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Studies have shown that articulatory information helps model speech variability and, consequently, im-
proves speech recognition performance. But learning speaker-invariant articulatory models is challenging,
as speaker-specific signatures in both the articulatory and acoustic space increase complexity of speech-
to-articulatory mapping, which is already an ill-posed problem due to its inherent nonlinearity and non-
unique nature. This work explores using deep neural networks (DNNs) and convolutional neural networks
(CNNs) for mapping speech data into its corresponding articulatory space. Our speech-inversion results
indicate that the CNN models perform better than their DNN counterparts. In addition, we use these
inverse-models to generate articulatory information from speech for two separate speech recognition
tasks: the WSJ1 and Aurora-4 continuous speech recognition tasks. This work proposes a hybrid con-
volutional neural network (HCNN), where two parallel layers are used to jointly model the acoustic and
articulatory spaces, and the decisions from the parallel layers are fused at the output context-dependent
(CD) state level. The acoustic model performs time-frequency convolution on filterbank-energy-level fea-
tures, whereas the articulatory model performs time convolution on the articulatory features. The per-
formance of the proposed architecture is compared to that of the CNN- and DNN-based systems using
gammatone filterbank energies as acoustic features, and the results indicate that the HCNN-based model

demonstrates lower word error rates compared to the CNN/DNN baseline systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Spontaneous speech typically includes significant variability
that is often difficult to model by automatic speech recogni-
tion (ASR) systems. Coarticulation and lenition are two sources
of such variability (Daniloff and Hammarberg, 1973), and speech-
articulation modeling can help to account for such variability
(Stevens, 1960). Several studies in the literature (Kirchhoff, 1999;
Frankel and King, 2001; Deng and Sun, 1994; Mitra et al., 20133;
Badino et al., 2016; and several others) have demonstrated that
speech-production knowledge (in the form of speech articulatory
representations) can improve ASR system performance by system-
atically accounting for variability such as coarticulation. A compre-
hensive exploration of speech-production features and their role in
speech recognition performance is provided in King et al. (2007).
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Further studies (Richardson et al., 2003; Mitra et al., 2010a , 2011a)
have demonstrated that articulatory representations provide some
degree of noise robustness for ASR systems.

Deep learning techniques (Mohamed et al., 2012) involving neu-
ral networks with several hidden layers have become integral to
current ASR systems. Deep learning has been used for feature rep-
resentation (Hoshen et al., 2015), acoustic modeling (Seide et al.,
2011), and language modeling (Arisoy et al., 2012). Given the ver-
satility of the deep neural network (DNN) systems, it was ob-
served in Mitra et al. (2014a) that speaker-normalization tech-
niques such as vocal tract length normalization (VTLN) (Zhan and
Waibel, 1997) are unnecessary for improving ASR accuracy, as
the DNN architecture’s rich, multiple projections through multi-
ple hidden layers enable it to learn a speaker-invariant data rep-
resentation. Convolutional neural networks (CNNs) (Sainath et al.,
2013; Abdel-Hamid et al., 2012) motivated by the receptive field
theory of the visual cortex are often found to outperform fully
connected DNN architectures (Mitra et al, 2014a,b). CNNs are
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known to be noise robust (Mitra et al., 2014a), especially in those
cases where noise/distortion is localized in the spectrum. Speaker-
normalization techniques are also found to have less impact on
speech recognition accuracy for CNNs as compared to for DNNs
(Mitra et al., 2014a). With CNNs, the localized convolution fil-
ters across frequency tend to normalize the spectral variations in
speech arising from vocal tract length differences, enabling the
CNNs to learn speaker-invariant data representations.

Studies have explored using DNNs (Mitra et al., 2010b, c;
Uria et al, 2011; Canevari et al., 2013) for learning the nonlin-
ear inverse transform of acoustic waveforms to articulatory tra-
jectories (a.k.a. speech-inversion or acoustic-to-articulatory inver-
sion of speech). Results have demonstrated that using articu-
latory representations in addition to acoustic features improves
phone recognition (Badino et al, 2016; Canevari et al, 2013;
Mitra et al, 2011a; Deng and Sun, 1994) and speech recogni-
tion performance (Mitra et al., 2011b , 2013a , 2014c). Learning
acoustic-to-articulatory transforms is quite challenging, as such
mapping is nonlinear and non-unique (Mitra, 2010; Richmond,
2001). Speaker variation adds complexity to the problem and
makes speech-inversion even harder (Sivaraman et al., 2015; Ghosh
and Narayanan, 2011). Ghosh and Narayanan (2011) demonstrated
that speaker-independent speech-inversion systems can be trained
and can offer similar performance to that of speaker-dependent
speech-inversion systems.

