonanterior distinc-

tion.

Center-of-Gravity and Spectral-Peak in Barks

The Bark scale [67] was invented to mimic the frequency warping that happens in
the human auditory system. Various researchers have used this scale in looking at
formant values for different vowel sounds. In this study. the mean center of gravity
and the mean spectral-peak for each strident obstruent were computed in Barks as
well as in Hz. The relationship between frequency F in kHz and frequency B in

Barks. for F' > 250H = is given by:
B =13 * arctan(0.76F) + 3.5 = arctan((F/7.3)%) (7.3)

The center-of-gravity and the spectral-peak parameters. in H= and Barks. were pre-
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sented to the tree optimization procedure in two ways: unnormalized and normalized.

When normalized. each parameter was measured relative to F3. This normalization

is intended to reduce the effect of differences in speaker’s vocal-tract length on the

parameter values. F'3 estimation was based on a procedure similar to that used for

estimating F0. This procedure consists of the following steps:

L.

IS
.

Given a speech utterance. estimate the first four formant trajectories using the

LPC-based ESPS formant-tracking algorithm [60].

Using the ESPS joint formant/pitch tracker. compute the voicing probability

(see Section 7.1) of each speech frame.

Get the F'3 value for each speech frame with a voicing probability of 0.8 or
larger. This restriction tends to eliminate the nasal sounds and those voiced
obstruents with high voicing-probability values. This is desired since the all-pole

assumption of the LPC-model does not hold for these sounds.

[n order to reduce the effect of erroneous F'3 values and to automatically elim-
inate /r/’s which have an unusually low F3 value. F3 is estimated in two

passes:

(a) Compute the mean and standard deviation of those F'3 values obtained in
step 3.

(b) Eliminate the F'3 values, obtained in step 3. that exceed the mean F3
computed in step 4.a by more than a standard deviation. Estimate F3 as
the mean of the remaining F3 values. This estimate will be referred to as

F3 in the rest of this chapter.
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Table 7.6: Parameters that were derived from center-of-gravity and spectral peak.

Center-of-Gravity | Spectral Peak

M (Hz) P (Hz)

M (Barks) P (Barks)
M —F3 (Hz) P — F3 (Hz)
M/F3 P/F3
M — F3 (Barks) | P — F3 (Barks)

The fourth formant value. F4. was also considered as a basis for normalization.
However. preliminary analysis with energy-based measures. revealed that £3 is a
better normalization factor. Measuring the center-of-gravity and the frequency of the
spectral peak relative to F'3 was done as a difference and a ratio in the Hertz scale and
as a difference in the Bark scale. Thus, there were a total of 10 parameters based on
the center-of-gravity and the spectral-peak. These parameters are listed in Table 7.6
where. M denotes mean center-of-gravity and P denotes mean spectral-peak.

Energy-based parameters

The energy-based parameters are intended to capture the stridents’ energy distri-
bution across the frequency spectrum. Acoustic-phonetic knowledge. gathered from
acoustic studies on the fricatives [64]. spectrogram reading experiments and acoustic-
phonetic theory [32]. reveals that the energy of nonanterior strident sounds is mainly
contained in the region of F'3 and above. This distribution of strong energy usually
starts around 2000 Hz, about 1000 Hz below F3 (see Figure 7.10). The energy of

anterior strident sounds is contained in the F4-F5 region and usually starts around
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3500 Hz. Based on these observations, several energy-based parameters were formu-
lated. The explored parameters are listed in Table 7.7 where. £. marimum(E) and
minimum(E’) denote average, maximum and minimum energy across the utterance.
respectively. E[fi : fa] denotes energy in the frequency band delimited by f, and
f2. In addition. 0 and 8000 refer to the lowest and highest frequency values in Hz.
respectively. since speech was sampled at 16 kHz. The first four parameters attempt
to capture the spectral energy distribution within a strident sound. Each of these
four parameters was normalized with respect to its average value across the utterance.
The normalized parameters correspond to the fifth through the eighth parameter in
Table 7.7. Each of the last nine parameters in Table 7.7 measures the energy in dif-
ferent parts of the spectrum relative to its average. minimum and maximum values
across the utterance. All but the first four parameters incorporate information about
time instants outside the time spans of the stridents. This is an attempt to discover
if there is important information outside the strident time span that can help iden-
tifv the strident place of articulation. Energy computed within a strident sound was
always averaged across the strident duration.

To select the best [fi, f2] pairs, in the Fisher-criterion sense. the 1263-sentence
optimization subset of the TIMIT training set was used. This subset consists of 3379
anterior strident sounds and 1084 nonanterior strident sounds. Two experiments
were conducted in order to investigate the effect of F'3 normalization. [n the first
experiment. f; and f; were independent of F3 while in the second experiment they
were a function of F'3.

[n the first experiment. the range of f; was chosen to be [1500.6700] Hz and that

of f; was chosen to be [1800.7000] Hz. The only constraint was that ( f, — f,) > 300
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Table 7.7: Energy-Based Parameters for the anterior/nonanterior feature.

E[fi: fl/E[f2 : 8000]
E[fi: f2]/E[0 : fi]
E[fy = f2]/ E[0 - 8000]
E[0: f,]/E[f2 : 8000]

(ELfi = f2l/ E[f1 = fol)/(ELf2 - 8000]/ E[f2 - 8000])
(ELfi: RI/Elfi: RI/(E: A]/E[0: fi])
(E[fi: 2]/ E[fi - fa])/(E[0 = 3000}/ E{0 : 3000])
(E[0: fil/E[0 : A])/(E([f2 - 8000]/ E[f> - 3000])
E[0: fA/E[0: fi]

Elfi: fl/Elfi: f

E[f2 - 8000}/ E f; - 3000]
E[0 : fi]/mazimum(E[0: fi])
E[0 : fi]/minimum(E[0: fi])
E[f, : fol/mazimum(E[f, : f2])
E[f1 : fo]/minimum(E[fi : fo])
E[f2 : 8000)/mazimum(E[f, : 3000])

E[f : 8000]/minimum( E[ f, : 8000})
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(Hz). The lower edge of the f, range was set below 2000 Hz. the empiricallv-observed
frequency at which the nonanterior strident sounds start to have strong energyv. The
selected frequency ranges ensure the inclusion of spectral bands where nonanterior
and anterior sounds have their largest energy concentration. Based on these con-
straints. the two-stage parameter optimization process described in Chapter 6 was
used to select an optimal parameter set. The first-stage. the Fisher-criterion stage.
of the optimization process was run on each of the generic parameters described in
Table 7.7. As a result. 45 parameters were obtained. These 45 parameters were fed
to the second-stage. classification tree algorithm. of the parameter selection process.
The classification tree selected 7 parameters vielding an overall correct classification
rate of 92.6% on the training data. The first 3 parameters. out of the selected 7.
resulted in 91% correct classification of the training data. Since the interest is in a
parsimonious representation. only these three parameters were selected as the final set
in this experiment. The top parameter contributed about 89% to this classification.

[n the second experiment. f; and f, in Table 7.7 were made dependent on F3.
Based on visual inspection of spectrograms. the results of the first experiment and the
acoustic knowledge by which this study was motivated. the range of f; was chosen to
be [F3—1000. F3+1700] (Hz) Hz and that of f, was chosen to be [F3—700. F3+2000]
(Hz) with the constraint that (f; — f1) > 300 (Hz). Thus, the band [f;. f»] was moved
based on F3 values. The Fisher-criterion stage of the parameter optimization process
resulted in 19 parameters. These parameters were used in the tree-growing stage of
the optimization process to further reduce the parameter set. The classification tree
selected 3 parameters that resulted in an overall correct classification rate of 92.6%.

Of these 3 parameters. the top parameter contributed 91% to the correct classifi-
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cation. Thus. the parameters selected in this experiment gave hetter classification
results in comparison to the non-normalized parameters of the first experiment (first
experiment vielded 91 % with three parameters). Furthermore. examination of the
top-parameters’ distributions for the anterior and nonanterior strident sounds as a
function of gender showed that the F'3-normalized parameters better reduced speaker-
gender effects. The top parameter distributions with and without F3 normalization
are shown in Figure 6.2, as a function of gender. for the anterior sounds. Thus. the
F3-normalized parameters were selected for further studies.

Final Parameter Set:

[n order to obtain the final parameter set for distinguishing among the anterior and
nonanterior strident sounds. the center-of-gravity and spectral-peak parameters listed
in Table 7.6 and the 19 F'3-normalized energy parameters determined from the Fisher-
criterion stage were used to grow a classification tree. Based on this tree. the energy
ratios distinguished best among the anterior and nonanterior strident sounds. The
selected parameters are shown in Table 7.8. In addition. the contribution of each of
the selected parameters to the correct classification is shown in the second column of
Table 7.8. That is. the top parameter E[F3 — 187 : F3 4 594]/E[0 : 8000] resulted
in 91% correct classification. This parameter distribution is shown in Figure 7.12
for the anterior and nonanterior strident classes and in Figure 7.13 for each of the
strident phones. Adding E[F3 — 125][F3 + 656]/E[F3 + 656 : 8000] to the top
parameter increased the correct classification rate to 91.6% while the addition of the
third parameter E[F3 ~ 781 : F3+312]/E[0 : F3 — 781] increased the overall correct
classification to 92.6%.

Error analysis did not reveal any error trend that was dependent on context. How-
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Table 7.8: The parameters selected by the optimization process to distinguish among
the anterior and nonanterior strident sounds. The % correct in each row is the correct
classification rate obtained by adding the parameter in that row to the parameters(s)

in the previous row(s).

Parameter % correct classification
E[F3 — 187 : F3 + 594]/E[0 : 8000] 91.0
E{F3 — 125][F3 + 656]/ E[F'3 + 636 - 3000] 9L.6
E[F3: T81][F3 + 312]/E[0 : F3 — 781] 92.6

ever. this error analysis showed that most of the anteriors that were confused with the
nonanteriors were spoken by male speakers. [n addition. most of the nonanteriors that
were confused with the anteriors were spoken by female speakers. The gender-biased
errors occurred despite the fact that the F'3-based speaker-normalization reduced the
differences between females and males in the considered parameter spaces. However.
it seems that this normalization was not enough. Examination of spectrograms of
sentences where these errors occurred showed that the peak spectral location for an
anterior sound was still higher than that of the nonanterior sounds when the two cat-
egories occurred in the same sentence. Based on this observation. another parameter
set was considered and added to the parameter pool. The added parameters mea-
sure the average spectral-peak location and average center-of-gravity across a strident
sound relative to their respective maximum values across the utterance. These rel-
ative measurements were differences and ratios in the natural-frequency (Hz) scale

and differences in the Bark scale.
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A classification tree was built with the new parameters in the same pool as the
rest of the parameters considered earlier. The resulting tree selected the first two
parameters listed in Table 7.8 in addition to P/maz(P). the ratio of the spectral-peak
location within the strident to the maximum peak location across the utterance. The
three selected parameters yielded a correct classification rate of 93.5%. i.e.. a correct
classification increase of 0.9% over the parameters listed in Table 7.3.

