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Abstract—Prior research has shown that articulatory informa-
tion, if extracted properly from the speech signal, can improve
the performance of automatic speech recognition systems. How-
ever, such information is not readily available in the signal. The
challenge posed by the estimation of articulatory information
from speech acoustics has led to a new line of research known
as “acoustic-to-articulatory inversion” or “speech-inversion.”
While most of the research in this area has focused on estimating
articulatory information more accurately, few have explored ways
to apply this information in speech recognition tasks. In this
paper, we first estimated articulatory information in the form of
vocal tract constriction variables (abbreviated as TVs) from the
Aurora-2 speech corpus using a neural network based speech-in-
version model. Word recognition tasks were then performed for
both noisy and clean speech using articulatory information in
conjunction with traditional acoustic features. Our results indicate
that incorporating TVs can significantly improve word recognition
rates when used in conjunction with traditional acoustic features.

Index Terms—Articulatory phonology, articulatory speech
recognition, artificial neural networks (ANNs), noise-robust
speech recognition, speech inversion, task dynamic model,
vocal-tract variables.

I. INTRODUCTION

S PONTANEOUS speech typically has an abundance of vari-
ability, which poses a serious challenge to current state-of-

the-art automatic speech recognition systems (ASR). Such vari-
ability has three major sources: 1) the environment, introducing
different background noises and distortions, 2) the speaker, in-
troducing speaker-specific variations such as dialectical–accen-
tual–idiosyncratic contextual variation, and 3) the recording de-
vice, which introduces channel variations and other signal dis-
tortions.
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A. Noise Robustness in ASR

Several approaches have been proposed to incorporate noise
robustness into ASR systems, which can be broadly grouped
into three categories: 1) the front-end based approach; 2) the
back-end based approach; and 3) the missing feature theory.

The front-end based approaches usually aim to generate rela-
tively contamination-free information for the back-end classifier
or model. Such approaches can be grouped into two sub-cate-
gories. First, the noisy speech signal is enhanced by reducing
the noise contamination (e.g., spectral subtraction [1], compu-
tational auditory scene analysis [2], modified phase opponency
[3], speech enhancement and auditory modeling using the ETSI
system [4], etc.). Second, features effective for noise robustness
are employed in ASR systems (e.g., RASTAPLP [5], Mean sub-
traction, Variance normalization and ARMA filtering (MVA)
post-processing of cepstral features [6], cross-correlation fea-
tures [7], variable frame rate analysis [8], peak isolation [9], and
more recently the ETSI basic [10] and advanced [11] front-ends,
etc.).

The back-end based approach incorporates noise robustness
into the back-end statistical model of the ASR system [usually a
hidden Markov model (HMM)] for different speech segments.
The goal of the back-end based systems is to reduce the mis-
match between the training and the testing data. One such ap-
proach is to train the back-end models using data that contain
different types of noise at different levels [12]. However, a short-
fall to such a system is the necessity of knowledge of all pos-
sible noise type at all possible contamination levels, which ren-
ders the training data immensely huge if not unrealizable. An
alternative is to adapt the back-end to the background noise.
For instance, parallel model combination (PMC) [13] uses the
noise characteristic and the relation between the clean and noisy
speech signals to adapt the Gaussian mixture means and covari-
ances of clean acoustic HMMs toward the true distributions of
the noisy speech features. Usually such a transformation is fairly
accurate but computationally expensive because the model pa-
rameters need to be updated constantly for non-stationary noise.
Maximum-likelihood linear regression (MLLR) [14] performs
model adaptation by rotating and shifting the Gaussian mixture
means of clean HMMs using linear regression without using
any prior knowledge of the background noise. Piecewise-linear
transformation (PLT) was proposed [15] for a modified ver-
sion of MLLR where different noise types are clustered based
on their spectral characteristics and separate acoustic models
are trained for each cluster at different signal-to-noise ratios
(SNRs). During recognition, the best matched HMM is selected
and adapted by MLLR.
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The third approach is the missing feature theory [16], [17],
which assumes that in noisy speech some spectro-temporal re-
gions are so noisy that they can be treated as missing or unreli-
able. The missing feature approach computes a time–frequency
reliability mask to differentiate reliable regions from the unreli-
able ones where the mask can be binary [16] or real valued [17].
Once the mask is computed, the unreliable components are dealt
with by two different approaches: 2) data imputation [16] where
the unreliable components are re-estimated based on the reliable
components and 2) marginalization [16] where only the reliable
components are used by the back-end for recognition. Bounded
marginalization (BM) was proposed in [18] which generally
outperform the “plain” marginalization. BM uses the knowledge
that the unreliable data is bounded and the knowledge of such
bounds is used to constrain the upper and lower bounds of the
integral used for obtaining the likelihood of the incomplete data
vector.

B. Articulatory Information for Contextual Variation

In the absence of noise, the major sources of variability
in speech are speaker differences and contextual variation
(commonly known as coarticulation). Typically, speaker dif-
ferences are addressed by adapting the acoustic model to a
particular speaker. Contextual variation is accounted for by
using tri-phone or quin-phone based ASR systems that repre-
sent speech as a sequence of non-overlapping phone units [19].
However, such tri- or quin-phone models often suffer from
data sparsity and capture contextual influence only from the
immediate neighboring phones [20]. Indeed, coarticulation can
have contextual influence beyond the immediate neighbors,
and hence such models may fail to adequately account for
coarticulatory effects [21].

