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a b s t r a c t 

Studies have shown that articulatory information helps model speech variability and, consequently, im- 

proves speech recognition performance. But learning speaker-invariant articulatory models is challenging, 

as speaker-specific signatures in both the articulatory and acoustic space increase complexity of speech- 

to-articulatory mapping, which is already an ill-posed problem due to its inherent nonlinearity and non- 

unique nature. This work explores using deep neural networks (DNNs) and convolutional neural networks 

(CNNs) for mapping speech data into its corresponding articulatory space. Our speech-inversion results 

indicate that the CNN models perform better than their DNN counterparts. In addition, we use these 

inverse-models to generate articulatory information from speech for two separate speech recognition 

tasks: the WSJ1 and Aurora-4 continuous speech recognition tasks. This work proposes a hybrid con- 

volutional neural network (HCNN), where two parallel layers are used to jointly model the acoustic and 

articulatory spaces, and the decisions from the parallel layers are fused at the output context-dependent 

(CD) state level. The acoustic model performs time-frequency convolution on filterbank-energy-level fea- 

tures, whereas the articulatory model performs time convolution on the articulatory features. The per- 

formance of the proposed architecture is compared to that of the CNN- and DNN-based systems using 

gammatone filterbank energies as acoustic features, and the results indicate that the HCNN-based model 

demonstrates lower word error rates compared to the CNN/DNN baseline systems. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Spontaneous speech typically includes significant variability

hat is often difficult to model by automatic speech recogni-

ion (ASR) systems. Coarticulation and lenition are two sources

f such variability ( Daniloff and Hammarberg, 1973 ), and speech-

rticulation modeling can help to account for such variability

 Stevens, 1960 ). Several studies in the literature ( Kirchhoff, 1999;

rankel and King, 2001; Deng and Sun, 1994; Mitra et al., 2013a;

adino et al., 2016 ; and several others) have demonstrated that

peech-production knowledge (in the form of speech articulatory

epresentations) can improve ASR system performance by system-

tically accounting for variability such as coarticulation. A compre-

ensive exploration of speech-production features and their role in

peech recognition performance is provided in King et al. (2007) .
∗ Corresponding author. 

E-mail address: vikramjitmitra@gmail.com (V. Mitra). 
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urther studies ( Richardson et al., 2003; Mitra et al., 2010a , 2011a )

ave demonstrated that articulatory representations provide some

egree of noise robustness for ASR systems. 

Deep learning techniques ( Mohamed et al., 2012 ) involving neu-

al networks with several hidden layers have become integral to

urrent ASR systems. Deep learning has been used for feature rep-

esentation ( Hoshen et al., 2015 ), acoustic modeling ( Seide et al.,

011 ), and language modeling ( Arisoy et al., 2012 ). Given the ver-

atility of the deep neural network (DNN) systems, it was ob-

erved in Mitra et al. (2014a) that speaker-normalization tech-

iques such as vocal tract length normalization (VTLN) ( Zhan and

aibel, 1997 ) are unnecessary for improving ASR accuracy, as

he DNN architecture’s rich, multiple projections through multi-

le hidden layers enable it to learn a speaker-invariant data rep-

esentation. Convolutional neural networks (CNNs) ( Sainath et al.,

013; Abdel-Hamid et al., 2012 ) motivated by the receptive field

heory of the visual cortex are often found to outperform fully

onnected DNN architectures ( Mitra et al., 2014a,b ). CNNs are

http://dx.doi.org/10.1016/j.specom.2017.03.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/specom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2017.03.003&domain=pdf
mailto:vikramjitmitra@gmail.com
http://dx.doi.org/10.1016/j.specom.2017.03.003
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Table 1 

Constrictors and their vocal tract variables. 

Constrictors Vocal tract (VT) variables 

Lip Lip aperture (LA) 

Lip protrusion (LP) 

Tongue tip Tongue tip constriction degree (TTCD) 

Tongue tip constriction location (TTCL) 

Tongue body Tongue body constriction degree (TBCD) 

Tongue body constriction location (TBCL) 

Velum Velum (VEL) 

Glottis Glottis (GLO) 

Fig. 1. Vocal tract variables at five distinct constriction organs. 
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known to be noise robust ( Mitra et al., 2014a ), especially in those

cases where noise/distortion is localized in the spectrum. Speaker-

normalization techniques are also found to have less impact on

speech recognition accuracy for CNNs as compared to for DNNs

( Mitra et al., 2014a ). With CNNs, the localized convolution fil-

ters across frequency tend to normalize the spectral variations in

speech arising from vocal tract length differences, enabling the

CNNs to learn speaker-invariant data representations. 

Studies have explored using DNNs ( Mitra et al., 2010b, c;

Uria et al., 2011; Canevari et al., 2013 ) for learning the nonlin-

ear inverse transform of acoustic waveforms to articulatory tra-

jectories (a.k.a. speech-inversion or acoustic-to-articulatory inver-

sion of speech). Results have demonstrated that using articu-

latory representations in addition to acoustic features improves

phone recognition ( Badino et al., 2016; Canevari et al., 2013;

Mitra et al., 2011a; Deng and Sun, 1994 ) and speech recogni-

tion performance ( Mitra et al., 2011b , 2013a , 2014c ). Learning

acoustic-to-articulatory transforms is quite challenging, as such

mapping is nonlinear and non-unique ( Mitra, 2010; Richmond,

2001 ). Speaker variation adds complexity to the problem and

makes speech-inversion even harder ( Sivaraman et al., 2015; Ghosh

and Narayanan, 2011 ). Ghosh and Narayanan (2011) demonstrated

that speaker-independent speech-inversion systems can be trained

and can offer similar performance to that of speaker-dependent

speech-inversion systems. 

This work has two principal aims: 

(1) Explore deep learning approaches to learn “speaker-

independent” speech-inversion mappings using synthetically

generated parallel articulatory speech data; 

(2) Create a suitable DNN architecture, where retrieved articula-

tory variables can be used for spontaneous speech recogni-

tion purposes. 

Note that, this work to the best of our knowledge, for the

first time explores the use of Vocal tract constriction variables

(TVs) and filterbank features as input to DNN/CNN acoustic mod-

els. Hence we explore DNN/CNN configuration to best utilize the

TV + filterbank features. 