[n conclusion. it was clear that more than one cue in the speech utterance can be
used to normalize for speaker-dependent effects and to disambiguate confusions that
may arise between different sounds. Perceptual experiments to verifv this conclusion
can be conducted. In these experiments, sounds that were erroneously classitied based
on the parameters listed in Table 7.8 can be cut and plaved to human listeners in
isolation from the rest of the sentence. Then. the whole sentences containing these
sounds would be played to the listeners. In addition. when samples of anterior and
nonanterior sounds are available from the same speaker. these sounds can he played in
pairs. one anterior and nonanterior sound. and the listener would be asked to identifv
each sound in the pair. If the second and third experiments result in significantly
better identifications of the sounds in question. one can conclude that human listeners
rely on information contained in a wide-time window that extends bevond a sound

duration to identify that sound.

7.2.3 Classification Results

[n order to evaluate the performance of the selected parameters. the tree classifier built

during the development stage was used to classifv new test data. [n this classifier. the
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Table 7.9: Classification results on the training and test sets for the anterior and
nonanterior strident sounds. The classifier was the classification tree obtained in
development. The parameters in Table 7.8 were the only used in the classification

tree.

% correct on training data | % correct on test data

92.6 92.0

parameters listed in Table 7.8 were used. The test data consisted of all anterior and
nonanterior strident samples extracted from the set of 504 “si” TIMIT test sentences.
The results of this classification are shown in Table 7.9. Comparing the results on
the test data to those on the training data. it can be seen that little degradation
in performance was observed indicating the generality of the parameters across data

sets.

7.3 Labial, Alveolar and Velar Place-of-Articulation

Parameters for the Stop Consonants

Acoustic parameters that distinguish among the English stop consonants based on
place of articulation were derived. The best parameters measure the energy in one
frequency band relative to another within the duration of the stop consonant.

The English stop consonants are the labials /b/ and /p/. the alveolars /d/ and

/t/ and the velars /k/ and /g/. The stops are canonically realized by first forming
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Figure 7.14: The shape of the vocal tract during the production of the labial stop

/b/. Labial stop consonants are produced by forming a complete closure at the lips.

a complete closure in the vocal tract that blocks the air flow out of the mouth. Ajr
pressure is built-up behind the closure and then abruptly released. The acoustic con-
sequence of this pressure release is observed in the acoustic signal as an abrupt energy
change referred to as the stop burst. The stop burst is followed by frication and then
aspiration noises that excite the vocal tract section in front of the constriction. Thus,
the English stops are characterized by the closure location in the vocal tract. Labial
stop consonants are produced with a closure at the lips as depicted in Figure 7.14.
The alveolar stops are produced with a closure formed by the tongue tip at the alveo-
lar ridge (see Figure 7.15) while the velar sounds are produced with a closure formed
by the tongue dorsum in the velum area (see Figure 7.16 )

Acoustic cues that distinguish among the English stop consonants have been stud-
ied by many researchers. Most studies were confined to stops occurring in word-initial

and prevocalic positions. In addition, the vowel context was most often confined to
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Figure 7.15: The shape of the vocal tract during the production of the alveolar stop
/d/. Alveolar stop consonants are produced by forming a complete closure at the

alveolar ridge with the tongue tip.

the cardinal set. Among the cues considered were the formant frequencies at the
burst release, formant transitions from a stop to a following vowel and the stop-burst
spectral shape. In one study, Blumstein and Stevens [68] manipulated the stop burst
spectral shape, formant transitions and the duration of the frication-aspiration noise
in synthesized stop consonants preceding vowels. They presented the synthesized ut-
terances to human subjects for perceptual tests. Blumstein and Stevens concluded
that the overall spectral shape of a stop consonant is the primary cue to its iden-
tity while formant transitions can serve as secondary cues to disambiguate confusable
cases.

Lamel [69] derived a set of acoustic cues and rules to identify stop consonants.

Lamel’s rule-based system was able to identify stop consonants with about 71% ac-
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Figure 7.16: The shape of the vocal tract during the production of the velar stop /g/.
Velar stop consonants are produced by forming a complete closure in the velum area

with the tongue dorsum.

curacy. The acoustic cues were based on formant transitions at stop closures and
stop releases in addition to stop spectral shape. These cues are similar to the ones
examined by Stevens and Blumstein.

I[n Kopec and Bush [70], an expert was able to correctly identify a stop consonant
in CVC syllables, with the stop being the initial consonant in the syllable, at rates
ranging between 76% and 81% depending on the type of information presented to the
expert.

Lahiri et al. [37] looked at the LPC-smoothed burst spectrum of labial and alveolar
stop consonants in word-initial position relative to the spectra at the onset of the
following vowel. They were able to identify a stop as alveolar with 94% accuracy and

labial with 98% accuracy based on the magnitude of hand-picked peaks at the stop
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release relative to the magnitude of corresponding spectral peaks in the following
vowel. Lahiri et. al’s algorithm was automated and tested by Zierten [39] on a
database of words with labials and alveolars in initial-word position. The speech
material in this database was recorded by 2 males and 2 females. Zierten found that
Lahiri’s algorithm. when automated, resulted in a much lower performance.

Sussman [71] derived a set of locus equations to identify the place-of-articulation
of a stop consonant. Sussman’s utterances were stop-vowel-t sequences where the stop
was voiced. The locus equations attempt to model the second formant. F2. transition
from vowel onset to mid-vowel. In developing and testing the validity of his equations
using Linear Discriminant Analysis. Sussman picked formant values by hand. The
classification rate achieved by Sussman was 100% given that he had a separate locus
equation per stop category for each of his 20 subjects and that his development set
and test set were the same. More recently. other researchers have investigated the
first four spectral moments {72] as parameters for automatic stop classification but
their testing was also confined to prevocalic stops.

The difficulty in comparing the results of the different studies lies in the fact
that they all used different speech databases and different evaluation methods. Thus.
no conclusion can be made as to what parameters can best characterize the stop

consonants.



7.3.1 Acoustic Parameters for Identifying the Stop Place of

Articulation

[n this research. the focus was on parameters that estimate the spectral shape of the
stop consonants. The motivation for such parameters stems from the Blumstein and
Stevens perceptual study which found that spectral shape constitutes a primary cue
for identifying a stop consonant. Other parameters that rely on formant values were
not investigated in this thesis. It is worth pointing out that researchers who had
success with formant-based parameters assigned the formant values to speech frames
based on their visual inspection of the speech spectra. This was done in order to
avoid error-prone formant tracking techniques that may result in incorrect formant
estimation leading to incorrect decisions. However. it is our belief. in accordance with
Blumstein and Stevens’s study. that formant transitions could play a secondaryv role
rather than a primary role in disambiguating stops that are easilv confused based on
their spectral shape alone. This observation is based on inspection of stop-consonant
spectrograms and analysis of classification errors obtained in this research. Thus.
formant-based parameters should be further investigated.

Several acoustic studies show that labial stops have a relatively flat spectrum? due
to the absence of a cavity in front of the closure place. On the other hand. the alveolar
stops are characterized by a strongly rising spectrum due to the short front cavity.
Finally. the velars have most of their energy concentrated in the mid-frequency part

of the spectrum since the closure-place is almost at the mid-point of the vocal tract.

*The spectrum of a stop consonant could be slowly falling or slowly rising. as opposed to being

flat. due to lip perturbations.
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[n fact. one of the cues to velar-stop identification. used in spectrogram reading. is a
distinct energy blob in the mid-frequency region where £'2 and F3 of preceding and
proceeding vowels converge. This point of F'2 — F'3 convergence is often referred to
as the velar pinch.

A visual spectral analysis of stop consonants occurring in various contexts was
also conducted in this research. This spectral analysis revealed that the spectral
shape of the stop consonants is most consistent with the theory during the first few
frames of frication. when it exists. following the instant of stop release. This frication
noise was overlooked in most previous studies of stop consonants. Perhaps. it is the
frication spectral shape that led the human subjects in Blumstein and Stevens to
better identify stop consonants when frication of sufficient duration was included in
the synthesized stops. Thus. parameters that target the spectral shape at stop release
and during frication noise were sought. In addition. spectral analysis revealed that
the velar stops have a spectral peak in the F'4 — F5 region. This spectral peak was
mostly distinct in velars occurring in back-vowel contexts where the velar pinch. in
£2 — F3 region. appeared to be lower than in front-vowel contexts.

[n order to capture the spectral shape characteristics of the stop consonants.
acoustic parameters were designed to measure the energy in parts of the spectrum
relative to others. [n addition. the first two spectral moments. the skewness and
the Kurtosis coefficients utilized in [72] were also considered. A spectral moment is
adapted from the probabilistic definition of moments [73]. In this adaptation. a DFT
point takes the place of the random variable. The probability of each random variable
value is substituted by the energy at that DFT point normalized by the total energy

(i.e. sum of magnitude squares of the DFT points). Thus. for a given speech frame.
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the first three spectral moments are defined successively as:
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where .V is the DFT length and A[i] is the magnitude of the i** DFT point. To convert
to natural frequency (i.e. Hz), the j** moment is multiplied by ( F,/ N} where F, is

the sampling rate. The skewness coefficient is defined as:
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whereas the Kurtosis coefficient is defined as:
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Based on knowledge of the stop spectral shape. it is expected that y; would be
largest for alveolar stops. intermediate for labial stops (about the mid-point of the
spectrum) and lowest for velars (in F2 — F'3 region). The second moment. . is the
spectral variance around the center of gravity. It is expected that u, would be largest
for the labial stops as their energy is distributed across the spectrum. The skewness
and Kurtosis coefficients attempt to capture the spectral tilts.

The generic energy-ratio parameters that attempt to capture the stop consonant

spectral shape are listed in Table 7.10. In this table. f; and f, were suhject to the
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following constraints:

fi € [F3— 1750, F3 + 3050](H =).
f2 € [F3 — 1550, F3 + 3250](H=).

(f2— fi) 2 200H=.

The third formant. F'3 was estimated according to the procedure outlined in Sec-

Table 7.10: Generic energy-ratio parameters for identifying the English stop place of

articulation

Energy-Ratio Parameters

E[f : f]/ E]0 - 3000]
Elfi: £/E[0 - £i]
Elfi : f2]/ E[f> - 3000]
E[0: fi]/E[f> - 3000]

tion v.2. The frequency ranges for f; and f, were chosen large enough to include
a velar resonance sometimes observed around the fifth formant. F5. The energy
measures estimate the energy distribution across the frequency spectrum at a given
speech frame. The frequencies f, and f, were made dependent on F3 as exploratory
experimentation showed better classification results with such parameters. Each of
the moment-based and energy-based parameters was computed at burst release and
during the following frication. The burst release was defined as the instant of largest

spectral change detected between the TIMIT-label start-time and two thirds of the



stop duration (as indicated by the TIMIT labels)® A parameter computation during
the frication noise of a stop consonant was taken as the average value of np to three
speech frames following the stop release. If no frication-aspiration noise was present.

the parameter value at the stop release was substituted for this computation.

7.3.2 Optimized Parameters

[n order to derive parameters that distinguish among the stop consonants. the two-
stage parameter optimization process described in Chapter 6 was utilized. The speech
material used in development consisted of stop samples in the [263-sentence optimiza-
tion subset of the TIMIT training set. This set contains 2213 alveolar stops. 1651
labial stops and 1727 velar stops occurring in unconstrained phonetic contexts.