It has been suggested [22] that the variations that occur in
speech can be accounted for by incorporating speech produc-
tion knowledge, which in turn may improve the performance of
ASR systems. In a typical ASR application, the only known ob-
servable is the speech signal and speech production knowledge
(typically articulatory dynamics) is unknown (such data may be
available for research purposes, but cannot be assumed to be
available for real-world applications). Hence, speech produc-
tion related information needs to be estimated from the speech
signal. Deciphering articulatory information from the speech
signal and exploiting it in ASR has been widely researched and
some of the prominent approaches are presented here.

Feature-Based Systems: Most of the initial research
[23]–[25] in trying to incorporate speech production knowledge
into ASR systems focused on deciphering appropriate features
to capture articulatory dynamics and events, commonly known
as articulatory features (AFs). One of the earliest AF-based
ASR systems was proposed by Schmidbauer [26], who used
19 AFs (describing the manner and place of articulation) to
perform HMM-based phone recognition of German speech
and reported an improvement of 4% over the Mel-frequency
cepstral coefficient (MFCC)–HMM baseline. These features
showed less variance in recognizing different phonemic classes
and were more robust against speaker differences as compared
to the standard MFCC–HMM baseline. Deng [27] proposed an
ASR system where the HMM states generated a trended-se-
quence of observations that were piece-wise smooth and

continuous. Deng and his colleagues used 18 multi-valued
AFs [28], [29] describing the place of articulation, horizontal
and vertical tongue body movement, and voicing information.
They reported an average classification improvement of 26%
over the conventional phone-based HMM architecture for a
speaker-independent task. Phone recognition on the TIMIT
dataset showed a relative improvement of about 9% over the
MFCC-HMM baseline.

King et al. [30] used artificial neural networks (ANNs) to
recognize and generate AFs for the TIMIT database. They ex-
plored three different feature systems: binary features proposed
by Chomsky et al. [31], traditional phonetic features defining
manner and place categories, and features proposed in [32] and
reported almost similar recognition rates for all of them. A com-
prehensive literature survey on the use of AFs and speech pro-
duction model motivated ASR architectures is presented in [33].

Articulatory Trajectories and Their Use in ASR: Using artic-
ulatory trajectory information is more challenging than AFs in
the sense that it involves retrieving articulatory dynamics from
the speech signal, which is called “speech-inversion.” This in-
verse problem is traditionally known to be ill-posed [34] as it is
not only nonlinear but also non-unique. Nonlinearity arises due
to the quantal-nature [35] of speech and non-uniqueness hap-
pens because different vocal tract configurations can yield sim-
ilar acoustic realizations.

One of the earliest works on speech-inversion was by Atal
et al. [36] who used temporal decomposition to predict the
corresponding vocal tract configuration from acoustic signal.
Multi-layered perceptrons (MLPs) also have been used by many
studies [34], [37], [38] to obtain articulatory information from
the speech signal. Ladefoged et al. [39] used linear regression to
estimate the shape of the tongue in the midsagittal plane, using
the first three formant frequencies in constant-vowel segments.
Codebook-based approaches have also been proposed [40], [41]
for speech inversion. Richmond [34] proposed mixture density
networks (MDNs) to obtain flesh-point trajectories (also known
as pellet trajectories) as conditional probability densities of
the input acoustic parameters. He compared his results with
that from ANNs and showed that MDN can directly address
non-uniqueness in speech inversion. Recently, studies by Qin
et al. [42] and Neiberg et al. [43] stated that “non-uniqueness”
may not be so critical an issue but nonlinearity is more critical
for speech inversion.

Inversion studies involving articulatory trajectories have been
mostly confined to predicting such dynamics efficiently and ac-
curately, and understanding their functional relationship with
the acoustics. Due to the difficulty in estimating them, only a few
ASR results [44], [45] have been known to use such articulatory
dynamics. An alternative is to use actual articulatory recordings
directly into the ASR system, but such a setup is not desirable for
real-world applications. Frankel et al. [44] developed a speech
recognition system that uses a combination of acoustic and artic-
ulatory features as input, where the articulatory trajectories are
modeled using phone-specific linear dynamic models (LDMs).
They showed that using articulatory data from direct measure-
ments in conjunction with MFCCs resulted in a performance
improvement by 9% [45] over the system using MFCCs only.
Such an improvement did not hold when the articulatory data
was estimated from the acoustic signal [45].
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Fig. 1. (a) Eight tract variables from five distinct constriction locations.
(b) Pellet placement locations according to [51].

Fig. 2. Gestural score for the utterance “miss you.” Active gesture regions are
marked by rectangular solid (colored) blocks. Smooth curves represent the cor-
responding tract variable trajectories (TVs).