Specifically, we explore CNNs with the hope of achieving more

robust speech-inversion performance compared to the traditional

DNNs. We investigate using different parameters (such as neural

network size and data contextualization (splicing) windows over

the input acoustic-feature space) and show that impressive gains

can be achieved through careful selection of parameters. We use

the trained DNN/CNN models to predict the articulatory trajecto-

ries of the training and testing datasets of the Wall Street Jour-

nal (WSJ1) corpus, the noisy WSJ0 corpus Aurora-4, and the 265-

h Switchboard-1 corpus, and we use the estimated trajectories to

perform a continuous speech recognition task. 

Further, we present a parallel CNN architecture, where time-

frequency convolution is performed on traditional gammatone-

filterbank-energy-based acoustic features, and time-convolution is

performed on the articulatory trajectories. Each of the parallel con-

volution layers is followed by a fully connected DNN, whose out-

puts are combined at the context-dependent (CD) state level, pro-

ducing senone posteriors. The proposed hybrid CNN (HCNN) archi-

tecture learns an acoustic space and an articulatory space, and uses

both to predict the CD states. 

The word recognition results from both the WSJ1 and Aurora-

4 speech recognition tasks indicate that using articulatory infor-

mation in addition to filterbank features provides sufficient com-

plementary information to reduce the word error rates (WER) in

clean, noisy, and channel-degraded conditions. 

The novelties of this work are as follows: 
a) Use of large multi-speaker synthetic articulatory data to train

robust speech-inversion models. Earlier work has used single-

speaker model-based synthetic articulatory data ( Mitra et al.,

2014c ). In this work, we simulate a diverse set of speakers, by

varying vocal tract length, pitch, articulatory weights, etc. 

b) Investigate the effect of noise on speech-inversion performance,

by comparing CNN and DNN models to analyze their robustness

in noisy acoustic conditions. 

c) Explore joint-modeling of articulatory and acoustic spaces in

speech recognition tasks. We show that the proposed HCNN

better leverages articulatory information compared to simply

combining articulatory and acoustic features and training one

DNN or CNN acoustic model. In addition, we also explore fus-

ing convolutional-layer feature maps generated from articula-

tory and acoustic features, and we found that such an approach

yields promising results. 

Overall, this study demonstrates that given articulatory trajec-

ories and acoustic features are quite different in terms of the in-

ormation they contain, it is useful to learn intermediate feature

paces from DNN hidden layers or CNN feature maps to fuse the

nformation, rather than fusing the features on the input side and

eeding the combined features to a single DNN or CNN acoustic

odel. 

. Vocal tract constriction variables 

Articulatory Phonology ( Browman and Goldstein, 1989 , 1992 ) is

 phonological theory that views speech as a constellation of artic-

latory gestures that can overlap in time. Gestures are defined as

iscrete action units whose activation results in constriction forma-

ion or release by five distinct constrictors (lips, tongue tip, tongue

ody, velum, and glottis) along the vocal tract. The kinematic state

f each constrictor is defined by its corresponding constriction de-

ree and location coordinates, which are called vocal tract constric-

ion variables (the time-function output of these variables are typ-

cally identified as tract-variable trajectories, in short TVs). Please

efer to Table 1 and Fig. 1 for more details regarding TVs. Table 2

resents the dynamic range and the measuring units for each TVs.
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Table 2 

Units of measurement and dynamic 

range of each TV. 

TVs Unit Dynamic range 

Max Min 

GLO – 0.74 0.00 

VEL – 0.20 −0.20 

LP mm 12.00 8.08 

LA mm 27.00 −4.00 

TTCD mm 31.07 −4.00 

TBCD mm 12.50 −2.00 

TTCL Degree 80.00 0.00 

TBCL Degree 180.00 87.00 

Fig. 2. Gestural activations for the utterance “miss you.” Active gesture regions are 

marked by rectangular solid blocks. Smooth curves in the background represent the 

corresponding TVs. 
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Each gesture is associated with a given constrictor and is spec-

fied by an activation onset and offset time, and by a set of dy-

amic parameters (target, stiffness, and damping); when a given

esture is activated, its parameters are inserted into the associ-

ted constrictor’s TV equations of motion. These equations are de-

ned as critically damped second-order systems ( Saltzman and

unhall, 1989 ), as shown in (1) : 

 ̈z + B ̇

 z + K ( z − z 0 ) = 0 (1)

here M, B, and K are the mass, damping, and stiffness parame-

ers of each TV (represented by z), and z0 is the TV’s target posi-

ion. Every parameter except M is a time-varying function of the

orresponding parameters of the currently active set of gestures.

ue to the assumption of constant mass and critical damping, the

amping coefficients are constrained to be simple functions of the

ngoing stiffness values. The articulatory gestures and their set of

ract variable trajectories or time functions (TVs) for an arbitrary

tterance can be generated by using the Haskins Laboratories Task

ynamics Application (TaDA, ( Nam et al., 2004 )). Fig. 2 shows the

estural activations for the utterance “miss you,” and its corre-

ponding TV trajectories. 

Note that gestural onsets and offsets are not always aligned to

coustic landmarks (e.g., the beginning of the frication for /s/ is

elayed with respect to the onset of the tongue tip constriction

esture (TTCD) for /s/, due to the time needed for the tongue tip

o attain a position close enough to the palate to generate turbu-

ence). 
It should also be noted that the TVs GLO and VEL, representing

lottal and velic opening/closing, are only obtained in a synthetic

peech setup, where the parameters are generated artificially using

aDA. If deriving TVs from real articulatory measurements, then di-

ectly measuring those two TVs may not be possible, as positional

ata from those articulators may not be available in practice. 

. Dataset for training the speech-inversion system 

To train a model for estimating vocal tract constriction vari-

ble trajectories (a.k.a. TVs) from speech, we require a speech

atabase containing ground-truth TVs. However, prior to this work,

o speech datasets existed that contain recorded ground-truth TVs

nd their corresponding speech waveforms. Thus, we used the

askins Laboratories’ Task Dynamic model (TADA) ( Nam et al.,

004 )) along with HLsyn ( Hanson and Stevens, 2002 ) to gener-

te a synthetic, English isolated word speech corpus along with

Vs. TADA along with HLsyn is an articulatory-model-based text-

o-speech (TTS) synthesizer that given text as input generates vocal

ract constriction variables and corresponding synthetic speech. 