The first stage of the optimization process. the Fisher-criterion stage. was used
to determine optimum values for the free parameters. f; and f,. in Table 7.10. The
frequencies f; and f, were determined at the instant of stop release and during the
frication noise separately. As a result. a total of 38 parameters were obtained. The
first spectral-moment. the second spectral-moment. the skewness coefficient and the
Kurtosis coefficient were also computed for each stop sample at the instant of burst
release and during the frication noise as described in Section 7.3.1. Then. the 38
energy-ratio parameters and the spectral moment-based parameters. a total of 46
parameters. were fed to the second stage of the parameter optimization process.

growing a classification tree. to select an optimum parameter set. The classification

*The instant of largest spectral change. rather than the timing of the TIMIT labels. was used to

locate stop release due to the observed labelers™ inconsistency in locating that event.
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Table 7.11: The acoustic parameters selected to distinguish among the stop conso-

nants.
Parameters computed Parameters computed
at stop release during frication
E[F3 — 1750 : F3]/E0 : 8000] E[F3+31: F3+3250]/E[0 : F3 + 31]
i
E[F34281: F34 118T]/E[0 : F3+281] | E[F3+ 750 : F3 + 1050}/ E[F3 + 1050 : S000]

tree selected 20 parameters vielding an overall correct classification rate of 79.2%
on the training data. 19 of the 20 parameters were energy-ratios and the remaining
one was the second spectral moment computed at stop release. In addition. energy-
ratio parameters were at the top of the tree. Since the interest was in obraining
a parsimonious parameter set, the top four parameters out of the 20 were selected.
These parameters are listed in Table 7.11. The top parameter was E[F3 + 31 :
F3 +3250]/E[0 : F3 + 31] computed during the frication noise. A\ new classification
tree was grown using the parameters in Table 7.11. The resulting tree had a correct
classification rate of 76.4%. a 2.8% absolute degradation from the tree utilizing 20
parameters. The distribution of each of the parameters in Table 7.1l are shown in
Figure 7.17-Figure 7.20.

Figure 7.17 shows that E[F3 + 31 : F3 + 3250]/E[0 : F3 + 31] distinguishes
the alveolar stops from the labials and velars. Figure 7.18 shows that the velar
stop consonants have most of their energy concentrated around £'3 distinguishing

rhemselves from the alveolars and labials. The two parameters shown in Figure 7.19
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and Figure 7.20 contribute to improving the classification of the stop consonants but
show larger degree of overlap among the stop consonants. especially the parameter in
Figure 7.20. than the first two parameters.

Analysis of classification errors revealed that most of the misclassified stops were
voiced. In order to determine the possible cause of these errors. a spectrographic
analysis was conducted. This analysis showed that voiced stop consonants manifest
high energy concentration at low frequencies when they occur in a sonorant context.
This spectral shape was independent of the stop place-of-articulation and could be
the result of a weakened closure that allows a relatively strong voicing source to be
maintained during the stop as well as the neighboring sonorant sound(s). A \isual
inspection of the spectrographic characteristics of these misclassified stops suggested
that inclusion of formant transition information between a stop and a following or
preceding sonorant sound can ameliorate many of the confusions given that such
transition information could be accurately estimated. This observation is consistent
with the conclusion of Blumstein and Stevens [68] that formant transitions play a
secondary role in stop consonant identification and become important when the stops

are hardly identifiable from their gross spectral shapes.

7.3.3 Classification Results

The performance of the developed parameters was evaluated on an independent test
set consisting of the 504 TIMIT -si” sentences (c.f. Chapter 4). These sentences
contained [017 alveolar stops. 685 labial stops and 588 velar stops. [n this evaluation.

the tree classifier built in the parameter development stage was used to classifv a stop
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Table 7.12: Classification results on the training and test sets for the stop place of
articulation. The classifier was the classification tree obtained in development. The

parameters in Table 7.11 were the only ones used in this classification tree.

% correct on training data | % correct on test data

76.4 73.0

consonant occurring in these sentences into one of three categories: labial. alveolar
or velar. The results of this classification are summarized in Table 7.12. As these
results indicate. there was a 3.4% decrease when the parameters were tested on an

independent test set.

7.4 Syllabicity

Phonemes are said to have the “syllabic” phonetic feature when thev function as
syllable nuclei. The nucleus of a syllable refers to the mandatory part of a svllable
that consists of one or more phones. In English, syllable nuclei are mainly vowels.
The nasals (/n/, /m/ and /p/) and liquids (/l/ and /r/) are considered to be non-
svllabic but can also form syllable nuclei when they occur in certain contexts. All
other consonants which include the obstruents and the sonorant glides (/w/./v/) are
nonsyllabic. In this section, parameters that target the “syllabic™ phonetic feature in
the speech signal are considered.

The “syllabic™ phonetic feature is distinctive among the sonorant sounds. Thus.

when deriving acoustic parameters that target the “syllabic™ phonetic feature. only
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phones that are sonorant need to be considered. Accordingly. two groups of phones
can be formed. The first group consists of those phones that are sonorant and syl-
labic while the second consists of phones that are sonorant and nonsyllabic. In the
derivation of the “syllabic” acoustic parameters. diphthongs. syllabic nasals and lig-
uids were not considered. This exclusion was motivated by the fact that each of
the excluded phones consists of a vowel-sonorant consonant sequence (c.f. [74] p.
20 for discussion on diphthongs and [54] pp. 110-113 and 338-340 for discussion on
diphthongs and syllabic consonants). Diphthong vowels. as opposed to monophthong
vowels. involve movement of the vocal organs from the position of one vowel to the
position of a glide (/y/./w/). The diphthong vowels [28] are: /a¥/ as in ~high™. /a"V/
as in ~how”. /e¥/ as in “bait™. /oY / as in “boy” and /0% / as in ~hoe™. In addition
to these universally recognized diphthongs, the vowel /U/ as in “two” is sometimes
considered as a diphthong [75]. The first part of a diphthong that corresponds to
a vowel is called the phone kernel and is similar to the corresponding monophthong
vowel. The second part of a diphthong is referred to as an off-glide. The degree of
similarity between an off-glide and the corresponding independent glide depends on
speaker’s style and accent. In addition, syllabic nasals (/ny. /p/ and /p) and syllabic
liquids (/]/. /3/ and /[2/) are spectrally manifest as one unit in some contexts but
often appear to consist of a /a/ followed by the relevant sonorant consonant. As a
result. it would be correct to recognize a diphthong or a syllabic sonorant consonant
as a vowel followed by a sonorant consonant. Since the diphthongs and syllabic sono-
rant consonants may include syllabic and nonsyllabic acoustic events. samples that
correspond to these categories were excluded in parameter development. The set of

“svllabic™ phones considered in development consisted of monophthong vowels while
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that of “nonsyllabic” and sonorant phones consisted of the nasals and semivowels.

7.4.1 Algorithm for Detecting a Syllabic/Nonsyllabic Acous-

tic Event

An algorithm that targets the “syllabic” phonetic feature in the speech signal is
outlined in this section. This algorithm is similar to one described in [40] and it is
based on the fact that a sonorant consonant always occurs in a sonorant cluster that
includes a vowel. The outlined algorithm is motivated by the way vowels and sonorant
consonants are produced. Vowels and sonorant consonants are both produced with
a pseudo-periodic excitation source at the glottis. However. they differ by the shape
of the vocal tract during their production. Vowel sounds are produced with a vocal
tract that is not constricted. On the other hand. sonorant consonants are produced
with a constriction that is not narrow enough to result in a turbulent noise source
(e.g. as in fricatives) but narrow enough to introduce new cavities in the vocal tract
that result in antiresonances. In addition, nasal sounds are produced by completely
blocking the air flow out of the mouth while letting the air flow out though the lossy
nostrils. As a result of these facts. sonorant consonants tend to have less energy in
the mid-frequency region compared to vowels. Furthermore. since a sonorant cluster
(e.g. arm) that contains sonorant consonants must also include vowels. it seems that
any energy measure should be made in the sonorant consonant relative to the first
vowel that occurs to the right or left of the sonorant consonant. Such an energy
measure will take into account the dynamics of the vocal tract as such sounds are

articulated. For instance, in the articulation of a vowel-sonorant consonant sequence.
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the vocal tract starts being open during vowel articulation and reaches a point where
it is mostly open. Then, the vocal tract becomes gradually constricted as it moves
towards the articulation of the sonorant consonant reaching a point of maximum
constriction before that constriction is released into the following sound.

[n order to capture the stated characteristics of vowels and sonorant consonants.
the algorithm is based on the position of a sonorant consonant relative to the vowel
[41]. This algorithm attempts to measure the energy difference between a sonorant
consonant and two surrounding vowels (intervocalic position). a prevocalic sonorant
consonant and the proceeding vowel and a postvocalic sonorant consonant and the
preceding vowel. If the sonorant-consonant is intervocalic. the algorithm detects the
maximum energy in the left vowel (point A in Figure 7.21). the maximum energy in
the right vowel (point B in Figure 7.21) and the minimum energy in the sonorant
consonant (point C in Figure 7.21). Then. this algorithm measures the minimum
energy in the sonorant consonant relative to the smaller of the two detected energy
maxima in the surrounding vowels (energy at point C relative to that at point B in
Figure 7.21). For sonorant consonants occurring in a prevocalic or postvocalic posi-
tion. the algorithm detects the maximum energy in the vowel region and the minimum
energy in the sonorant consonant region and measures the difference in dB between
the two (energy at point A relative to energy at point B in Figure 7.22 for a prevocalic
sonorant consonant and Figure 7.23 for a postvocalic sonorant consonant). As can be
deduced from the definition of this algorithm, the objective is to detect a nonsvllabic
event in a sonorant region. If such a nonsyllabic event cannot be detected. the whole
sonorant region is assumed to be syllabic since only a syllabic phone can solely con-

stitute a sonorant region while a sonorant consonant must be always accompanied by
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Figure 7.21: Energy profile typical of intervocalic sonorant consonants. The minimum
energy value at point C is measured relative to the smaller of the two surrounding

maxima at points A and B.

Figure 7.22: Energy profile typical of prevocalic sonorant consonants. The minimum

energy value at point B is measured relative to the energy maximum at point A.

a vowel. The question that remains is what frequency band should be selected for

computing the energy profile. This question is addressed in the following section.

7.4.2 Optimized Parameters

The algorithm for detecting nonsyllabic events. as defined in Section 7.4.1. requires the

computation of an energy profile! in the mid-frequency portion of the spectrum. Thus.

*An energy profile refers to energy computed within a frequency band as a function of time.
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Figure 7.23: Energy profile typical of postvocalic sonorant consonants. The minimum

energy value at point B is measured relative to the energy maximum at point A.

the objective was to determine the frequency band(s) within which this energy should
be computed. To achieve this objective, samples of monophthong vowels. intervocalic.
prevocalic and postvocalic sonorant consonants were extracted from the 1268-sentence
development set and used along with the parameter-optimization procedure outlined
in Chapter 6. The selected acoustic parameters are listed in Table 7.13 and Table 7.14.
[n this section. the methodology used in deriving these parameters is discussed.