Articulatory Gestures and Tract Variables: Speech variations
such as coarticulation have been described in several ways, in-
cluding the spreading of features from one segment to another
[46], influence on one phone by its neighbor and so on. Articu-
latory phonology [47], [48] defines coarticulation as a phenom-
enon that results from overlapping vocal tract constrictions or
gestures. An utterance is represented by a constellation of ges-
tures known as the gestural score as shown in Fig. 2. Note unlike
AFs, gestural offsets are not aligned with acoustic landmarks.
Gestures [49] are constricting actions produced by five distinct
organs/constrictors (lips, tongue tip, tongue body, velum, and
glottis) as in Fig. 1(a), and defined as eight vocal tract constric-
tion variables (henceforth, tract variables) as in Table I. The tract
variables describe geometric states of the shape of the vocal
tract tube in terms of constriction degree and location of the
constrictors. Each gesture is represented as a critically damped,
second-order differential equation [49], shown in (1), where ,

, and are mass, damping coefficient and stiffness parame-
ters of each tract variable (represented by ) and is the target
position of the gesture. An active gesture is specified by its ac-
tivation onset and offset times and parameter values:

(1)

Given a gestural score, the tract variable trajectories (hence-
forth, TVs1) are derived using the TAsk-Dynamic and Appli-
cations (TADA) model [49], [50], which is a computational im-
plementation of articulatory phonology. Fig. 2 shows the utter-
ance “miss you,” and its corresponding gestural scores and TVs
as computed by TADA. Note TVs are continuous time func-
tions whose dynamics are determined by the corresponding ges-
tural specifications (see Fig. 2) whereas AFs are typically dis-
crete units whose boundaries are determined from acoustic land-
marks.

Articulatory pellet trajectories, which have overwhelm-
ingly been used in the literature for speech inversion [34],
are flesh-point information (e.g., electromagnetic midsagittal
articulographic or EMA) representing positional ( - coordi-
nate) information of transducers [or pellets, Fig. 1(b)] placed
on the different articulators [51]. Unlike pellet trajectories,
which are absolute measures in Cartesian coordinates, TVs are
relative measures and suffer less from non-uniqueness [52].
For example, TV description of a tongue tip stop will always
exhibit a value of zero for TTCD (distance of tongue tip from
palate), even though the pellet positions will differ depending
on the location of pellets on an individual’s vocal tract, the
vowel context, etc. We have previously shown [53] that TVs
can be estimated more accurately than pellet trajectories from
speech signal.

C. Articulatory Information for Noise Robust ASR

Incorporating speech production knowledge into ASR sys-
tems was primarily motivated to account for coarticulatory vari-
ation. Kirchhoff was the first to show [54] that such informa-
tion can help to improve noise-robustness of ASR systems as
well. She and her colleagues [54], [55] used a set of heuris-
tically defined AFs, which they identified as pseudo-articula-
tory features. Their AFs represent speech signal in terms of ab-
stract articulatory classes such as: voiced/unvoiced, place and
manner of articulation, lip-rounding, etc. However, their AFs
do not provide detailed numerical description of articulatory
movements within the vocal tract during speech production.
They showed that their AFs in combination with MFCCs pro-
vided increased recognition robustness against the background
noise, where they used pink noise at four different SNRs. They
concluded that the AFs and MFCCs may be yielding partially
complementary information since neither alone provided better
recognition accuracy than when both used together. In a dif-
ferent study, Richardson et al. [56] proposed the hidden articu-
latory Markov model (HAMM) that models the characteristics
and constraints analogous to the human articulatory system. The
HAMM is essentially an HMM where each state represents an
articulatory configuration for each di-phone context, allowing
asynchrony among the articulatory features. They reported that
their articulatory ASR system demonstrated robustness to noise
and stated that the articulatory information may have assisted
the ASR system to be more attuned to speech-like information.

In this paper, we demonstrate that articulatory information in
the form of TVs estimated from the speech signal can improve
the noise robustness of a word recognizer using natural speech

1Note we use “TVs” to refer to tract variable trajectories, i.e., the time func-
tions of the tract variables, which should be distinguished from the tract vari-
ables themselves.



1916 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 7, SEPTEMBER 2011

TABLE I
CONSTRICTION ORGAN, VOCAL TRACT VARIABLES, THEIR UNIT OF MEASUREMENT, AND DYNAMIC RANGE

when used in conjunction with the baseline acoustic features.
Previously, we have shown [53] that the TVs can be estimated
more accurately compared to pellet trajectories and we demon-
strated that estimation of the TVs from speech is essentially a
nonlinear process, where the estimation performance improves
as the nonlinearity in the inversion process increases. We ob-
served [53] that a 3-hidden layer feed-forward (FF) ANN of-
fers reasonably accurate TV estimates compared to other ma-
chine-learning approaches (support vector regression, trajectory
mixture density networks, distal supervised learning, etc.). In
this paper we use the 3-hidden layer FF-ANN to estimate TVs
from speech signal, and a Kalman smoother postprocessor to re-
tain their characteristic smoothness. Our work is unique in the
following ways.

1) Unlike the results reported by Frankel et al. [44], [45],
we do not use flesh-point measurements (pellet trajec-
tories) of the different articulators. Instead, we are using
the vocal tract constriction trajectories or TVs, which are
less varying than the pellet trajectories [52], [53]. None
of the work available in literature evaluated the articu-
latory information (in the form of TVs) estimated from
the speech signal under noisy conditions. In the present
study, we show not only that TVs can be estimated more
robustly from noise-corrupted speech compared to pellet
trajectories, but also that the estimated TVs do a better
job than pellet trajectories when applied to word recog-
nition tasks under noisy conditions.

2) The work presented by Frankel et al. [44], [45] used
LDM at different phone contexts to model the articu-
latory dynamics for clean speech, whereas we are using
the TV estimates (without any phone context) directly
into an HMM-based word recognizer for the recognition
task.

3) Kirchhoff et al.’s work [54], [55] though uses articu-
latory information for noise robust speech recognition;
their AFs do not capture the dynamic information about
articulation but describe only the critical aspects of ar-
ticulation. They are mostly hypothesized or abstract dis-
crete features derived from acoustic landmarks or events
and are not directly obtained from actual articulatory
events. On the contrary, TVs provide actual articulatory
dynamics in the form of location and degree of vocal
tract constrictions in the production system.