In this work, we used the CMU dictionary [22] and selected

11,929 words, whose Arpabet pronunciations we then fed to

ADA. In turn, TADA generated their corresponding TVs (refer to

able 1 ) and synthetic speech. Each word from the CMU dictio-

ary was separately fed to TADA four or five times. For each it-

ration, TADA randomly selected (a) between a male and a fe-

ale speaker, whose mean pitch was randomly picked from a

niform distribution; (b) a different speaking rate (fast, normal,

r slow); and (c) a different set of articulatory weights to in-

roduce speaker-specific traits. This process enabled simulating a

iverse set of speakers. Altogether 534,322 audio samples were

enerated (approximately 450 h of speech), out of which 88% of

he data was used as the training set, 2% was used as the cross-

alidation set, and the remaining 10% was used as the test set.

e name this as the Synthetic Multi-Speaker clean (SMS-clean)

ataset. Note that TADA generated speech signals at a sampling

ate of 8 kHz and TVs at a sampling rate of 200 Hz. In addition to

he multi-speaker dataset, we have also generated a single-speaker

ersion of the same 112 K words from the CMU dictionary, and

e call this the Synthetic Single-Speaker clean (SSS-clean) dataset.

lease note that SMS-clean and SSS-clean sets are completely dis-

oint with respect to speaker characteristics. Note that the set of

ords used in the training, cross-validation and testing data splits

ere completely disjoint, that is, there were no overlapping words

sed in any of those data splits. Further, the set of words used in

he training-testing-cross-validation splits of SSS-clean were same

s those used in the SMS-clean data splits. The training, testing

nd cross-validation sets for SMS-clean and SSS-clean were created

y a non-overlapping split of 88%, 10% and 2% of the respective

atasets. 

To assess the performance of the speech-inversion system un-

er noisy conditions and to train speech-inversion models with

oisy acoustic signals, we added noise to each of the synthetic

coustic waveforms. Fourteen different noise types (such as babble,

actory noise, traffic noise, highway noise, crowd noise, etc.) were

dded with a signal-to-noise ratio (SNR) between 10 and 80 dB. We

ombined this noise-added data with the SMS-clean data, and the

esulting combined dataset is named the Synthetic Multi-Speaker

oisy (SMS-noisy) dataset. In addition, we selected a held-out set

f ∼50 K test files and noise types different than that used to cre-

te the SMS-noisy set. This unseen noise types consisted of animal

oises such as cricket-chirping, dog barking etc., and were added

ith SNR between 10 and 60 dB, we name this as SMS-unseen-

oisy test set. This test set was created to assess the generalization

apability of each of the speech inversion models explored in this

ork. 
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Table 3 

r PPMC for each TV obtained from a speaker-dependent (SSS-clean) and a speaker- 

independent (SMS-clean) data based DNN speech-inversion system, using held-out 

test sets from each of those two datasets. 

GLO VEL LA LP TTCD TTCL TBCD TBCL 

SSS-clean 0.98 0.96 0.93 0.96 0.95 0.94 0.95 0.97 

SMS-clean 0.97 0.95 0.91 0.97 0.95 0.94 0.94 0.96 

Table 4 

r PPMC for each TV obtained from a speaker-dependent (SSS-clean) and a speaker- 

independent (SMS-clean) data based DNN speech-inversion system, using SMS- 

unseen-noisy test set. 

GLO VEL LA LP TTCD TTCL TBCD TBCL 

SSS-clean 0.63 0.62 0.61 0.68 0.62 0.64 0.59 0.78 

SMS-clean 0.86 0.80 0.75 0.91 0.80 0.83 0.79 0.89 
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4. Speech inversion - TV estimation 

The task of estimating articulatory trajectories (in this case, the

TVs) from the speech signal is commonly known as speech-to-

articulatory inversion or simply speech-inversion. During speech-

inversion, the acoustic features extracted from the speech signal

are used to predict the articulatory trajectories, where an inverse

mapping is learned by using a parallel corpus containing acoustic

and articulatory pairs. The task of speech-inversion is well known

to be an ill-posed inverse transform problem, where the challenge

arises from the non-linearity and non-unique nature of the inverse

transform ( Richmond, 2001; Mitra, 2010 ). However, tract variables

being a relative measure (e.g., LA is a measure of the distance be-

tween the upper and lower lip, instead of an absolute flesh point

location defined in Cartesian coordinates as in pellet data), are

found to suffer less from non-linearity and non-uniqueness com-

pared to traditional flesh-point measures such as pellet trajectories

( McGowan, 1994; Mitra et al., 2010b ). Richmond (2001) demon-

strated that the challenge of the inverse transform can be reduced

by adding context to the input acoustic features. 

Based on our previous observations ( Mitra et al., 2014c ), we ex-

plored using speech subband amplitude modulation features such

as normalized modulation coefficients (NMCs) ( Mitra et al., 2012 ).

NMCs are noise-robust acoustic features obtained from tracking

the amplitude modulations (AM) of gammatone-filtered subband

speech signals in the time domain. The AM estimates were ob-

tained by using the discrete energy separation algorithm based on

the nonlinear Teager’s energy operator. The modulation informa-

tion after root-power compression was used to create a cepstral

feature, where the first thirteen discrete cosine transform (DCT)

coefficients were retained. These cepstral NMCs are usually known

as the NMC cepstral or (NMCC). In addition, we also explored us-

ing the above features without the DCT transform, which resulted

in a 40-dimensional feature vector, and we denote them as NMCs.

The features were Z-normalized before being used to train the

DNN/CNN models. Further, the input features were contextualized

by splicing multiple frames. In this work, we separately explored

the optimal splicing window for the DNN and CNN models. 

We explored DNNs and CNNs for training speech-inversion

models. Contextualized (spliced) acoustic features in the form of

NMCs and NMCCs were used as input, and the TV trajectories were

used as the targets. Initially, we kept the splicing fixed at 21 frames

(10 frames on either side of the current frame), and we optimized

the network size by using the development set. The network’s hid-

den layers had sigmoid activation functions, and the output layer

had linear activation. The networks were trained with stochastic

gradient descent, where early stopping was used based on the

cross-validation error. We optimized the number of hidden layers,

the number of neurons, and the splicing window for the DNN- and

CNN-based speech-inversion models using the SMS-clean dataset.