The generic acoustic parameter for detecting intervocalic nonsvllabic events is

depicted in Figure 7.21 and is given by Equation 7.6.
Ec(fi : fo]/minimum(E4[f. : fo], Es[fi - f2]) (7.6)

where E[fi. fo] denotes energy in the frequency band delimited by f, and f,. The
goal is to determine optimum values for the pair (fi, f;) in Equation 7.6 so that
the false detection of within-vowel nonsyllabic events is minimized while the correct
detection of nonsyllabic events is maximized. To do so. The Fisher-criterion stage of
the parameter optimization process was used. Since sonorant sounds have most of

their energy concentrated below 4 kHz. the following constraints were applied to f,



and f5:

fi € [100,3840]( H z)

f2 € [260.4000]( H =)

-~
~1
~—

f22 fi + 160(H:z) (r.

All monophthong vowel samples were grouped into one group and the intervocalic
sonorant-consonant samples were grouped into another. There were a total of 1358
intervocalic sonorant consonants (vowel. sonorant consonant. vowel sequence) and
L1733 vowels in the development set. Ec[f : fo]/minimum(E[f; : Fl-Eglfi : fi
was computed for each of the vowels and sonorant consonants and for each possible
(fi- f2) pair. When the parameter in Equation 7.6 was computed within a vowel.
Ec[fi : f2] was the minimum value of E[f, : f,] within the vowel whereas £ | [fi: fa]
and Eg[fi : f2] were the two surrounding maxima within that vowel. When the
parameter in Equation 7.6 was computed for a sonorant consonant. Ec[f; : fa] was
the minimum value of E[f, : f;] within the sonorant comsonant. whereas £,[f; :
f2] and E[f; : fo] were the maximum E[f; : f»] values within the left and right
vowel. respectively. The time boundaries of the vowels and sonorant consonants were
obtained from the TIMIT label files. The Fisher criterion stage resulted in a total of
1 parameters. These parameters were then fed to the classification-tree stage of the
parameter optimization process. As a result. the 4 parameters listed in Table 7.13
were selected. These parameters resulted in a 98.4% correct classification rate on
the training data. The top selected parameter. E[2750 : 3562]. resulted in a 97%
correct classification. The distributions of the two top parameters computed from

the energy profiles E[2750 : 3562] and E[1250 : 2562| are shown in Figure 7.21 and
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Table 7.13: Energy parameters that are used to detect intervocalic nonsvllabic events.

Energy Parameters

E[2750:3562]
E[1250:2562]

E[1562:2000]

E[1281:3531]

Figure 7.25 for vowels and sonorant consonants. As can be seen in Figure 7.24 and
Figure 7.25. E[2750 : 3562] and E[1250 : 2562] show significant energyv dips within
sonorant consonants relative to the adjacent vowels. However. the energy in the
sonorant consonant was sometimes higher than that of an adjacent vowel. These
sonorant consonants were often declared as errors in the classification. [nspection of
these errors showed that they were mostly semivowels adjacent to the lax vowels /a/
and /1/.

The generic acoustic parameter for detecting prevocalic and postvocalic nonsyl-
labic events is depicted in Figure 7.22 and Figure 7.23. respectively. This parameter

can be described by:

=1
[(027]
~——

Eslfi: fal/Es[fi : fo] (¢.

[n Equation 7.8. E[f; : f2] denotes energy in the frequency-band delimited by the
frequencies f; and f,. The objective, as in the intervocalic case. was to determine
values for f; and f; so that the false detection of nonsyllabic events within vowels
is minimized whereas the correct detection of prevocalic nd postvocalic nonsvllabic

events is maximized. Thus. all 11733 monophthong vowels and all 4098 prevocalic and

137



(/2]
2
o g
23 28
2o 5
S S &
- @ a
] s
3 S 28
bl &
o] - O
g3 g
o % o
" %l |
o J --ll'l é o -.l' -
-40 -30 -20 -10 0 2 40 -30 20 -10 0
dip in E[2750:3562] (dB) dip in E[2750:3562] (dB)
(a) (b)

Figure 7.24: (a) Within-vowel energy minimum relative to the smaller of the two
surrounding maxima within the same vowel. (b) Sonorant-consonant energy minimum

relative to the smaller of the two energy maxima in the left and right-context vowels.

postvocalic sonorant consonants in the 1268-sentence development set were extracted.
Ealfi : f2}/ EBlfi : f2] was computed for each of these samples and for all possible
(/1. f2) pairs subject to the constraints in equations 7.7. When E,[f1 : o]/ E[f1 : fa
was computed within a vowel, E4[f; : f5] was taken as the minimum E[f, : fa] value
within the vowel and E[f; : f] was the maximum E[f; : f,] value within that
vowel. For prevocalic and postvocalic sonorant consonants. £4[f, : fa] was taken as
the minimum value within the sonorant consonant. whereas Eg[f, : f,] was taken
as the maximum value within the vowel. Using the Fisher-criterion stage of the
parameter optimization process, ( fi, f2) pairs were determined so that the parameter

described in Equation 7.8 distinguishes best among vowels on one hand and the
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surrounding maxima within the same vowel. (b) Sonorant-consonant energy minimum

relative to the smaller of the two energy maxima in the left and right-context vowels.

group of prevocalic and postvocalic sonorant-consonants on the other hand. The
fisher-criterion stage resulted in a total of 8 parameters. These parameters were fed
to the classification-tree stage of the parameter optimization process. As a result. the
four energy parameters listed in Table 7.14 were selected. The classification tree using
the energy dips. as described in Equation 7.8. in these parameters as the predictors

had a correct classification rate of 87.4%.

7.4.3 Classification Results

The performance of the developed parameters was evaluated on an independent test

set consisting of the 504 TIMIT “si” sentences (c.f. Chapter 4). In this evaluation. the
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tree classifiers built in the parameter development stage were used. The classification
results are summarized in Table 7.15. These results show an insignificant change

between the results obtained on the training set and those obtained on the test set.

Table 7.14: Energy parameters that are used to detect prevocalic and postvocalic

nonsvllabic events.

Energy Parameters

E[500:4000]
E[937:3437]

E[2750:4000]

E[2000:4000]

Table 7.15: Classification results on the training and test sets for svllabic-

ity/nonsyllabicity.

Category % correct on training data { % correct on test data
[ntervocalic 98.4 97.3
Nonsyllabic

Post-/Pre-vocalic 37.4 NT.
Nonsvllabic
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7.5 Stridency

The stridency phonetic feature is characteristic of obstruent sounds with strong tur-
bulent noise. It plays an important role in the correct perception of these sounds.
The strident sounds in American English are the fricatives /s/. /z/. /$/. /%/ and the
affricates /¢/ and /J/. This feature distinguishes the strong fricatives (i.e.. stridents)
from the weak fricatives (/f/,/v/./8/ and /8/. It also distinguishes the noncontin-
uant stridents (affricates) from the other noncontinuant sounds (stop consonants).
The distinctive role of the stridency feature was shown through synthesis studies [64]
and perceptual studies (e.g. [30]. [76]). [n addition. an acoustic study that we con-
ducted [77]. involving expert spectrogram readers. also showed that this feature plays

a distinctive role among the obstruents.

7.5.1 Acoustic Parameters for Stridency: strident obstruents

vs. weak fricatives

Strident sounds are characterized by strong energy in the region of F3 and above (c.f.
[64]). Thus. several generic parameters were formulated to capture this property.
These parameters attempt to measure the obstruent energy in a frequency band
about F'3 and above relative to the maximum. average and minimum energy across the
utterance. Acoustic parameters (APs) that target the stridency feature ditferentiating
between the strident obstruents and the weak fricatives were derived separatelv from
APs that differentiate ounly the affricates from the stop consonants. To determine

the APs in the former case. the strident obstruent samples in the 126S-sentence
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Table 7.16: Generic acoustic parameters to distinguish between the strident obstru-

ents and the weak fricatives.

Generic Acoustic Parameters

E[f» : 8000]/average( E[f, : 3000])
E[f : 8000]/mazimum(E[f; : 8000])
E[f» : 3000]/minimum(E[f, : 3000])

E[f1: fil/average(E[f1: f2])
E[f1: fo]/mazimum(E[f1: f])
E[f1: fo]/minimum(E[f1: f5])

development set were grouped in one set and the weak fricatives were grouped in
another. The Fisher-criterion stage of the parameter optimization process was used to

determine APs from the generic parameters listed in Table 7.16 with the constraints:

f1 € [F3 — 1000. F3 + 3000]
f2 € [F3 =700, F3 + 3300]

f2 2 (f1 +300)

where F'3 was estimated using the procedure outlined in Section 7.2. [n Table 7.16.
E[f1 : f5] refers to the energy in the frequency band delimited by f1 and f». From the
Fisher-criterion stage. 8 parameters were obtained. These parameters were then fed
to the classification-tree stage of the parameter optimization process. As a result. the

5 parameters listed in Table 7.17 were selected. When a parameter is computed within

142



Table 7.17: Selected acoustic parameters to distinguish between the strident obstru-

ents and the weak fricatives.

Selected Acoustic Parameters

E[F3 + 94 : 8000]/average( E[F3 + 94 : 3000])
E[F3 + 31 : 8000]/minimum(E[F3 + 31 : 3000])
E[F3 — 687 : 8000]/mazimum(E[F3 ~ 687 : 3000])

E[F3 — 125 : 8000]/mazimum(E[F3 — 125 : 3000])
[

E[F3 + 500 : F3 + 3000]/mazimum(E[F3 + 500 : F3 + 3000])

the weak fricative or the strident obstruent. its average value across that obstruent
is taken. Classification results using these parameters and the developed tree are
summarized in Table 7.18. The classification task was to classifv an obstruent. from
the set of strident obstruents and weak fricatives. as strident or nonstrident. The
test data consisted of all such samples in the 504 “si” TIMIT test sentences. The
top parameter alone. E[F3 + 94 : 8000]/average( E[F3 + 94 : 3000]). resulted in a
93.4% classification on the training data and 93.3% classification on the test data.
The distributions of this parameter for the weak fricatives and strident obstruents
are shown in Figure 7.26. In addition, the distributions of this parameter for the
weak fricatives and the strident obstruents are shown in Figure 7.27 as a function of
gender. Figure 7.27 shows that males and females have very similar distributions for

the top parameter.
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Table 7.18: Classification results for strident obstruents vs. weak fricatives using the

classification tree built in the development stage and the parameters in Table 7.17.

% correct on training data | % correct on test data

94.3 95.0

7.5.2 Acoustic Parameters for Stridency: Affricates vs. Stops

APs that distinguish among the strident noncontinuants (affricates) and nonstrident
noncontinuants (stops) were also derived. In this derivation. all affricates in the 1268
sentence development set were considered in one group and all stop consonants were
considered in another. Using these samples. the Fisher criterion-stage of the parame-
ter optimization process was deployed to determine APs from the generic parameters
in Table 7.16. This Fisher criterion stage resulted in 15 parameters. These |5 param-
eters along with the duration of each stop and affricate. as an additional parameter.
were fed to the classification-tree stage of the parameter optimization process. As
a result. the acoustic parameters in Table 7.19 were selected. The classification re-
sults for both the training data and the test data. based on these parameters. are
summarized in Table 7.20. The classification task was to classify a sample from
the set of affricates and stops as strident or nonstrident. The top parameter was

E[F3 + 562 : F3 + 1125]/minimum(E[F3 + 562 : F3 + 1125]) followed by duration.
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Figure 7.26: Histograms showing E[F3 + 94 : 8000]/average( E[F3 + 94 : 3000])

distributions for: (a) strident obstruents and ( b) weak fricatives.
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Figure 7.27: Probability densities of E[F'3 + 94 : 8000]/average( E[F3 + 94 : 3000])
for: (a) strident obstruents and (b) weak fricatives as a function of gender (females

(f) and males (m))
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Table 7.19: Selected acoustic parameters to distinguish between the affricates and

the stop consonants.