4) Kirchhoff et al.’s work dealt with only pink noise at four
SNR levels (30, 20, 10, and 0 dB), whereas we report our
results on eight different real-world noise types (subway,

car, babble, exhibition, train-station, street, airport, and
restaurant) at six different SNRs (20, 15, 10, 5, 0, and

5 dB). Richardson et al. [56] used hypothetical AFs
obtained at diphone context. Their noise robustness ex-
periment was very limited in scope, and used stationary
white Gaussian noise at 15-dB SNR only.

5) Finally, we present a study in which articulatory infor-
mation is used across different acoustic feature sets and
front-end processing methods to verify whether the ben-
efits observed in using such articulatory information are
specific to particular features or are consistent across
features.

Earlier in [57], we proposed that TVs can potentially improve
the noise-robustness of MFCC-based ASR systems, using only
two noise types: car and subway noise. In this paper we extend
that study by performing ASR experiments using six more noise
types and show that the noise-robust nature of the TVs hold for
other acoustic features (e.g., RASTAPLP) as well. In addition,
we present ASR results from using only TVs as input and show
that they outperform MFCCs at very low SNRs. The TV esti-
mation models in this paper are more robust and well trained
compared to those used in our earlier work [57]. Finally, to jus-
tify the selection of TVs, we performed ASR experiments (both
in noisy and clean conditions) and evaluated the noise-robust-
ness of the TVs compared to that obtained by using conventional
pellet trajectories.

The organization of the paper is as follows. Section II pro-
vides a brief introduction to the dataset used in our experiments
and their parameterization. Section III describes the 3-hidden
layer FF-ANN architecture for TV estimation. Section IV
presents the experiments, results and discussions followed by
the conclusion in Section V.

II. DATASET AND SIGNAL PARAMETERIZATION

This study aims to obtain a proof-of-concept that estimated
TVs can help to improve the noise robustness of ASR systems.
To train a model for estimating TVs from speech, we require
a speech database containing groundtruth TVs. Unfortunately,
no such database is available at present. For this reason, TADA
along with HLsyn [58] (a parametric quasi-articulator synthe-
sizer developed by Sensimetrics Inc.) was used in our work (as
shown in Fig. 3) to generate a database that contains synthetic
speech along with their articulatory specifications. From text
input, TADA generates TVs, simulated pellet trajectories and
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Fig. 3. Flow diagram for generating synthetic speech and the associated artic-
ulatory information using TADA and HLsyn.

other parameters, some of which are used by HLsyn to create
the corresponding synthetic speech.

To create the dataset for training the TV-estimator, we se-
lected 960 utterances from the training set of Aurora-2 [59],
where each utterance contains a sequence of digits. Aurora-2
was created from the TIdigits database consisting of connected
digits spoken by American English speakers, sampled at 8 kHz.
The Arpabet for each digit sequence was input to TADA, which
generated the corresponding TVs (refer to Table I), vocal tract
area function, formant information, etc. The pitch, gender and
formant information was input to HLsyn for generating the cor-
responding synthetic speech. The sampling rate of the synthetic
speech and TVs are 8 kHz and 200 Hz, respectively. We named
this dataset as AUR-SYN, where 70% of the files were ran-
domly selected as the training-set and the rest as the testing-set.
The testing files were further corrupted with subway and car
noise at six different SNR levels similar to the Aurora-2 corpus.
The noisy test section was created solely for testing the TV-es-
timator’s performance under noise contamination. Executing
TADA and HLsyn is expensive computationally. For example,
to generate synthetic speech and its associated articulatory infor-
mation for a mono-syllabic word such as ‘one’, TADA+HLsyn
requires 85 seconds of CPU time in an AMD Athlon 64 dual-
core 2.20-GHz processor with 3.5 GB of RAM. Hence, gen-
erating 8000 such mono-syllabic words would require almost
8 days of CPU processing time. Note that the training set of
Aurora-2 consists of 8440 utterances, where each utterance can
have more than one digit, indicating that the generation of syn-
thetic speech and its associated articulatory information for the
whole training set of Aurora-2 would result in CPU processing
time of much more than 8 days. Because of these facts we had to
limit the number of utterances to ensure a reasonable data gen-
eration time. Currently, we are annotating TVs and gestures [60]
for the X-ray microbeam database [51] and the clean training set
of Aurora-2 database, which will help us to build natural speech
trained TV-estimators in future.

For TV estimation, speech signal was parameterized as
MFCCs, where 13 cepstral coefficients were extracted at the
rate of 200 Hz with an analysis window of 10 ms. The MFCCs
and TVs were z-normalized and scaled to fit their dynamic
ranges into . It has been stated [34] and we have
also observed [53], [61] that incorporating dynamic information
helps to improve the speech-inversion performance, for which
the input features were contextualized before being fed to the
TV-estimator. The contextualized features for a given frame
at ms, were selected from a context-window of duration
ms ms , where feature vectors are evaluated between

ms and ms and concatenated with the
feature vector at ms, where the features vectors are selected at
10-ms interval. Previously [53], we observed that the optimal

TV estimation context window for the MFCCs is 170 ms and
its dimension after contextualization is 221.

To perform our noise robustness experiments, we used test
set A and B from Aurora-2, which contain eight different noise
types at seven different SNR levels. Training in clean condition
and testing in noisy scenario is used in all the experiments re-
ported here.