We found that a four-hidden-layer DNN and a three-hidden-layer

CNN containing 2048 neurons in each hidden layer was optimal

for the speech-inversion task. The input feature-splicing window

was also optimized, where we observed that a splicing size of

75 frames ( ∼375 ms of speech information) for the DNNs and a

splicing size of 71 frames ( ∼355 ms of speech information) for the

CNNs were good choices. Based on our earlier experiments, we

used a convolution layer in the CNN model with 200 filters and

a band size of eight, where max-pooling was performed over three

samples. 

Speech-inversion systems are typically found to be speaker

sensitive, with the training of speaker-invariant models challeng-

ing. Speaker-dependent inverse models are usually more accu-

rate than speaker-independent models, due to the acoustic vari-

ation introduced by different speakers. To compare the perfor-

mance of speaker-independent models with respect to the speaker-
ependent models, we used the SMS-clean and SSS-clean datasets

o train and test two DNN speech-inversion systems, and the re-

ults are shown in Table 3 . 

The shape and dynamics of the estimated articulatory trajec-

ories were compared with the actual ones using the Pearson

roduct-moment correlation (PPMC) coefficient. The r PPMC gives

 measure of amplitude and dynamic similarity between the

roundtruth and the estimated TVs, and are defined as follows- 

 P P MC = 

N 

∑ N 
i =1 e i t i −

[∑ N 
i =1 e i 

][∑ N 
i =1 t i 

]
√ 

N 

∑ N 
i =1 e 

2 
i 

−
(∑ N 

i =1 e i 
)2 

√ 

N 

∑ N 
i =1 t 

2 
i 

−
(∑ N 

i =1 t i 
)2 

(2)

here e represents the estimated TV vector and t represents the

ctual TV vector having N data points. 

Table 3 shows that the performance for the speaker-

ndependent and for the speaker-dependent models are quite simi-

ar, where the latter outperforms the former marginally for five out

f the eighth TVs. This indicates that the DNN model, given the

iverse speaker dataset (SMS-clean), learned a speaker-invariant

peech-inversion mapping that, enabled it to perform almost as

ell as the speaker-dependent model. We also compared the per-

ormance of the speaker-dependent model (trained by SSS-clean

ata) and multi-speaker model (trained by SMS-clean data), by us-

ng the multi-speaker held-out SMS-unseen-noisy test and the re-

ults are shown in Table 4 . It can be seen from Table 4 , that the

odel trained with multi-speaker data has higher generalization

apability than the model trained single speaker data. For almost

ll TV trajectories in Table 4 , the SMS-clean trained model outper-

ormed the SSS-clean trained model. 

In automatic speech recognition, CNNs have become highly rel-

vant due to their implicit data-driven filtering capability. Vocal

ract shape varies with speaker, and the vocal tract is responsi-

le for filtering the glottal source (which is itself variable). Nat-

rally, the differences in vocal tract shape lead to differences in

he speech signal’s fine spectral structure. Variations in the speech

ignal due to vocal tract differences adversely impacts ASR perfor-

ance, and typically vocal tract length normalization (VTLN) tech-

iques are employed ( Zhan and Waibel, 1997 ) to compensate for

hat. For DNN/CNN models using filterbank energy features, it has

een observed that VTLN no longer seems to significantly improve

peech recognition accuracy ( Mitra et al., 2014d ), as the DNN/CNN

odels rich projections through multiple hidden layers allow them

o learn a speaker-invariant representation of the data. 

Table 5 presents the r PPMC values from the test set obtained

rom the DNN and CNN systems trained and tested with SMS-

lean data, and we name these models DNN CLEAN and CNN CLEAN .

able 5 shows that the DNN and CNN systems exhibit very simi-

ar performance with respect to each other for almost all the TVs

or the SMS-clean test set. This similarity in performance can be
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Table 5 

r PPMC for each TV obtained from the best DNN CLEAN , CNN CLEAN , DNN NOISY and 

CNN NOISY systems when evaluated with the SMS-clean dataset. 

GLO VEL LA LP TTCD TTCL TBCD TBCL 

DNN CLEAN 0.97 0.95 0.91 0.97 0.95 0.94 0.94 0.96 

CNN CLEAN 0.97 0.96 0.91 0.97 0.95 0.94 0.94 0.96 

DNN NOISY 0.96 0.94 0.90 0.96 0.94 0.93 0.92 0.95 

CNN NOISY 0.97 0.96 0.92 0.97 0.96 0.94 0.94 0.97 

Table 6 

r PPMC for each TV obtained from the best DNN CLEAN , CNN CLEAN , DNN NOISY and 

CNN NOISY systems when evaluated with the SMS-noisy dataset. 

GLO VEL LA LP TTCD TTCL TBCD TBCL 

DNN CLEAN 0.85 0.80 0.77 0.91 0.83 0.84 0.80 0.89 

CNN CLEAN 0.85 0.83 0.75 0.92 0.81 0.84 0.80 0.89 

DNN NOISY 0.93 0.90 0.87 0.95 0.92 0.91 0.89 0.94 

CNN NOISY 0.96 0.95 0.91 0.97 0.94 0.93 0.92 0.96 

Table 7 

r PPMC for each TV obtained from the best DNN CLEAN , CNN CLEAN , DNN NOISY and 

CNN NOISY systems when evaluated with the SMS-unseen-noisy test set. 

GLO VEL LA LP TTCD TTCL TBCD TBCL 

DNN CLEAN 0.86 0.80 0.75 0.91 0.80 0.83 0.79 0.89 

CNN CLEAN 0.87 0.84 0.76 0.92 0.80 0.84 0.80 0.89 

DNN NOISY 0.93 0.90 0.86 0.95 0.91 0.90 0.88 0.93 

CNN NOISY 0.95 0.94 0.90 0.97 0.94 0.93 0.92 0.95 
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ttributed to the diversity of the training data, which contained

umerous speaker configurations, consequently making the DNN

ystem more robust to speaker variation. To investigate the ro-

ustness of speech-inversion models to noise, we trained DNN and

NN models using the SMS-noisy train set (we call these models

NN NOISY and CNN NOISY ), using the same network configuration as

earned from the experiments with the SMS-clean data. The last

wo rows of Table 5 presents the r PPMC values from the SMS-clean

est set and shows that the CNN NOISY model almost always outper-

orms the DNN NOISY model. 