Selected Acoustic Parameters

E[F3 + 562 : F3 + 1125]/minimum(E[F3 + 562 : F3 + 1125])
duration
E[F3 — 1000 : F3 — 700]/average( E{F3 — 1000 : F3 — 700])
E[F3 — 250 : 8000]/mazimum(E[F3 — 250 : 8000])
E[F3 4656 : F3 + 1031]/average( E[F3 + 656 : F3 + 1031])

E[F3 + 2000 : 8000]/minimum(E[F3 + 2000 : 3000])

E[F3+ 125 : F3 4 1562]/mazimum([F3 + 125 : F3 + 1562])

Table 7.20: Classification results for affricates vs. stop consonants using the classifi-

cation tree built in the development stage and the parameters in Table 7.19.

% correct on training data | % correct on test data

95.5 94.7
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Chapter 8

Speech Manner and Obstruent

Place-of-Articulation Recognition

Several experiments are reported in this chapter that examine the performance of
a subset of the parameters developed in chapter 7 in a speech manner and obstru-
ent place-of-articulation recognition task. In all reported experiments. the HMM
framework. as implemented in HTKv1.5 [53], was used for recognition . These ex-
periments show that the developed parameters are competitive in terms of overall
performance with the traditionally used Mel-cepstral parameters. Furthermore. the
experiments show that more information pertinent to the stop-consonant place of
articulation may be needed in order to further improve the recognition of the three
stop-consonant classes: alveolar. labial and velar. This can possibly be achieved by
considering dynamic parameters such as characteristics of formant trajectories or mo-

ment trajectories. This postulation is based on more recent results obtained in (78]



as well as previous acoustic studies [68] that show that formant movements play a

secondary role in keying the place of articulation of stop consonants.

Speech manner and obstruent place-of-articulation recognition. in this thesis. is
the task of recognizing a speech utterance as a sequence of the following classes:
Silence (SL). Syllabic (SY). Sonorant Consonant (SC). Affricate (A). Labial Stop
(LS). Alveolar Stop (AS), Velar Stop (VS), Alveolar Fricative (AF). Palatal Fricative!
(PF) and Weak Fricative (WF). These are the classes that can be recogrized in a given
speech utterance based on the APs discussed in chapter 7. The mapping between
these classes and the phone labels used in TIMIT is shown in Table 3.1. [n chapter 7.
classification experiments using these parameters were run on a subset of the TIMIT
test set consisting of all phonetically diverse “si” sentences. The same test set is
used in the recognition experiments reported in this chapter. As referred to in the
speech research literature, classification is the task of identifving the categorv of a
sound with known time boundaries (the time boundaries. in this case. are known
from the TIMIT transcription). On the other hand. recognition refers to the task
of simultaneous detection and classification of a sound. Thus. in recognition. it is
possible to falsely detect the presence of a sound, a phenomenon known as sound

insertion. or miss the detection of a sound which is referred to as deletion.

! Palatal fricatives are the ones produced with a constriction in the palate region. In the context
of the parameter derivation in Chapter 6, palatal fricatives are the strident and nonanterior fricatives

/z/ and /$/.
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8.1 Experimental Objectives

The objectives of the experiments are multifold. First. we want to experiment with
the developed parameters in a recognition task in order to discover the weaknesses
in the signal representation. Second, we want to compare the developed parameters
to the traditionally-used Mel cepstral parameters to see if the two representations
are redundant. complementary or one works better than the other. This comparison
has led us to use the frame-based HMM framework so that recognition results can
be compared and interpreted relative to the front end signal representation. Finally.
since the acoustic parameters were developed using a linguistically motivated hier-
archal structure. as did the classification. it is worth noting the effect of considering
all parameters at once in recognition as is done in the HMM-based framework. That
is. in the recognition procedure, every parameter was computed evervwhere. whereas
in the development and classification. a parameter was looked at given some a priori
knowledge of the broader category to which a sound belongs (e.g. only strident ob-

struents were considered in the development of the anterior/nonanterior parameters).

8.2 Signal Representation

The Mel-cepstrum signal representation of the speech signal consists of the first twelve
cepstral coefficients. excluding the zeroth. and the normalized log energy. The Mel-
cepstral coefficients are computed every 5 ms within a 10 ms window after passing
the speech signal through a high pass FIR filter with a real zero at 0.95. This high

pass filter. a preempbhasis filter. removes the effect of the radiation loss at the lips.
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Table 8.1: This table shows the mapping between the TIMIT labels (represented by

[PA symbols) and the speech classes used in this chapter.

TIMIT Labels

Manner-Place (lasses

/el [ [af. [6], [>]. [a¥], [e¥]. [a¥].
[af- 8. 1. [/, Al [u], [2¥]. [i¥].
[V =l el N Ind- . 9/

syllabic (SY)

/n/. [m[. [9]. [ox]. [¢]. [hv/
[wl- N[ [y]- ]t/

sonorant consonant (SC')

/&1 13/ affricate (A)

/b/- /p/ labial stop (LS)

/d/. [t/ alveolar stop (A$)
/g/. &/ velar stop (V'S)

/s/. |z/ alveolar fricative (AF)
/8/. /2] palatal fricative (PF)

/8- 1v].18]./8/. [h/

weak fricative (WF)

h#. kel. pcl. tel, dcl, gel, bel, pau, epi

silence (SL)
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The APs developed in this thesis are computed every 5 ms within a 10 ms window.
The energy based parameters are computed after passing the speech signal through a
preemphasis filter with a real zero at 0.95. The non-energy based parameters (zero-
crossing rate. cross-correlation and voicing probability) are computed from the speech
signal prior to preemphasis. The APs used are listed in Table 8.2. These parameters
constitute a subset of the ones derived in chapter 7. The choice was made by selecting
the most prominent parameters important to the classification of the corresponding
phonetic features with the objective of having the number of cepstral-based param-
eters and their first and second derivatives (39 parameters) close to the number of
APs and their first derivatives (40 parameters). In addition. the chosen parameters

contribute more than 90% to the correct identification of the corresponding phonetic

features.

8.3 Acoustic Models

Acoustic models of all speech categories were context-independent” three-state left-
to-right Hidden Markov Models (HMM’s). The observation probabilities given an
HMM state were continuously distributed Gaussian mixtures with the number of
mixtures being one or eight. In all experiments, it was assumed that the components

of the observation vector, cepstra or APs. were independent so that the Giaussian

“A context-independent model of a speech category treats the occurrence of that category in any
phonetic context the same. In contrast, context-dependent modeling of a speech category results in
several models of that category. Each of these models corresponds to a particular phonetic context

in which the speech category occurs.



distributions have diagonal covariance matrices. The assumption of independence is
unrealistic but was chosen to simplify the computations. Furthermore. the objective
was not to develop the best recognition system for the task at hand. but to compare

the cepstral-based signal representation to that of the APs in a controlled framework.

8.4 Acoustic Model Training

Training the acoustic models consisted of the three stages implemented in HTKv1.5.
All models were bootstrapped from a set of sentences collected from the phonetically
diverse ~si” and phonetically compact “sx” sentences in the TIMIT training set.
Bootstrapping consists of model initialization using Viterbi style training followed
by Baum-Welch (or forward backward) training in the second stage. In the third
stage. the TIMIT training set was used to reestimate the HMMs built from the first
two stages using embedded reestimation. In embedded reestimation. it is assumed
that the class label sequence is known but the time segmentation is not. That is.
for every label sequence associated with a TIMIT sentence. a large HMM is built
by concatenating the HMM’s corresponding to the labels. Then. the HMM's are
updated by mapping the acoustic observations to the HMM states in a manner that
maximizes the probability of the large HMM model given the observations. Embedded
reestimation is intended to reduce the effect of segmentation errors incurred during

the transcription process by human listeners.



8.5 Recognition Experiments

Two sets of experiments were conducted to examine the performance of the derived
APs in comparison to cepstra. In the first set of experiments (baseline experiments).
speech models were trained on both males and females and tested on an independent
test set of males and females. In the second set of experiments. HMMs were tested on
speech from one gender and tested on sentences from the other gender. The purpose of
the second set of experiments is to compare the APs to cepstra in terms of robustness

to gender differences.

8.5.1 Baseline Experiments

In the baseline experiments. the training set consisted of the “si” and “sx” sentences in
the TIMIT training set. The test set consisted of all “si” sentences in the TIMIT test
set. The insertion/deletion penalty used in recognition was chosen so that the number
of insertions and deletions were close to each other as determined by running recog-
nition experiments on a set of 168 “sx” sentences extracted from the TIMIT test set.
The recognition results are summarized in Table 8.3. [n this table. M FC'(C"_F stands
for Mel-Frequency Cepstral Coeflicients and normalized log Energy. M FC'C _E_§1.52
refers to M FCC _E coefficients augmented by their first and second derivatives. AP
refers to the acoustic parameters derived in this thesis and 4P §1 refers to the APs
augmented by their first derivatives. In the l-mixture case. it was assumed that
the observation vector given the HMM state is Gaussian distributed. whereas in the
S-mixture case. it was assumed that the probability distribution of the observation

vector given the state consists of the combination of 8 Gaussian distributions. The
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choice of one mixture and eight mixtures was based on previous experimentation with

the manner-class recognition task discussed in chapter 5.

8.5.2 Performance of APs

First. by comparing the recognition results of the AP to those of AP_S1 in Ta-
ble 8.3. it is clear that adding the first derivatives increases recognition performance.
The improvement in performance is seen in almost every category but is especially
prominent in the case of the stop consonants where the correct recognition of the
alveolar stops went from 40.3% (c.f. Table 8.6) to 65.2% (c.f. Table 3.7) in the 8
muxture case. an absolute increase by about 25%. Furthermore. increasing the num-
ber of Gaussian mixtures resulted in improved recognition results of about 3% for
APJ1. Comparing the I mixture results in Table 8.5 to the § mixture results in
Table 8.7. it can be seen that the improvement in recognizing the alveolar and velar
stop consonants as well as that of the palatal fricatives and weak fricatives is the most
prominent. [mproved recognition with the higher mixture model can be due to many
factors. First. some of the parameters are not Gaussian distributed so the multi-
mixture Gaussian distribution provides a better fit. Second. multi-mixture Gaussian
distributions may provide better models by capturing the effects of speech variability
that arises from (1) interspeaker differences and (2) contextual variabilitv. While we
contend that the first type of variability is reduced by appropriate design of the APs.
the second type of variability may be captured by the different Gaussian modes of a
sound model. An indication of this fact can be deduced from the gender experiments

reported in the next section.