III. TV ESTIMATOR

ANNs have been used by many [34], [38] for speech inver-
sion. Compared to other architectures, ANNs have lower com-
putational cost both in terms of memory and execution speed
[34]. Further, ANNs can perform a complex nonlinear map-
ping of input vectors (for our case, acoustic features, i.e.,
contextualized MFCCs) into output vectors (for our case,
TVs). In such architecture, the same hidden layers are shared
across all the output TVs, which allows the ANN to capture any
cross-correlation that TVs may intrinsically have amongst them-
selves [53]. The 3-hidden layer FF-ANN specification used in
this paper is based on our prior analysis [53], where the number
of neurons for the three layers is selected to be 150, 100, and
150, respectively. The FF-ANN is trained with back-propaga-
tion using scaled conjugate gradient as the optimization rule. A
tan-sigmoid activation function is used as excitation for all of
the layers.

The estimated TVs were found to exhibit substantial estima-
tion error. We thus applied a Kalman smoother to the TV esti-
mates, which improved the accuracy by ensuring the inherent
smoothness of TVs [53], [61]. This is a direct consequence of
the observation made in [62], which claimed that articulatory
motions are predominantly low pass in nature with a cutoff fre-
quency of 15 Hz.

IV. EXPERIMENTS AND RESULTS

We aim to test the possibility of using the estimated TVs
as input to the word recognition task on Aurora-2 and ex-
amine whether they can improve the recognition accuracies
in noise. The details of the experiments are described in the
following subsections. In Section IV-A, we first present the
TV estimation results for the synthetic speech data for clean
and noisy conditions. In Section IV-B, we then apply the syn-
thetic-speech-trained TV-estimator on the natural utterances of
Aurora-2 to estimate their corresponding TVs. In Section IV-C,
we perform word recognition experiments using the estimated
TV inputs, and further compared their performances when
combined with acoustic features (MFCCs and RASTAPLP)
and various front-end processing methods (such as MVA post-
processing of acoustic features [6] and ETSI basic [10] and
advanced [11] front-ends).

A. TV Estimation in Clean and Noisy Condition for AUR-SYN
(Synthetic Speech)

The performance of the FF-ANN based TV-estimator is eval-
uated using two quantitative measures: root mean-squared error
(RMSE) and Pearson product-moment correlation (PPMC) co-
efficient. RMSE gives the overall difference between the orig-
inal and the estimated articulatory trajectories, whereas PPMC
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TABLE II
RMSE AND PPMC FOR THE CLEAN SPEECH FROM AUR-SYN

Fig. 4. RMSE of estimated TVs for AUR-SYN (synthetic speech) at different
SNRs for subway noise.

indicates the strength of a linear relationship between two vari-
ables:

(2)

(3)

where and represent the estimated and the groundtruth TV
vector having data points. RMSE provides a performance
measure in the same units as the measured articulatory trajecto-
ries. The FF-ANN TV-estimator was trained with the training
set of AUR-SYN and the results are obtained using the test-set.
Table II presents RMSE and PPMC of the estimated TVs for
the clean set of AUR-SYN with and without using the Kalman
smoothing. Table II shows that using the Kalman smoother
helped to reduce RMSE and increase PPMC for the clean test
set. As evident from Table I, some TVs have different mea-
suring units (e.g., TBCL and TTCL are measured in degrees)
from others (e.g., LA, LP, TBCD, and TTCD are all measured
in mm), which should be considered while interpreting the
RMSE values.

Figs. 4 and 5 show RMSE and PPMC plots, respectively,
of the estimated TVs at different SNRs from the test set of
AUR-SYN corrupted with subway noise. As SNR decreases,

Fig. 5. PPMC of estimated TVs for AUR-SYN (synthetic speech) at different
SNRs for subway noise.

Fig. 6. RMSE (relative to clean condition) of estimated TVs for Auora-2 (nat-
ural speech) at different SNRs for subway noise.

the RMSE of the estimated TVs increases and their PPMC de-
creases, this indicates that the estimation deteriorates with de-
crease in SNR. Using Kalman smoothing results in lower RMSE
and higher PPMC at a given SNR. The car noise part of the
AUR-SYN test-set shows a similar pattern.

B. TV Estimation in Clean and Noisy Condition for Aurora-2
(Natural Speech)

The FF-ANN TV-estimator presented in the last section
(which was trained with the clean synthetic speech from
AUR-SYN) was used to estimate TVs for the natural speech
of the Auroa-2 database. The estimated TVs were then
Kalman-smoothed. Since there is no known groundtruth TVs
in Aurora-2, RMSE and PPMC cannot be computed directly.
We instead compared the unsmoothed or Kalman-smoothed
estimated TVs from different noise types and levels to the
corresponding unsmoothed or Kalman-smoothed estimated
TVs from clean utterances, to obtain the relative RMSE and
PPMC measures. Figs. 6 and 7 show that the relative RMSE
increases and the PPMC decreases as SNR decreases for the
subway noise section of Aurora-2, and Kalman smoothing
helps to improve the relative RMSE and the PMMC. Note that
the TV estimates for the natural utterances showed a relatively
lower PPMC compared to those of the synthetic utterance (see
Figs. 4 and 5). This may be due to the mismatch between the
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Fig. 7. PPMC (relative to clean condition) of estimated TVs for Auora-2 (nat-
ural speech) at different SNRs for subway noise.