Next, we evaluated the DNN CLEAN and CNN CLEAN speech-

nversion models by using the noisy test set of the SMS-noisy data,

nd the results are shown in Table 6 , where similar to Table 5 ,

oth the DNN and CNN models are found to perform quite simi-

ar to each other. We also evaluated the performance of DNN NOISY 

nd CNN NOISY models on the SMS-noisy test set and the results are

hown in last two rows of Table 6 . Table 6 shows that the CNN NOISY 

odel outperforms the DNN NOISY model for all the TVs. 

Finally, we compared the performance of the DNN CLEAN ,

NN CLEAN , DNN NOISY and CNN NOISY models using the SMS-unseen-

oisy test, to assess how the performance of these models gen-

ralize to unseen noisy types. Table 7 shows the noise trained

odels (DNN NOISY and CNN NOISY ) performed much better than the

odels trained with clean data only (DNN CLEAN and CNN CLEAN ).

able 7 also shows that the CNN NOISY model performed signifi-

antly better than the DNN NOISY model. Table 7 shows that the

ulti-condition trained speech inversion models can generalize

ell to other noise types. 

Results from Tables 5–7 suggest that the CNN model learned a

ore robust and invariant transform from speech to TVs compared

o the DNN models, and is thus more noise robust than the DNN

odel. Comparing the performance of the DNN and CNN models

rained with clean and noisy data, irrespective of which dataset

as used to train and test the CNN models, their performance re-

ained almost the same, indicating that a CNN model may be a

etter choice when dealing with varying acoustic conditions. 
. Dataset for speech recognition experiments 

The DARPA WSJ1 CSR dataset was used in the experiments pre-

ented in this paper. For training, a set of 35,990 speech utterances

77.8 h) from the WSJ1 collection, having 284 speakers was used.

or testing, the WSJ-eval94 dataset composed of 424 waveforms

0.8 h) from 20 speakers was used. Note that for all the experi-

ents reported here, speaker-level vocal tract length normalization

VTLN) was not performed. We denote this dataset as WSJ1 in our

xperiments described in this paper. 

For the speech recognition task under noisy and channel-

egraded conditions, we used the Aurora-4 (noisy Wall Street Jour-

al [WSJ0]) dataset ( Hirsch, 2001 ). Aurora-4 contains six additive

oise versions with channel-matched and mismatched conditions.

t was created from the standard 5 K WSJ0 database and has 7180

raining utterances of approximately 15-hours duration and 330

est utterances. In all experiments, we used 16 kHz sampled data

or training and testing our speech recognition systems. Note that

ADA, along with HLsyn, generates synthetic speech data sampled

t 8 kHz; hence, our speech-inversion system can use a bandwidth

f 0 to 4 kHz (corresponding to 8 kHz sampled data) to extract the

Vs for speech recognition experiments. In Aurora-4, two training

onditions were specified: (1) clean training, which is the full SI-

4 WSJ training set without added noise; and (2) multi-condition

raining, with approximately half of the training data recorded by

sing one microphone, and the other half recorded by using a dif-

erent microphone, with different types of added noise at differ-

nt signal-to-noise ratios (SNRs). The Aurora-4 test data includes

4 test sets from two different channel conditions and six different

dded noises in addition to the clean condition. The SNR was ran-

omly selected between 0 and 15 dB for different utterances. The

ix noise types used were: car, babble, restaurant, street, airport,

nd train station. The evaluation set consisted of 5 K words under

wo different channel conditions. The original audio data for test

onditions 1–7 was recorded with a Sennheiser microphone, while

est conditions 8–14 were recorded by using a second microphone

andomly selected from a set of 18 different microphones (more

etails in Hirsch, 2001 ). 

In addition to the above two datasets, we also investigated the

erformance of the tract variable trajectories in the Switchboard

SWB-300) ASR task. For the SWB-300 task, the training data con-

isted of 262 h of Switchboard data, which contained telephone-

onversation speech between two strangers on a pre-assigned

opic. The Hub5 20 0 0 evaluation set was used to evaluate model

erformance, where 2.1 h (21.4 K words, 40 speakers) of Switch-

oard data and 1.6 h (21.6 K words, 40 speakers) of CallHome au-

io. The SWB-300 acoustic models were decoded with a 4-gram

anguage model. 

. ASR systems 

We trained different acoustic models for the WSJ1 and Aurora-

 speech recognition tasks, where we explored traditional DNNs,

NNs, and time-frequency convolutional nets (TFCNNs) ( Mitra and

ranco, 2015 ). The acoustic models were trained with gammatone

lterbank energies (GFBs). For SWB-300 ASR task, we trained a six-

idden-layer DNN acoustic model with 2048 neurons in each layer

nd Damped Oscillator Coefficients (DOCs) ( Mitra et al., 2013b ) as

he acoustic feature. The DOC features model the auditory hair

ells using a bank of forced damped oscillators, where gamma-

one filtered bandlimited subband speech signals are used as the

orcing function. The oscillation energy from the damped oscilla-

ors are used as the DOC features after power-law compression.

rom our experiments with SWB-300, we observed that the DOC

eatures after feature space maximum likelihood linear regression
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Table 8 

Aurora-4 evaluation partitions. 

Sennheiser microphone Randomly selected microphone 

Clean speech A B 

Noisy speech C D 
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(fMLLR)-based speaker adaptation, using a sequence trained DNN

model, provides a strong baseline system. 

The gammatone filters are a linear approximation of the audi-

tory filterbank of the human ear. In GFB processing, speech is an-

alyzed by using a bank of 40 gammatone filters equally spaced on

the equivalent rectangular bandwidth (ERB) scale. For this work,

the power of the bandlimited time signals within an analysis win-

dow of ∼26 ms was computed at a frame rate of 10 ms. Subband

powers were then root compressed by using the 15th root, and the

resulting 40-dimensional feature vector was used as the GFB. 

It was shown ( Mitra et al., 2014d ) that CNNs give lower WERs

compared to DNNs when using filterbank features for the Aurora-

4 ASR task, and GFBs offered performance gain over mel-filterbank

energies (MFBs). Hence, in this study, we used the GFB-CNN model

as our baseline system; however, for the sake of clarity, we show

the performance of the GFB-DNN systems as well. 

To generate the alignments necessary for training the CNN

system, a Gaussian mixture model (GMM)–hidden Markov model

(HMM) model was used to produce the senones’ labels. Altogether,

the GMM-HMM system produced 3162 context-dependent (CD)

states for Aurora-4 and 1659 CD states for WSJ1. The input features

to the acoustic models were formed by using a context window of

15 frames (7 frames on either side of the current frame). 