Table 8.2: Phonetic features, acoustic correlates. and APs used in the HMM recogni-
tion system. A dip-to_peak energy parameter is computed by first locating dips and
peaks and then computing, in each frame between the peak and the adjacent dip. the
difference in energy between the energy at the peak location and the enersy in each
frame. A peak_to_dip parameter is computed similarly. but relative to the energy at
the dip location instead of the energy at the peak location.

Phonetic feature

Acoustic correlates

APs

sonorant

strong low-frequency energy

voicing-probability (Entropic software)
E[0:688]/E[4000:3000]
E[0:375]/Eavg[0:375]

nonsyvlilabic

weak mid-frequency energy

dip_to_peak: E[500:4000]. E[2:50:3562]
E[1250:2562]

syllabic strong mid-frequency energy peak_to_dip E[500:1000]
fricated turbulent noise mainly zero-crossing
at high frequencies R1 = first autocorrelation coefficient
dip_-to_peak RI
noncontinuant silence followed by an abrupt | silence: E[200:3000]/ Emax[200:3000]
onset E[3000:6000]/Emax[3000:6000]
abrupt onset : sunm of first difference
values across STFT channels
strident strong turbulent noise around | E[F3+94:8000]/Eavg[F3+9-:3000]
F3 and above
palatal spectral peak around F3 E[F3-187:F3459-1] /E[0:3000]
noncontinuant strong turbulent noise E[F3+562:F3+1125]/
strident in F3 region Emin[F3+3562:F3+1125]
Stop place labial : spectrum is fairly E[F3+31:F3+3250]/E[0:F3+31]

flat or falling with

increasing frequency

alveolar: spectral prominence
at high frequencies (above F3)
velar: spectral prominence

in Fa-F3 region

E[F3-1750:F3]/E[0:000]

E[F3+281:F3+1 IN7)/E[0:F3+281]
E[F3+750:F3+1050}/E[F3+1050:3000]
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Table 3.3: Recognition results. MFCC_E refers to 12 Mel-cepstral coefficients nor-
malized & log energy. MFCC_E 5162 refers to MFCC_E & their st and 2nd
derivatives, AP refers to 20 acoustic parameters. 4P_§1 refers to 1P and their Lst

derivative. Each entry contains % correct/% accuracy.

Signal Representation | | mixture | § mixtures
MFCC_E 69.4/52.3 | 72.6/61.1
MFCC_E_§1.62 70.0/54.7 | 82.0/70.4
AP TL.7/56.1 | 7T4.6/61.5
AP 61 75.4/63.4 | 80.1/69.4

[t should be noted from the confusion matrices that the highest confusions arise
among the stop consonants. between the weak fricatives and the sonorant consonants
and between the palatal fricatives and the affricates. As previously indicated. the
confusion among the stop consonants may be reduced by including in the signal
representation parameters that relate to formant trajectories. The relatively high
confusion between the weak fricatives and the sonorant consonants is due to the fact
that many of the voiced weak fricatives that either appear adjacent to a sonorant
sound or occur between two sonorant sounds are manifest as more sonorant than
fricated. The confusion between the palatal fricatives and the affricates arise because
these two sound classes share the same place of articulation which is the palatal region
in the mouth. Another source of high confusion is between the weak fricatives and the
labial stops. This confusion could be due to the fact that /8/ and /8/ are sometimes

realized as noncontinuant (stop-like) and when they do. they appear to have a more



Table 8.4: The confusion matrix when the signal representation consisted of AP and

the observation distribution given an HMM state was Gaussian. All numbers are in

percentage.
Recognized SL | SY | SC A LS | AS | VS | AF | PF | WF | DEL
TIMIT-Label
SL 822|104 | 32 | 10|20 |07 {06 |06 | 06| 1.3 ] 6.9
SY 1.5 (745 (6.0 { 0.5} 23 | 19 |08 |03 ] 0.5} 0.5 |11.2
SC 09 | 19 [714| 04 | 40 | 19 {09 |02 03] L.l |I17.0
A 00|19 (13 |69.0] 57 | 3825|3857 |00/ 63
LS .2 10912201 (70641 | 76 | 0.l { 03] 09 | 12.0
AS 079 22 |16 | 58 | 138509 7.1 { 0.7 | 0.5 | 0.9 | I5.7
VS 26 122134 |37 16813143502 22| 1.2 | 11.0
AF 05103 (132806 | 18)]02]|8.7| 1.+t{03] 36
PF 04109 1008123770936 719 0+ 3.6
WF 35108 |10.1| 04 [174] 89 ( 49 | 1.3 | 0.3 |36.7| 15.7

]}
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Table 8.5: The confusion matrix when the signal representation consisted of AP_51
and the observation distribution given an HMM state was Gaussian. All number are

in percentage.

Recognized | SL | SY | SC | A | LS | AS | VS | AF | PF | WF | DEL

| TIMIT-Label

L

SL 834103 13210608 ]02]04|07!03]| 27172
SY 09 |/80.859 (02|06 04| 1002|041 0+4] 9.1
SC 09 109 |705] 0229 (05| L4 |01 |04 ] L9202
A 00 |00 (13 77213 3806} 70|19 |06/ 63
LS 60 |01 |23 |06 {78436 {89]0.1/!00] 03] 55
AS 1.1 | 1.6 [ 24 | 6.4 1 14.0[530.0 6.3 | 2.2 | 0.3 | 1.7 | 14.2
VS 1.2 1 1.9 | 1.0 | 24 | 1551134473 ] 03 | 0.5 | 1.2 | 15.3
AF 02 (0108 |05{01]037)0.1[935]|10115] 20
PF 09 109 |27 190]|04 |09 09 |1L8]67.0] 09 ; 45
WF 26 1 06 {10104 |15.0] 34 | 48 | L.7T ! L5 | 47.1| 128
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Table 8.6: The confusion matrix when the signal representation consisted of .{P and

the observation distribution given an HMM state was a mixture of 8 Gaussians. All

numbers are in percentage.

Recognized | SL | SY | SC | A LS { AS | VS | AF | PF | WF | DEL
TIMIT-Label
SL 345106 | 25 | 08 | 03 |03 ({05 ] 03037 32] 58
SY LI | 79448 {04 |16 | 04 ] 05| 0 | 051091 99
SC 13 1301696 04 | 24 |08 | 081}03] 03] 231183
A 1.3 106 |19 1696 06 |32 | 13|32 ](101] L3} 7.0
LS 1310912509 (771|321 360400/ 3.1 7.0
AS 13 120(35792199 1403 36 | 3.7 | 1.3 | 3.3 | 217
VS Ly 1 1.2 ) 22 ] 56 | 178122469 05 | 02 | 20 | 95
AF 0510215712209 |16 {03 86| 14, 1.0] 39
PF 04| 04|45 |109] 0 13 109 | 45 1733 04| 3.2
WF 29 V1.7 1 93 [ 08|85 13523 | L.1]05]564] 129
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Table 8.7: The confusion matrix when the signal representation consisted of AP_51

and the observation distribution given an HMM state was a mixture of 8 Gaussians.

All numbers are in percentage.

Recognized | SL | SY | SC | A | LS | AS | VS | AF | PF | WF | DEL
TIMIT-Label

SL 8.0 (05123 105030401 |04{02]27169

SY 06 {86.8|35 0003 {05/[02{;02]03]05] 7.1

sC 083 | 1.0 725102 | L.v | 09 {03 |02 0.1 ] 35 |187

A 0006 | 13 810113 |57]00]25/|19]06] 51

LS 0.1 {09 |10 ] 10]790)| 54 {41 |01 |00} 19| 64

AS 06 | 1.1 | 1.5 | 44 | 82 {652 45 | 1.0 | 0.2 1.3 | 12.0

VS 1.2 1 1.0 } 1.2 | 3.1 | 88 | 124|576 0.5 | 0.0 L.5 | 12,6

AF 03 {0107 |13 ]01)]067]0.1 |922]22 L.0 1.4

PF 09 {00 18]50)00}|00]00] 68 [S23] 1.3 L8
WF 23 | 1.0 7.0 [ 0L {93 |55 |39 1.6 0.7 |57.9] 10.7
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or less flat spectrum which is similar to that of labial stops. This problem may be

reduced when the dental feature of these weak fricatives is considered.

8.5.3 APs vs. Cepstra: A Performance Comparison

The objective in this section is to compare a cepstral-based signal representation to
that of the APs in the speech manner and obstruent place-of-articulation recognition
task. Thus. a cepstral based signal representation as described in section 8.2 was
generated and 3-state HMMs of all 10 speech classes were trained on the TIMIT “si”
and "sx” training sentences and tested on all 504 “si” TIMIT test sentences . The
results are summarized in Table 8.3. First. it should be noted that in the I-mixture
case. the APs performed better than their cepstral counterparts. For the l-mixture
case. the recognition accuracy with AP was 3.8% higher than with M FCC_E and
the recognition accuracy with AP_§1 was 8.7% higher than with M FCC_E_51.52. It
could be the case that the Gaussian distribution provides a worse model for the cep-
stral observations than for the APs. This can deduced by comparing the recognition
accuracy obtained with l-mixture models to that obtained with S-mixture models.
[n the case of M FCC_E, an absolute increase in accuracy of 8.8% was observed (c.f.
Table 8.3). while in the case of M FCC_.E_§1.62 an absolute increase of 15.7% was
observed in going from unimodal Gaussian to 8-mixture Gaussian models. Moreover,
the recognition accuracy with M FCC_E _61_62 was 1% higher than that with AP 81
in the S-mixture case. This is the only case where the cepstral-based representation
performed better than the APs.

Better recognition accuracy was achieved with the 8-mixture Gaussian models. in



comparison to the l-mixture Gaussian models, for both the cepstral signal represen-
tation and the AP signal representation. However, the improvement in performance
was much more pronounced in the case of the cepstra than in the case of the APs.
Multi-mixture Gaussian distributions are used as an observation distribution in order
to better model the variability in the acoustic realization of speech sounds. This
variability may arise from interspeaker variability (such as gender difference) and
contextual variability. Thus, by comparing the I-mixture results to the S-mixture re-
sults. one can argue that the APs for a specific sound are inherently less variable than
the cepstral values for that sound. However. is this reduction in variability due to
reduction in the contextual effect on the APs or is it due to reduction in the speaker-
dependent effects? In the next section, it is shown through experimental results that
the APs are less effected by gender differences than the cepstra and theyv tend to
reduce the effect of the gender differences more than the contextual variability.