Fig. 8. Spectrogram of synthetic utterance “two five,” along with the ground
truth and estimated (at clean condition, 15 dB and 10 dB subway noise) TVs for
GLO, LA, TBCL, TTCL, and TTCD.

training data (synthetic data of AUR-SYN) and testing data
(natural utterances of Aurora-2).

Figs. 8 and 9 show how the estimated TVs from natural
speech look compared to those for the synthetic speech. Fig. 8
shows the groundtruth TVs (GLO, LA, TBCL, TTCL, and
TTCD) and the corresponding estimated TVs for the synthetic
utterance “two five” from AUR-SYN for clean condition, 15
dB and 10 dB SNR subway noise contaminated speech. Fig. 9
shows the same set of TVs estimated from the natural utterance
“two five” from Aurora-2 for clean condition, 15 dB and 10 dB
SNR. Note that, since we do not know the groundtruth TVs for
this natural utterance, it cannot be shown in the plot. Comparing
Figs. 8 and 9 we observe that the estimated TVs for both the
natural and synthetic speech show much similarity in their
dynamics at clean condition, with noise addition the dynamic
characteristics of the trajectories starts to deviate away from
that at clean condition.

In earlier work [53], we showed that TVs can be estimated
relatively more accurately than flesh-point pellet trajectories
for clean synthetic speech. To further validate the TV’s relative
estimation superiority over pellet trajectories for noisy speech,
we trained a 3-hidden layer FF-ANN pellet-estimation model

Fig. 9. Spectrogram of natural utterance “two five,” along with the estimated
(at clean condition, 15 dB and 10 dB subway noise) TVs for GLO, LA, TBCL,
TTCL. and TTCD.

Fig. 10. Average PPMC (relative to clean condition) of the estimated TVs and
pellet trajectories (after Kalman smoothing) for Auora-2 (natural speech) at dif-
ferent SNRs for subway noise.

using TADA-simulated pellet trajectories for the AUR-SYN
data. Seven pellet positions were considered: Upper Lip, Lower
Lip, Jaw, and four locations on the Tongue; since each position
was defined by its - and -coordinates, this gave rise to a
14-dimensional data trajectory which we named Art-14. The
pellet trajectory estimation model was deployed on the test set
of the Aurora-2 data and the estimated pellet trajectories were
smoothed using a Kalman filter. Fig. 10 shows the average rela-
tive PPMC across all the components of the Kalman-smoothed
TV and pellet trajectory estimates for the subway noise section
of Aurora-2.

It can be observed from Fig. 10 that the TV estimates offer
a higher average relative PPMC at all noise levels compared
to the pellet-trajectory estimates, indicating the relative noise-
robustness of the TVs.

C. Noise Robustness in Word Recognition Using Estimated
TVs

In this section, we performed ASR experiments using the
estimated TVs inputs to examine if they help to improve the
ASR noise-robustness. We employed the HTK-based speech
recognizer distributed with the Aurora-2 [59], which uses eleven
whole word HMMs with three mixture components per state and
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Fig. 11. Average word recognition accuracy (averaged across all the noise
types) for the baseline and TVs with different �s.

two pause models for “sil” and “sp” with six mixture compo-
nents per state. The ASR experiment was based on training on
clean condition and testing on multi-SNR noisy data. The fol-
lowing subsections report ASR results obtained from using the
estimated TVs in different input conditions.

1) Use of TVs and Their Contextual Information in ASR: We
first needed to examine if variants of TVs, or their can help
for better ASR performance, and tested four different feature
vectors2 as ASR inputs: 1) TVs; 2) TVs and their velocity coef-
ficients TV ;3; 3) TVs and their velocity and acceleration
coefficients TV ; and 4) TVs and their velocity, ac-
celeration, and jerk coefficients TV . Fig. 11
shows their word recognition accuracies along with a baseline
defined by using the MFCC feature vector.4 The recognition ac-
curacy from using TVs and/or their s in the clean condition is
much below the baseline recognition rate, which indicates that
TVs and their s by themselves may not be sufficient for word
recognition. However, at 0 and 5 dB, TVs and their s offered
better accuracy over MFCCs (significance was confirmed at the
1% level, using the significance-testing procedure described in
[63]). Our observation for the clean condition is consistent with
Frankel et al.’s observation [44], [45] that using estimated artic-
ulatory information by itself resulted in much lower recognition
accuracy as compared to acoustic features.

We also observed that TVs’ contextual information (their
s) in conjunction with TVs did not show better accuracies

than TVs alone (at the 5% significance level). This may be
because the TV-estimator already uses a large contextualized
(context window of 170 ms) acoustic observation (as specified
in Section II) as the input; hence, the estimated TVs by them-
selves should contain sufficient contextual information and
further contextualization may be redundant.

2) TVs in Conjunction With the MFCCs: Frankel et al. [44],
[45] noticed a significant improvement in recognition accuracy
when the estimated articulatory data was used in conjunction
with the cepstral features, which we also observed in our prior
work [57]. We used the MFCCs along with the estimated TVs
for the ASR experiments. Here we considered three different

2The dimension of TV and each of its �s is 8.
3�,� , and� represent the first, second, and third derivatives, respectively.
4The dimension of MFCC feature vector is 39: 12 MFCC + energy, 13� and

13 � .