The acoustic models were trained by using cross-entropy on the

alignments from the GMM-HMM system. For the CNN, 200 con-

volutional filters of size 8 were used in the convolutional layer,

and the pooling size was set to 3 without overlap. The subsequent

fully connected network had four hidden layers, with 1024 nodes

per hidden layer, and the output layer included as many nodes as

the number of CD states for the given dataset. The networks were

trained by using an initial four iterations with a constant learn-

ing rate of 0.008, followed by learning-rate halving based on cross-

validation error decrease. Training stopped when either no further

significant reduction in cross-validation error was noted or when

cross-validation error started to increase. Backpropagation was per-

formed using stochastic gradient descent with a mini-batch of 256

training examples. For the DNN systems, we used five layers with

1024 neurons in each layer, with similar learning criteria as the

CNNs. 

The TFCNN architecture was based upon Mitra and

Franco (2015) , where two parallel convolutional layers were

used at the input, one performing convolution across time, and

the other across the frequency scale of the input filterbank fea-

tures. That work showed that the TFCNNs gave better performance

compared to their CNN counterparts. Here, we used 75 filters to

perform time convolution, and 200 filters to perform frequency

convolution. Note that the convolutional-layer configurations for

the TFCNN model were investigated in our earlier work, Mitra and

Franco (2015) , and the optimal configuration learned from that

work is used in the experiments reported in this paper. For time

and frequency convolution, eight bands were used. A max-pooling

over three samples was used for frequency convolution, while a

max-pooling over five samples was used for time convolution.

The feature maps after both the convolution operations were

concatenated and then fed to a fully connected neural net, which

had 1024 nodes and four hidden layers. 

In this work, we present a modified deep neural network ar-

chitecture to jointly model the acoustic and the articulatory space.

The diagram of the network is shown in Fig. 3 , illustrating two

parallel neural networks trained simultaneously. These two paral-

lel neural networks modeled two things: (1) learning the acoustic

space from the GFB features and (2) learning the articulatory space

from the TV trajectories. The acoustic space was learned by using

a time-frequency convolution layer, where two separate convolu-

tion filters operate on the input GFB features. These two convolu-

tion layers had the same parameter specification as that used in
he TFCNNs. The articulatory space was learned by using a time-

onvolution layer that contained 75 filters, followed by a max-

ooling over five samples. Note that the cross-TV convolution oper-

tion may not produce any meaningful information, whereas time

onvolution on the TVs can help in extracting TV modulation-level

nformation, which was the motivation behind selecting a time-

onvolution layer for learning the articulatory space. The fully con-

ected DNN layers were different in size; we observed that 800

eurons was nearly optimal for learning the acoustic space, and

hat 256 neurons was nearly optimal for learning the articulatory

pace. Note that the parallel networks were jointly trained. 

We also investigated fusing information at the feature-map

evel, where we jointly learned convolutional layers operating on

coustic features (frequency-convolution) and TV trajectories (tem-

oral convolution). Unlike our previous work ( Mitra et al., 2016 )

here feature maps generated from two frequency convolution

ayers each operating on a different acoustic feature were fused,

e performed frequency convolution on the spectral acoustic fea-

ures and time convolution on the TV trajectories, and we fused

he feature maps from these two layers to feed a single, fully con-

ected DNN, see Fig. 4 . We name this configuration the fused CNN

fCNN), where 200 filters were used for acoustic feature frequency

onvolution and 75 filters were used for TV-trajectory time convo-

ution. 

For clarity’s sake, we also tried combining acoustic features

such as GFB features) with the TVs and then training one sin-

le network by using the combined feature. Such a system can

ave several drawbacks: a CNN or TFCNN may not be a techni-

ally sound architecture, as the spatial convolution filter operating

cross GFB features will capture meaningful information, but the

ame filter operating across TVs or TV-GFB boundaries may not be

eaningful. The only meaningful architecture in such a case is a

NN; however, based on prior studies, we know that DNNs are

lightly inferior to CNNs in terms of performance. Hence, to get

he best of both DNNs and CNNs, we designed the proposed hy-

rid convolutional neural network, which performs relevant con-

olutional operations based on individual feature types. 

. Speech recognition experiments and results 

The eight TVs given in Tables 1 and 2 are insufficient by them-

elves for use as ASR features ( Mitra et al., 2014c ); hence, they

re typically combined with standard acoustic features. Our initial

SR experiments were on Aurora-4, where the baseline system is

he same as that reported in Mitra and Franco (2015) . As baseline

coustic features, we tried both mel-filterbank (MFB) and gamma-

one filterbank (GFB) features. Given that Aurora-4 has 14 differ-

nt evaluation conditions depending upon the noise conditions and

icrophone types, we used the standard partition of the evaluation

et to report our results, which are outlined in Table 8 . 

Table 9 shows the results from the DNN, CNN, and TFCNN sys-

ems, represented in the form of word error rates (WERs). Note

hat in all the Aurora-4 experiments reported in this paper, we

sed the standard trigram language model distributed with the

SJ0 dataset. 

Table 9 shows that the CNN models perform better than the

NN models, and that TFCNN performs the best for both features,

here the TFCNN-MFB system offers significant performance gain

ver the CNN-MFB system. However, with GFB features, the per-
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Fig. 3. Schematics of the hybrid convolutional neural network (HCNN). The top layer represents the acoustic model, whose input is filterbank features, and the bottom layer 

represents the articulatory model, whose input is TV trajectories. 

Fig. 4. Schematics of a fused-feature-map convolutional neural network (fCNN). The top convolutional layer (across frequency scale) operates on the acoustic features, which 

are the filterbank energy features, and the bottom convolutional layer (across time scale) operates on articulatory features, which are the TV trajectories. 

Table 9 

WER on multi-conditioned training task of Aurora-4 

(16 kHz) from the different acoustic models using MFB and 

GFB baseline features. 

Features Models A B C D Avg. 

MFB DNN 4.3 9.6 8.8 18.4 12.9 

CNN 3.5 6.2 6.6 15.7 10.1 

TFCNN 3.6 5.8 6.6 14.6 9.5 

GFB DNN 3.3 6.9 7.7 17.8 11.4 

CNN 3.1 6.1 5.2 14.5 9.4 

TFCNN 3.1 5.7 6.1 14.6 9.4 
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Table 10 

WER on multi-conditioned training task of Aurora-4 (16 kHz) from the 

different acoustic models using GFB + estimated TVs. 