[n order to hone in on the weaknesses of the APs relative to cepstra. the between-
class confusions obtained from the 8-mixture recognition tests (best results) are com-
pared. First. the weak fricative correct recognition with M FC'C _E_ 5182 was 11.4%
higher than with AP _§1. Second, the correct recognition of the three stop consonant
classes was higher. for each class, with M FCC_E_§1_62 than with AP_§1. In the case
of the labial stops. the difference was 3.8%. For the alveolar stops. the difference was
12.1% while for the velar stops the difference was 24.2%. These results suggest that
the cepstra are capturing more important acoustic details. relevant to the identifica-
tion of the stop consonants, than the APs. This is not surprising since the present
set of APs provides only a partial representation of the speech signal. whereas the

cepstral parameters provide a full representation of the speech signal.
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8.5.4 Gender Experiments: APs vs. Cepstra

The set of experiments reported in this section shows that the APs are hetter able to
reduce gender-dependent effects relative to the Mel-cepstral parameters. [n this set of
experiments. all the TIMIT training sentences from the two dialect regions: drl. dr2
were used. These sentences were divided into two sets: sentences spoken by fernales
and sentences spoken by males. [n each experiment, the acoustic models were trained
on one gender and tested on another. Furthermore. AP_§1 and MFCCE_51_62
were used as the AP-based signal representation and the Mel-cepstral-based signal
representation. respectively. since these representations produced the best results.
The observation probability given an HMM state was a mixture of 8§ Gaussians as
this is the distribution, among those tested. that produced the best results in the
baseline experiments.

The experimental results are summarized in Table 8.8. It is shown that when
training on male speech and testing on female speech. the recognition accuracy with
AP 31 is about 1% higher than with the Mel-cepstral representation. However. when
training on females and testing on males, the recognition accuracy with AP_41 is
about 3% higher than with the Mel-cepstral representation. In comparison to the
baseline results. the recognition accuracy dropped by 1.6% for AP .51 and by 3.6% for
M FCC_E_§1.62 when training on males and testing on females. On the other hand.
when training on females and testing on males. the recognition accuracy dropped by
4+.2% for APl and by 8% for MFCC_E_§1_62. The lower results obtained when
training on females could be due to insufficient number of training sentences. 296. in

comparison to the 616 male training sentences.
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Table 3.3: Recognition results using 8 mixtures. First column. training done with
speech produced by males and recognition done with speech produced bv females.
Second column. training done with speech produced by females and recognition done

with speech produced by males.

Signal Representation %correct /%accurate Yocorrect /F%accurate

training:male, testing:female | training:female. testing:male

MFCC_E_§1.82 78.7/66.9 76.1/62.4

APS1 79.5/67.8 76/65.2

8.6 Concluding Remarks

[t was shown in this chapter that the derived APs can be used in the HMM recog-
nition framework producing comparable results to the Mel-cepstral parameters. Fur-
thermore. it was shown that the derived APs are more robust than the Mel-cepstral
parameters to gender differences. The robustness to speaker differences. such as gen-
der. is an important feature of a signal representation used for speaker-independent
speech recognition. While similar robustness may be achieved by performing differ-
ent transformations on the spectral or cepstral representation of the speech signal
(e.g.. [79]. [80]. [81], [82]). it should be noted that this is not the sole objective of
the derived parameters. The main objective of the derived parameters is to explic-

itly target the relevant phonetic information in the speech signal and as a byproduct
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to reduce speaker-dependent effects. Furthermore. in deriving the APs. knowledge
about the acoustic realization of the phonetic features was heavily utilized and in
some cases refined. These two properties of the APs differentiate them from other
signal representations based on cepstra.

The experiments reported in this chapter were used as a vehicle to compare the
APs to Mel-cepstra while keeping the recognition paradigm (HMM) and the model
complexity similar. The APs by way of derivation, are not meant to be deploved
as the front-end in a frame-based HMM framework, but are tailored for an event-
based approach to speech recognition. Using this event-based approach. only APs
that are relevant to a sought phonetic feature will be computed at selected instants
in time. Such a computation is expected to match the way the APs were developed.
i.e. following the phonetic feature-hierarchy. In the HMM recognition framework.
all parameters had to be computed at every time frame. Thus. certain APs were
computed for sounds that were not considered in the development of the parameters.
For instance. the parameters that are relevant to the anterior/nonanterior contrast
were developed by considering only the strident fricatives. [n the signal representation
for HMM-based recognition. these parameters were computed at every time instant
without first determining whether that time instant is fricated and strident as the case
would be in an event-based approach. However. an event-based paradigm for speech
recognition was not the objective of this thesis. Despite this fact. the viabilitv of this
paradigm was shown through the manner-class recognition experiments in Chapter 3
and the semivowel recognition experiments in [40].

The computation of all APs at every time. whether they are relevant or not. results

in a large dimensional vector for the HMM framework. This problem will become
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more acute as more phonetic features relevant to vowels and sonorant consonants
are considered. There are a couple of possible ways to deal with the dimensionality
problem: (1) use a standard dimensionality reduction techniques such as discriminant
analysis or principle decomposition or (2) map each set of acoustic parameters to the
phonetic feature they target using the tree classifiers. Neural Nets or fuzzy rules. In
the latter case. the input to the HMM system will be degrees of belief (e.g. probability

or possibility) in the existence of each phonetic feature.
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Chapter 9

Discussion and Conclusions

The lessons that we learned from this research about the speech process are discussed
in Section 9.1. The main results obtained in this thesis are summarized and discussed

in Section 9.2. Directions for future research are discussed in Section 9.3.

9.1 The Feature-Based Approach to Speech Anal-

ysis and Recognition as a learning Tool

The undertaken feature-based approach to speech analysis and recognition was de-
scribed in Chapter 1 as a learning tool about the speech process. What we learned

in the course of this thesis is the following:
¢ A better understanding of the acoustic correlates of phonetic features.

¢ An understanding of the signature of the acoustic correlates of phonetic features

in the speech signal. This is illustrated by the acoustic parameters we developed
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for the manner and obstruent place-of-articulation phonetic features.

® The relative importance of acoustic parameters and therefore acoustic correlates

in detecting the acoustic signature of a phonetic feature.

® Acoustic parameters that target phonetic features can be designed to be gender-
independent by appropriately normalizing them in time and frequency. The
normalization method used depends on the targeted phonetic feature and is

based on the articulatory and acoustic correlates of that feature.

¢ How contextual variability is reflected in the APs and the frequency with which

they occur.

9.2 Summary

Three major tasks were undertaken in this thesis: (1) the development of acoustic
parameters (APs) that explicitly target the phonetically relevant information in the
speech signal. (2) the exploration of the APs in an event-based approach to speech
recognition. and (3) the exploration of the APs in the Hidden Markov Model frame-
work for speech recognition.

APs related to the acoustic properties of the manner features: sonorant. svllabic.
fricated and noncontinuant were derived. These APs were used in an event-based
paradigm for manner-class recognition. The derivation of these APs was motivated
by acoustic-phonetic studies and was based on subjective analysis of measurements
obtained on the TIMIT database. The mapping from the acoustic parameters to the

related phonetic features was done through fuzzy rules motivated by our spectrogram
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reading experience.

[n recognition. as in development. parameter computation was guided by the pho-
netic feature hierarchy (see Chapter 5). Thus, not all parameters were computed
evervwhere. Rather. some parameters were computed only in obstruent regions while
others were computed only in sonorant regions. In the manner-class recognition task.
the developed system outperformed an HMM system with a Mel-cepstrum front-end
and unimodal Gaussians representing the observations™ probability distributions. [n
order to determine whether this performance was due to the front-end signal repre-
sentation (Mel-cepstra vs. APs) or to the recognition framework (HMM vs. event-
based). the APs developed for an event-based system were adapted to fit into the
HMM framework and the task of manner-class recognition was carried out. Recog-
nition results showed that the event-based system outperformed the HMM svstem
when both were using the APs as the front-end. These results confirm that an event-
oriented paradigm to speech recognition is a viable one.

When the front-end of the HMM system was changed to include the first and
second derivatives of the raw signal representation (Mel cepstra or APs) and when
the model complexity of the HMM system increased (8-mixture Gaussian observa-
tion probability distributions instead of unimodal Gaussians). the HMM svstem per-
formed better than the event-based system. This means that the dvnamic informa-
tion. derivatives of cepstra or acoustic parameters, contains information relevant to
the recognition process. In addition, the multi-mixture observation probabilities were
able to capture and better model sources of acoustic variability (e.g.. gender and
context) leading to improved recognition results.

The HMM system with the Mel cepstra and their derivatives used more informa-
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tion (39 parameters) than the event-based system (13 parameters). However. due
to the automatic learning capability of the HMM system. this additional informa-
tion was easily added and the system was relied upon to learn from it. C'urrently.
our hand-designed event-based system does not have that automatic learning capa-
bility. Integration of any additional information will require detailed analysis and
hand crafting. a laborious and time-consuming process. The original motivation to
hand crafting the system was to control the decision process so that we know how
parameters contribute to the recognition process. Although such an approach has
value. it calls into question our ability to construct a more complex system that will
be needed for full speech recognition. On the other hand. the high performance of the
event-oriented paradigm is 2 motivation to further pursue this approach while adding
automatic learning capabilities that can make use of our existing acoustic phonetic
knowledge and that can enrich that knowledge if possible.

Comparison of the HMM systems using Mel cepstra and Mel-cepstra with their
derivatives to those using the APs and the APs with their derivatives. respectively.
showed that the APs are able to target the linguistic information in the speech signal
and that they are more robust to gender differences. These results motivated the
development of APs that target additional phonetic features. However. in order
to make the parameter derivation process more objective and to reduce the labor
involved. an automatic procedure was developed.

[n addition to comparing the APs to Mel-cepstra and the HMMI framework to the
event-based approach. an error analysis was conducted on the recognition results of
the event-based system. This analysis showed that a high percentage of the declared

errors. such as a canonically fricative /v/ recognized as a sonorant consonant. were
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indicative of systematic contextual variabilities that alter the acoustic realization
of a sound from its canonical form. Visual spectrographic inspection of some of
these ~declared” errors verified that they were not errors. but that thev reflected the
acoustic manifestation of the corresponding sounds. In addition. this visual inspection
suggested that the alteration happened along one or two phonetic-feature dimensions
while other features of the phones have not been changed. For instance. inspection
of sonorant /v/’s showed that these /v/’s could still be recognized as such based
on other phonetic features such as labial. consonantal. nasal etc. Thus. it seems
that accounting for this type of variability. in a word or a phone recognition svstem.
could be efficiently done at the lexical level in terms of allowable changes to phonetic
features. This is the case as this type of variability usually effects groups of phones
rather than one phone. For instance. not only /v/’s could be manifest as sonorant in
intervocalic consonant position. but also the canonically voiced fricative /8/ could be
manifest as sonorant in that same or similar context. How such variability could be
modeled or accounted for will depend on the recognition paradigm. For instance. in
the event-based approach. this type of variability could be accounted for in the lexical
description of words if they are defined in terms of phonetic features. In this case. for
a word containing an intervocalic /v/, the sonorant feature for that /v/ could be left
unspecified so that if a sonorant acoustic event is detected in the speech signal in the
time span corresponding to that /v/, a mismatch is not declared. Alternatively. this
alteration could be accounted for through rules in the lexical access component. [n
the HMM framework. if context-dependent models are built. it is feasible that /v/'s
in intervocalic position share the same acoustic model independent of the identity of

neighboring vowels. thereby reducing the number of acoustic models.
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Motivated by the results obtained with the APs related to the manner features
and by the need to reduce the subjectivity in parameter derivation as well as the hu-
man labor involved. an automatic procedure for the development of APs was devised
(see Chapter 6) and tested in this thesis (see Chapter 7). This procedure makes use of
statistical methods (Fisher Criterion and automatic classification trees) and acoustic
phonetic knowledge to derive. from speech samples. parameters that best distinguish
between a phonetic feature and its antonym. Using this procedure. parameters rele-
vant to the phonetic features: sonorant. svllabic. strident. anterior. labial. velar and
alveolar were derived. As before, an important attribute of the derived parameters
is that they were made relative in time and/or frequency to focus on the phonetic
content of the speech signal and reduce speaker-dependent. e.g. gender. effects on
the parameter space. The ability of the derived parameters to target the linguis-
tic message in the speech signal was demonstrated by the high correct classification
rates obtained at the feature level (see Chapter 7). The ability to reduce speaker-
dependent effects was illustrated through the similarity between the female and male
distributions in the parameter space.