Fig. 12. Average word recognition accuracy (averaged across all the noise
types) for the baseline, MFCC+TV using the three different number of Gaussian
mixture components per state, and MFCC+Art14 using a 3 Gaussian mixture
component per state model.

models by varying the number of word (digit) mixture compo-
nents per state from 2 to 4, identified as “Model-2mix,” “Model-
3mix,” and “Model-4mix,” where “Model-3mix” is the baseline
model distributed with Aurora-2. Fig. 12 compares the recogni-
tion accuracy5 of MFCC+TV from the different word models to
the baseline accuracy using MFCC only. Adding TVs to MFCCs
resulted in significant improvement in the word recognition ac-
curacy compared to the baseline system using MFCCs only.
The improvement is observed at all noise levels for all noise
types. Note the baseline here is the result from the Model-3mix,6

which showed the best performance among the models using
MFCC+TV as shown in Fig. 12. Also in Fig. 12 we show the
performance of the 14 flesh-point pellet trajectories (Art-14)
when used in addition to the MFCCs, where the back-end uses
3-mixture components per state. Fig. 12 clearly shows the supe-
riority of TVs over Art-14 for improving the noise-robustness
of a word-recognizer. Although Art-14 is found to improve the
noise robustness over the MFCC baseline, it fails to perform as
well as the TVs.

3) Speech Enhancement: This section examines how
speech enhancement will interact with the use of TV estimates
and MFCCs. We used the preprocessor based MPO-APP7

speech-enhancement architecture described in [64] to enhance
the noisy speech signal from Aurora-2. Four different combi-
nations of MFCC and TV estimates were obtained depending
upon whether or not their input speech was enhanced.8 Fig. 13
presents the average word recognition accuracies obtained
from these four different feature sets. Similar to the results in
the last section, articulatory information (in the form of TVs)
can increase the noise robustness of a word recognition system
when used with the baseline-MFCC features.

Indeed, TV estimates from enhanced speech exhibited poorer
performance than TVs from noisy speech. This can be due to

5The recognition accuracy here is averaged across all the noise types.
6We used this model for the rest of this paper.
7MPO: modified phase opponency and APP: aperiodic-periodic and pitch de-

tector. The MPO-APP [3] speech enhancement architecture was motivated by
perceptual experiments.

8The MFCC and the TV are the MFCCs and TVs that
were obtained after performing MPO-APP enhancement of the speech signal.
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Fig. 13. Average word recognition accuracy (averaged across all the noise
types) for the four different combinations of MFCCs and TVs.

the fact that the MPO-APP-based speech enhancer [3] models
speech as a constellation of narrow-band regions, retaining only
the harmonic regions while attenuating the rest. The voiceless
consonants (which are typically wideband regions) are most
likely to be attenuated as a result of MPO-APP enhancement
of speech. Given the attenuation of unvoiced regions in the
enhanced speech, the TV-estimator may have difficulty in
detecting the TVs properly at unvoiced consonant regions.

In Fig. 13, the best accuracy is found in MFCC+TV
from clean condition to 15 dB, and MFCC TV
from 10 to 5 dB. Such a system can be realized by
using the preprocessor-based MPO-APP architecture
prior to generating the baseline MFCC features only for
SNRs lower than 15 dB, which is named as MFCC
TV dB MFCC TV dB fea-
ture set. Note the preprocessor-based MPO-APP [64] has
an inbuilt SNR-estimator in its preprocessing module which
has been used to perform speech enhancement only if the
detected SNR is 15 dB. Fig. 14 compares MFCC
TV dB MFCC TV dB with
recognition rates from other referential methods that does
not use TVs: MFCC (MFCCs after MPO-APP en-
hancement of speech [64]) and MFCC (MFCCs after
the log-spectral amplitude minimum mean square estimator
(LMMSE)-based speech enhancer [65]). The use of articulatory
information (in the form of the eight TVs) in addition to MFCCs
resulted in superior performance as compared to using speech
enhancement alone (MFCC and MFCC ).
This shows the strong potential of the articulatory features for
improving ASR noise robustness.

4) Different Frontend Processing and Feature Sets: In
Section IV-C3, we observed that TVs in word recognition task
help to increase the accuracy when they are used in conjunction
with the MFCCs. Word recognition accuracies were further
improved at low SNRs when MPO-APP speech enhancement is
performed before obtaining the MFCCs. This section examines
whether the advantage of using TVs holds for other feature sets
(RASTAPLP) and front-end processing (MVA and ESTI).

RelAtive SpecTrA (RASTA) [5] is a technique that performs
low-pass filtering in the log-spectral domain to remove the

Fig. 14. Average word recognition accuracy (averaged across all the
noise types) for the (a) baseline (MFCC), (b) system using ��MFCC �
TV� dB��MFCC � TV� dB�, system using the (c)
preprocessor-based MPO-APP, and (d) LMMSE-based speech enhancement
prior to computing the MFCC features (MFCC).

Fig. 15. Overall word recognition accuracy (averaged across all noise types
and levels) for the different feature sets and frontends with and without TVs.

slowly varying environmental variations and fast varying arti-
facts. We employed RASTAPLP as acoustic feature set instead
of MFCC for the Aurora-2 word recognition task. Similar to
Section IV-C2, we observed that use of TVs in addition to
RASTAPLP exhibited a better accuracy than either TVs or
RASTAPLP alone.

Mean subtraction, Variance normalization and ARMA fil-
tering (MVA) postprocessing has been proposed by Chen et al.
[6], which have shown significant error rate reduction for the
Aurora-2 noisy word recognition task, when directly applied
in the feature domain. We applied MVA to both MFCC and
RASTAPLP and used them along with TVs as inputs for the
word recognition task.