Features Models A B C D Avg. 

GFB TFCNN 3.1 5.7 6.1 14.6 9.4 

GFB + TV-DNN CLEAN DNN 3.8 7.4 8.8 19.5 12.5 

CNN 3.3 6.2 6.1 15.1 9.8 

TFCNN 3.2 5.9 6.3 14.8 9.5 

GFB + TV-CNN CLEAN DNN 3.7 7.7 8.9 19.2 12.4 

CNN 3.6 6.2 6.2 14.7 9.7 

TFCNN 3.2 6.0 6.0 15.0 9.6 
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i  
ormance difference between the CNN and TFCNN systems is in-

ignificant. Note that based on our prior observations ( Mitra et al.,

014a ), we used a five-hidden-layer DNN and a four-hidden-

ayer + one-convolutional-layer CNN. The TFCNN had four hidden

ayers + one frequency convolutional layer + one time convolutional

ayer. 

Next, we extracted the estimated TV trajectories for the train-

ng, testing, and cross-validation sets for the Aurora-4 multi-

onditioned train-test evaluation by using the speech-inversion

ystems presented in Section 4 . The estimated eight TV trajec-

ories were used in conjunction with the baseline acoustic fea-

ures. Table 9 shows that the GFB features provide a better base-

ine than the MFB ones; hence, we used the GFB features as the
aseline acoustic feature in conjunction with the estimated TV tra-

ectories. The TV trajectories estimated from using the DNN CLEAN 

nd DNN NOISY speech-inversion models are termed as the TV-

NN CLEAN and TV-DNN NOISY , respectively. Those obtained from the

NN CLEAN and CNN NOISY models are termed the TV-CNN CLEAN and

V-CNN NOISY , respectively. As initial experiments, we did a sim-

le feature fusion of the GFB feature and the estimated TVs (TV-

NN CLEAN and TV-CNN CLEAN ), and trained and tested the DNN,

NN, and TFCNN systems. Table 10 shows the results. 

Table 10 shows that simple combination of the acoustic features

ith the articulatory features did not work well. For all model-

ng types, the combination of the GFB features with the estimated
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Table 11 

WER on multi-conditioned training task of Aurora-4 (16 kHz) from the 

baseline system using GFB feature and the HCNN using GFB + esti- 

mated TV features. Bold numbers reflect the best results. 

Model A B C D Avg. 

GFB TFCNN 3.1 5.7 6.1 14.6 9.4 

GFB + TV-DNN CLEAN HCNN 3.3 5.7 5.5 14.2 9.2 

GFB + TV-CNN CLEAN HCNN 3.0 5.7 5.5 14.2 9.1 

GFB + TV-DNN NOISY HCNN 2.8 5.6 5.4 14.3 9.0 

GFB + TV-CNN NOISY HCNN 2.6 5.6 5.5 14.0 8.9 

GFB + TV-DNN NOISY fCNN 2.8 5.5 5.8 13.8 8.9 

GFB + TV-CNN NOISY fCNN 2.8 5.5 5.4 14.1 9.0 
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TV trajectories resulted in increased WER, suggesting that simple

feature-level fusion may not be a useful approach. 

In our earlier experiments ( Mitra et al., 2014c ), we used a

GMM-HMM acoustic model trained on a simple concatenation of

acoustic features (mel-frequency cepstral coefficients, a.k.a MFCCs)

and TV trajectories, which were dimensionality reduced by a prin-

cipal component analysts (PCA) transform. In such a setup, the di-

mensionality reduction using PCA after acoustic feature and artic-

ulatory feature concatenation was a key component that helped to

improve the performance beyond the acoustic-feature-only base-

line. This work investigates DNN/CNN acoustic models and similar

to before, we observed that a simple concatenation of the two fea-

ture spaces (acoustic and articulatory) may not be useful, as each

of them may be capturing different linguistic attributes of speech,

which can often be complimentary to each other. 

Given the difference in characteristics of the acoustic feature

(GFB) and the estimated TVs, using separate convolutional filtering

on each of them is intuitive. GFB are spectral-level features that

have spatial correlation across the feature dimensions; hence, fre-

quency convolution is meaningful for such features. The TVs, on

the other hand, are purely time trajectories of vocal tract constric-

tions; for them, temporal modulation extraction is more meaning-

ful than cross-TV correlation extraction. Hence, we explored the

hybrid convolutional net (HCNN), as shown in Fig. 3 . Note that

the HCNN performs time-frequency convolution on the spectral

feature (such as the GFB or MFBs) and only time convolution on

the TVs. We further noticed that a much smaller number of neu-

rons were sufficient for the hidden layers modeling the TV tra-

jectories than those used for modeling the GFBs. We used 800

neurons in the four hidden layers processing the GFB features,

and 256 neurons in the four hidden layers processing the TV tra-

jectories; hence, the total number of neurons in the hidden lay-

ers between the HCNN and the baseline systems are comparable.

Table 11 shows the WERs obtained from the HCNNs trained with

the GFB + T V-DNN CLEAN , GFB + T V-CNN CLEAN , GFB + T V-DNN NOISY , and

GFB + TV-CNN NOISY features. Note that the features used a splicing

of 15 frames, meaning a combination of 7 frames from either side

of the current frame, inclusive. Note that from prior experiments

we have observed that TFCNNs almost always perform better than

the CNNs ( Mitra and Franco, 2015 ), more specifically for reverber-

ated conditions. As reverberation is a temporal distortion, the time

convolution in TFCNNs help to reduce the effect of reverberation.

Also we observed that for MFBs, TFCNNs significantly improve the

performance (see Table 9 ) making them competitive with respect

to noise robust features. Because of the versatility of TFCNNs per-

formance over CNNs, we have used them in our HCNN architec-

ture, rather than using the traditional CNNs to process the acoustic

observations. 