The acoustic parameters were also used as a front end to an HMM system. [n
doing so. each parameter was computed as a part of an observation vector at every
time frame. Under the assumption of unimodal Gaussian distributions for the obser-
vation vector given an HMM state, the HMM system using the acoustic parameters
performed better than the HMM system with Mel cepstra as the front end. both with
derivatives and without derivatives. However. as the observation distributions were
made more complex with 8 Gaussian mixtures. the HMM results were slightlyv better

than the acoustic parameter results (1% difference). This difference in results was
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mainly due to insufficient recognition accuracy of the stop consonants. [n this case,
it was pointed out that additional parameters that target dynamic information such
as formant transitions may be needed.

Although the focus in this thesis has been on speech recognition applications. this
work has implications in other areas of speech research. The relationships between
the abstract phonetic features and their acoustic realizations can be used to develop
aids for the hearing impaired and the speech impaired. For instance. in the case of the
hearing impaired. the inability of a human subject to distinguish among speech sounds
may be due to deficits in his/her ability to perceive certain acoustic properties of the
speech signal. Knowing what acoustic properties make a speech sound distinctive
from others can guide the development of algorithms that enhance the perception of
these properties such as emphasizing certain frequency components. These algorithms
can be implemented on a chip that gets implanted in the subject’s ear.

The signal representation based on APs can also be used as a visual aid for speech
pathologists and their clients to help them understand aspects of the speech signal
that are not properly produced. The client in this case may be a person learning
English as a second language or a person with speech impediments. The acoustic
parameters can also be used in developing devices for the speech impaired. For in-
stance. alaryngeal speakers who use an artificial larynx may not he able to produce
important aspects of the speech signal (e.g.. alaryngeal speakers usually have prob-
lems producing strong turbulant sounds such as /s/). Using the sonorant acoustic
parameters. a speech enhancement device may be able to first detect sonorant from
nonsonorant segments in the alaryngeal speech signal. a process that can also he done

with other speech recognition systems. The parameters can then guide the process-
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ing of the speech signal to produce more intelligible speech. For instance. the speech
signal can be processed so that the parameter values corresponding to the stridency
feature fall in the range of the same parameters measured on normal speech. Finally.
this work may have impact on the area of speech synthesis by rule [I]. Knowing what
acoustic information needs to be produced in order to relay the linguistic message will
help emphasize that information in the synthesized signal. In addition. knowing how
different phonetic features relate to each other acoustically and how they vary within

one’s speech depending on context may lead to synthesizing more natural speech.

9.3 Future Work

The work presented in this thesis can be extended in many ways. The results obtained
in this research should be looked at as encouraging, but preliminary since the speech
recognition problems addressed were limited in scope. Harder speech recognition
tasks such as phoneme recognition and word recognition will necessarily raise many
issues that were not addressed in this research.

First. it is clear that phonetic features can be used as a basis for developing
acoustic parameters that target the phonetic content in the speech signal. In order
to carry phoneme recognition or word recognition. acoustic parameters pertinent to
additional phonetic features must be developed. There are 20 or so phonetic features.
Based on our experience thus far. there could be on the average of about 2 to 3
parameters per phonetic feature. Thus, about 60 parameters may be needed to target
all features. This is about 1.5 times the number of Mel cepstral coefficients used in

today’s speech recognition systems (39. including derivative features). The effect



of the number of parameters on recognition performance greatly depends on the
recognition paradigm. An event based paradigm. such as the one explored in this
research. would use only a subset of parameters at different stages of the recognition
process. That is. parameters relevant to a phonetic feature will need to be computed
if acoustic evidence for that feature is sought. That is. not all parameters need to
be computed at once. In such a case, if probabilistic models are to be built for each
phonetic feature. only the parameters relevant to that feature need to be considered in
this model. and all samples that possess that feature will be used to train these models
whereas those that possess the antonym feature will be used to train the competing
model(s). On the other hand. if the parameters are to be used in a frame-based
recognition framework as the HMM, all parameters will need to be concatenated in
one observation vector with 60 dimensions. This large dimensionality may lead to
a training problem as large sets of training data will be needed to obtain reliable
acoustic models of phones. The problem will become more acute if the derivatives
of these parameters are blindly added to the observation space. as was done in this
thesis. further increasing the observation-space dimensionality!.

The dimensionality problem may be alleviated in several ways. One possibility
1s the use of traditional dimension-reduction techniques. such as linear discriminant
analysis. to reduce the dimensionality of the observation space. Alternatively. the

acoustic parameters can be mapped to an intermediate signal representation in terms

[t was empirically shown in this thesis that having APs and their derivatives as a signal repre-
sentation results in better recognition performance than having the APs alone. In these experiments.
The derivative of each AP was blindly added. It is not clear if this is needed as the derivatives of

some APs may not be relevant. This issue requires further investigation.
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of phonetic features (a vector of 20 components). This representation in the phonetic-
feature space may then be used as the front end to the recognition system. The feature
signal representation can be in terms of probabilities of phonetic features estimated
from the acoustic parameters. The advantage of this approach is that samples from
many speech sounds can be pooled together to train feature models leading to an
efficient use of training data. This is the case since phonetic features higher up
in the feature hierarchy are shared by many phonemes. Efficient use of training
data can also be accomplished by sharing data among phones along the acoustic-
parameter dimensions related to the phonetic features that thev have in common.
These alternatives will need to be well formulated and empirically explored. [t should
be noted that data pooling is done today through context-dependent model clustering
for a phone across different contexts without sharing data between phones.

There are additional experiments that need to be done in order to assert how to
gain full advantage of the AP signal representation within the HMM framework. In
the experiments conducted thus far, diagonal covariance matrices were assumed for
the Gaussian distributions. This assumption asserts that the acoustic parameters are
independent. Intuitively. this is not the case as there is a high degree of correlation
between acoustic parameters, especially those that relate to the same phonetic feature.
[n addition, the hierarchical organization of features suggest that the phonetic features
are dependent on each other and so are there corresponding parameters. Thus. full
covariance matrices or block diagonal covariance matrices (capturing the dependence
among acoustic parameters related to the same phonetic feature only) need to be
experimented with. This could result in better recognition results with the APs in

comparison to cepstral-based parameters since cepstral parameters have been shown
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to be roughly independent as they approximate principal decomposition. [n addition,
the role of the APs and their performance in building context-dependent models of
phones or speech classes need to be explored. The question in that case is whether
knowing about acoustic variability at the phonetic feature level and knowing how
phones share phonetic features can lead to a more compact model space.

Several possible experiments in the context of the HMM framework were discussed.
However, the ultimate goal is to gain full advantage of a signal representation based on
phonetic features in the event-based framework that does not require frame-by-frame
decision making. as the HMM does. and does not make an assumption that speech
is merely a concatenation of time stretches corresponding to different phones. It is
postulated that an event-based approach will allow the detection of speech sounds
even if most of the evidence for their existence is overlapping with another sound. For
instance. it has been observed from analysis of recognition errors that the strongest
evidence of an /r/ in a stop-/r/ sequence may be in the frication of the preceding
unvoiced stop consonant. How to detect such an event is still a question that needs
to be addressed. Finally, a fully integrated speech recognition syvstem whereby the
signal as well as the lexicon are represented in terms of phonetic features still need to
be explored. [t seems that such an approach may allow better modeling and handling
of contextual variability than existing approaches based on context-dependent phone
models. However. such an approach still needs to be formulated. Although appealing.
the process may be too complicated to be practically implemented for real recognition
tasks such as continuous speech recognition. However. it may have a practical appli-
cation in an N-best rescoring paradigm whereby an initial segmentation of speech is

obtained through some other means to produce a list of hypothesized sentences and
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this event-base approach is used to rescore or reorder the sentences.
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Appendix A

Fuzzy Evaluation Index

The fuzzy evaluation index (FEI) is based on fuzzy set theory and was first proposed in
[83] to evaluate the goodness of a single feature in discriminating between two classes.
The term ~feature” in this criterion is similar to what we call “acoustic measure™ and
should not be confused with a “phonetic-feature”. Several FEI's were defined in
[83] based on the index of fuzziness. entropy and 7-ness and using § — shaped and
7 — shaped membership functions. In all cases, the FEI is defined so that it decreases
in value as the feature reliability in characterizing the considered classes increases.
In this section. the FEI definition that uses entropy and an § — fype membership
function is considered to illustrate the ohjective of an FEIL Let (', and (> be two
different classes of interest and let ¢ be the feature being evaluated for its ability
to separate between the two classes. Furthermore. Let n, and n, be the number of

samples from (", and C3, respectively. Then, FEI for feature g is defined as:

Hsyy

—_— Al
7, + i, (A4

(FEI), =
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where the entropy for class C; using the S — type membership function p(r) is given
by.

I & . .
H = —3_ K(u(z")) (A.2)

t =1

and
K(u(z';) = [~p(z;) log,(u(2;)) = (1 — p(2})) logy(1 — p(, ). (A.3)

H*\2 in equation A.l is computed by pooling the observed samples from (', and C,
together resulting in ni2 = n; + n; samples. The S — type function involved in the

computation of H?; is depicted in Figure A.l where b is the sample mean for class C;

defined as

. 1 & .
b =f(‘) = ;Z.‘U(‘)J’
13 j—l
The extreme points a and c are defined by:

c = b+d

¢ = b—d

where d is the maximum distance between an observed sample and the sample mean

and is given by:
d = max| (2 ~ max(z®,)) |.| (7 - min(z"?,)) | .
7 J

(FEI), is minimum when each of H®, and H?*, is maximum while %, is minimum.
The function A'(z) involved in the computation of the entropy H*, is monotonically
increasing in the interval [0,0.5] and monotonically decreasing in the interval [0.5,1]

with a range [0.1] as depicted in Figure A.2. Thus. the closer a sample value (9,
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Figure A.1: An S — type membership function.

is to the sample average (note u(Z!¥)) = 0.5). the higher is the value of A'(u(z!")).
(‘onsequently. A*; is higher in value when more sample values are clustered around
the sample average. A higher H*; value indicates that the intraclass variation for
C: with respect to the feature g is smaller. A characteristic of a good feature is to
minimize the intraclass variation. The other characteristic is to maximize interclass
separability and this is achieved by minimizing H*,. The more the samples of both
classes are away from the sample average (the sample average in this case is computed
over the samples from C; and C; pooled together). the smaller is the value of H*,.

Consequently. a good feature should have a low FE[ value.

1 T T =T

K{x)
o
w

1)
1

0 0.25 0.5 0.75 1

Figure A.2: The function A(x) involved in the computation of the entropy.
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