The ETSI front-ends have been proposed for the distributed
speech recognition (DSR). We have considered two versions
of the ETSI front-end, the ETSI basic (ETSI ES 201 108 Ver.
1.1.3, 2003) [10] and the ETSI advanced (ETSI ES 202 050 Ver.
1.1.5, 2007) [11]. Both the basic and the advanced front-ends
use MFCCs, where the speech is sampled at 8 kHz, analyzed in
blocks of 200 samples with an overlap of 60% and uses a Ham-
ming window for computing the fast Fourier transform (FFT).

Fig. 15 compares the overall recognition accuracies from
six different front-ends: 1) MFCC; 2) RASTAPLP; 3) MFCC
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TABLE III
AVERAGED RECOGNITION ACCURACIES (0 TO 20 dB) OBTAINED FROM USING

TVS AND SOME STATE-OF-THE-ART WORD RECOGNITION SYSTEMS THAT

HAS BEEN REPORTED SO FAR

through MVA (MVA-MFCC); 4) RASTAPLP through MVA
(MVA-RASTAPLP); 5) ETSI-basic; and 6) ETSI-advanced.
All these conditions are further separated into cases with and
without TVs. The positive effect of using TVs was consistently
observed in most of the noisy scenarios of MFCC, RASTAPLP,
MVA-RASTAPLP, and ETSI-basic but not in MVA-MFCC
and ESTI-advanced. Note, that the TV-estimator being trained
with synthetic speech does not generate highly accurate TV
estimates when deployed on natural speech. The ETSI-ad-
vanced and the MVA-MFCC front-ends show substantial noise
robustness by themselves; hence, the inaccuracy in the TV
estimates factors in more and hence fails to show any further
improvement in their performance.

Table III compares the recognition accuracies from our ex-
periments to some of the state-of-the-art results that have been
reported on Aurora-2. The entries in bold are the accuracies ob-
tained from using the estimated TVs. The accuracy from using
MVA-RASTAPLP+TV is close to those of the state-of-the art
recognition.

V. DISCUSSION AND CONCLUSION

This study aimed to investigate the possibility of using TVs
as noise robust ASR input. First, we evaluated how accurately
articulatory information (in the form of TVs) can be estimated
from noisy speech at different SNRs using a feedforward neural
network. The groundtruth TVs at present are only available for
synthetic dataset (we are currently working to generate TVs for
the X-ray microbeam data [60]); hence, the TV-estimator was
trained with the synthetic data only. Using that network we also
evaluated the feasibility to estimate TVs for a natural speech
dataset (Aurora-2), consisting of digits. We showed that the
TV-estimator can perform reasonably well for natural speech.
Second, we showed that estimated TVs for natural speech when
used in conjunction with the baseline MFCC and RASTAPLP
features can improve word recognition rates appreciably for
noisy cases. We also observed that a speech enhancement algo-
rithm when used prior to generating the MFCCs or RASTAPLP
at low SNRs ( 15 dB) can help to improve the noise robustness
even further. These results suggest that TVs, if estimated prop-
erly, can contribute in improving the noise robustness of ASR
systems. The improvement in the recognition accuracies by
incorporating articulatory information in the form of TVs may
indicate that the acoustic features (MFCC and RASTAPLP) and
TVs are providing partially complementary information about

speech; hence, neither of them alone provided better accuracy
than when both used together. This observation is in line with
that made by Kirchhoff [54], [55]. Note that the recognition
accuracy improvement obtained as a result of using TVs in
addition to the acoustic features (MFCC and RASTAPLP) is
confirmed at a significance level of 0.01%.

When TVs are used in conjunction with noise robust
front-end processing such as MVA-RASTAPLP or the
ETSI-basic front-end, improvement in word recognition
accuracy has been observed for noisy cases. No improvement
is however witnessed for MVA-MFCC and ETSI-advanced,
which may be due to the inaccuracy of the TV-estimator. In
this paper, we have used an FF-ANN-based inverse model to
estimate TVs from the speech signal, where the model was
trained with a significantly small number of data (960 utter-
ances) than that available in Aurora-2 training database (8440
training utterances). Also there exists a strong acoustic mis-
match between the training (clean synthetic speech data) and
testing (clean and noisy natural speech data) utterances for the
TV-estimator. Despite these differences, we were able to ob-
serve improvement in word recognition accuracies in the noisy
cases of the Aurora-2 dataset for acoustic features: MFCC,
RASTAPLP, and noise-robust front-ends: MVA-RASTAPLP
and ETSI-basic. We are currently in the process of generating
a natural speech dataset that will contain TV groundtruth infor-
mation which, when realized, would help to construct a more
accurate and robust TV-estimator for natural speech. Doing so
may, in turn, help in obtaining results comparable to some of
the state-of-the-art results reported in Table III. Future research
aims to realize such a TV-estimator that will be trained not only
with natural speech but also with a much larger training corpus.
Finally, the TV-estimator uses contextualized MFCCs as inputs
and throughout the course of this paper we have noticed that
the raw MFCCs showed least noise robustness. Hence, future
research should also address using noise robust features like
RASTAPLPs or MVA-RASTAPLPs or MVA-MFCCs that may
ensure better estimation of TVs even for the noisy speech sam-
ples resulting in improvement of the recognition accuracies.
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