Table 11 shows that the HCNN systems overall perform bet-

ter than the baseline system, demonstrating more than 5% over-

all relative reduction in WER compared to the baseline. Note that

the TVs estimated from the CNN system performed a little bet-

ter than those from the DNN system, giving lower error rates
n clean and channel mismatched cases. This finding is also evi-

ent from the r PPMC scores shown in Tables 6 and 7 , where the

NN-based speech-inversion model trained on SMS-noisy data was

ound to perform better than the corresponding DNN model. Also,

ote that the HCNN’s major contribution was in conditions C and

, which represented channel mismatch clean (C) and noisy (D)

cenarios. The results in Table 11 indicate that the additional ar-

iculatory information helped to improve the ASR performance in

oth matched and mismatched conditions. Table 11 also show the

esults from the fCNN systems, where the results were similar as

CNN systems. These results and the results in Table 10 indicate

hat the benefits of the HCNN and fCNN systems derive both from

he systems’ individual convolutional layers tied to the acoustic

eatures and articulatory features, and from using time convolution

nly for the articulatory features, which results in performance

mprovement over the GFB baseline, which was not observed in

able 10 , where the features were concatenated together and were

ed to the same convolutional layer. 

To get a more detailed understanding regarding how the artic-

latory features helped in each noise and channel conditions in

urora-4, we compare the individual WERs for each testing con-

ition, which is shown in Table 12 . 

Table 12 shows that for the clean conditions, using the artic-

latory features always improved the performance. We observed

hat for clean data conditions the percentage of correct recogni-

ions increased, while both substitution and deletions decreased;

ndicating that the additional TV information helped to improve

he discriminative power of the speech recognition model. Over-

ll, the articulatory features reduced the WER in all conditions, ex-

ept babble and street in the Sennheiser microphone condition. For

he second microphone condition (i.e., using a microphone selected

andomly from a set of 18 microphones), the articulatory features

lways improved performance. For train-station noise, using artic-

latory features always reduced the WER. Significance test on the

esults from the clean matched channel data indicated that the

FB + TV-CNN NOISY -HCNN systems is significantly better ( p < 0.001)

han the GFB-TFCNN system. 

In addition to the Aurora-4 speech recognition task, we also

pplied the HCNN architecture to the clean WSJ1 evaluation task.

imilar to the findings in Table 9 , we observed that the CNN mod-

ls perform much better than the DNN acoustic models for the

aseline GFB features. The DNN systems had five hidden layers

ith 1024 neurons in each layer, whereas the CNN systems had

our hidden layers of 1024 neurons in each layer and one convo-

utional layer with 200 filters. Table 13 shows the WERs from the

FB, GFB, GFB + TV-DNN CLEAN and GFB + TV-CNN CLEAN systems for

SJ1 speech recognition evaluation task. 

Table 13 shows that the GFB features are a better baseline fea-

ure than the MFBs, and that the CNN models offer lower error

ates than DNNs. Interestingly, using the TFCNN model with GFB

eature shows no improvement over its CNN counterparts. When

stimated TVs were used along with the GFBs in the HCNN mod-

ls, a reduction in error rate was observed. The TVs from the

NN-based speech-inversion system gave the best performance in

he WSJ1 ASR task, with an observed relative reduction of 5.2%

n WER compared to the WER for the best CNN-GFB baseline

ystem. 

For the SWB-300 baseline model, we trained a six-hidden layer

NN having 2048 neurons, using fMLLR transformed damped os-

illator cepstral coefficient (DOCC) ( Mitra et al., 2013b ) features as

nput. The estimated TVs from the DNN speech-inversion model

as appended with the DOCC features, and they were fMLLR trans-

ormed to train a six-hidden-layered DNN with 2048 neurons.

able 14 shows the results from the sequence-trained DNN mod-

ls. 
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Table 13 

WER from WSJ1 ASR experiments us- 

ing baseline features (MFB and GFB) and 

GFB + estimated TV feature with different 

modeling techniques. Bold numbers re- 

flect the best results. 

Features Models WER 

MFB DNN 6.7 

GFB DNN 6.4 

GFB CNN 5.7 

GFB TFCNN 5.7 

GFB + TV-DNN CLEAN HCNN 5.4 

GFB + TV-CNN CLEAN HCNN 5.6 

GFB + TV-DNN CLEAN fCNN 5.6 

GFB + TV-CNN CLEAN fCNN 5.7 

Table 14 

WER from SWB-300 ASR exper- 

iments using SWB part of the 

Hub5 eval data. 

Features WER 

DOCC 11.8 

DOCC + TV-DNN CLEAN 11.1 
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. Conclusion 

In this work, we presented DNN- and CNN-based speech-

nversion systems for estimating articulatory trajectories from the

peech signal. We demonstrated that with suitable network param-

ter selection, we could estimate with high accuracy articulatory

rajectories in the form of vocal tract constriction variables, where

he correlation coefficient between the estimated and ground-

ruth trajectories correlated was greater than 0.9. We also inves-

igated noise robustness of speech-inversion systems, where we

bserved that speech-inversion performance degrades with pres-

nce of noise in the acoustic signal. We observed that training the

peech-inversion model with noisy data improves its noise robust-

ess. We also observed that sufficient diversity of speaker data

nables training speech-inversion models that perform as well as

peaker-specific inversion models. 

We proposed a hybrid convolutional neural network (HCNN), in

hich two parallel layers were used to jointly model the acous-

ic and articulatory spaces. The parameters of these two networks

ere learned jointly with one objective function, with these two

etworks sharing the same output layer. Speech recognition results

n the Aurora-4 and WSJ1 recognition tasks showed that the pro-

osed architecture using articulatory features demonstrated reduc-

ion in word error rates for each of the clean, noisy, and channel-

ismatched conditions. For the Aurora-4 and WSJ1 ASR tasks, the

est WERs from the HCNN system were found to be 8.9% and

.4%, respectively, which, to the best of our knowledge, are state-

f-the-art results for these datasets. We also observed significant

mprovement in performance for the SWB-1 speech recognition

ask when articulatory features were used with the DOCC features,

ompared to using the DOCC features alone. 

In the future, we will investigate using HCNN for ASR tasks in-

olving languages other than English. The impact of the time reso-

ution of the tract variable trajectories for articulatory space mod-

ling was not investigated in great detail in this study. Given that

he HCNN performs time convolution on the articulatory features,

e must investigate whether finer articulatory resolution could

ncover more detail about articulatory trajectory temporal mod-

lation. We also must explore if hidden variables in the form of

ottleneck features can be used for ASR. Using bottleneck features

erived from traditional acoustic features has recently shown sig-

ificant performance gains, and using articulatory-trajectory-based
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bottleneck features may potentially introduce complementary in-

formation and hence possibly add to those performance gains. 
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