This work has two principal aims:

(1) Explore deep learning approaches to learn “speaker-
independent” speech-inversion mappings using synthetically
generated parallel articulatory speech data;

(2) Create a suitable DNN architecture, where retrieved articula-
tory variables can be used for spontaneous speech recogni-
tion purposes.

Note that, this work to the best of our knowledge, for the
first time explores the use of Vocal tract constriction variables
(TVs) and filterbank features as input to DNN/CNN acoustic mod-
els. Hence we explore DNN/CNN configuration to best utilize the
TV+filterbank features.

Specifically, we explore CNNs with the hope of achieving more
robust speech-inversion performance compared to the traditional
DNNs. We investigate using different parameters (such as neural
network size and data contextualization (splicing) windows over
the input acoustic-feature space) and show that impressive gains
can be achieved through careful selection of parameters. We use
the trained DNN/CNN models to predict the articulatory trajecto-
ries of the training and testing datasets of the Wall Street Jour-
nal (WSJ1) corpus, the noisy WSJO corpus Aurora-4, and the 265-
h Switchboard-1 corpus, and we use the estimated trajectories to
perform a continuous speech recognition task.

Further, we present a parallel CNN architecture, where time-
frequency convolution is performed on traditional gammatone-
filterbank-energy-based acoustic features, and time-convolution is
performed on the articulatory trajectories. Each of the parallel con-
volution layers is followed by a fully connected DNN, whose out-
puts are combined at the context-dependent (CD) state level, pro-
ducing senone posteriors. The proposed hybrid CNN (HCNN) archi-
tecture learns an acoustic space and an articulatory space, and uses
both to predict the CD states.

The word recognition results from both the WSJ1 and Aurora-
4 speech recognition tasks indicate that using articulatory infor-
mation in addition to filterbank features provides sufficient com-
plementary information to reduce the word error rates (WER) in
clean, noisy, and channel-degraded conditions.

The novelties of this work are as follows:

Table 1
Constrictors and their vocal tract variables.

Constrictors Vocal tract (VT) variables

Lip Lip aperture (LA)

Lip protrusion (LP)

Tongue tip constriction degree (TTCD)
Tongue tip constriction location (TTCL)
Tongue body constriction degree (TBCD)
Tongue body constriction location (TBCL)
Velum (VEL)

Glottis (GLO)

Tongue tip
Tongue body

Velum
Glottis

90°
45°

180° ') o 0*
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Fig. 1. Vocal tract variables at five distinct constriction organs.

(a) Use of large multi-speaker synthetic articulatory data to train
robust speech-inversion models. Earlier work has used single-
speaker model-based synthetic articulatory data (Mitra et al.,
2014c). In this work, we simulate a diverse set of speakers, by
varying vocal tract length, pitch, articulatory weights, etc.
Investigate the effect of noise on speech-inversion performance,
by comparing CNN and DNN models to analyze their robustness
in noisy acoustic conditions.

Explore joint-modeling of articulatory and acoustic spaces in
speech recognition tasks. We show that the proposed HCNN
better leverages articulatory information compared to simply
combining articulatory and acoustic features and training one
DNN or CNN acoustic model. In addition, we also explore fus-
ing convolutional-layer feature maps generated from articula-
tory and acoustic features, and we found that such an approach
yields promising results.
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Overall, this study demonstrates that given articulatory trajec-
tories and acoustic features are quite different in terms of the in-
formation they contain, it is useful to learn intermediate feature
spaces from DNN hidden layers or CNN feature maps to fuse the
information, rather than fusing the features on the input side and
feeding the combined features to a single DNN or CNN acoustic
model.

2. Vocal tract constriction variables

Articulatory Phonology (Browman and Goldstein, 1989, 1992) is
a phonological theory that views speech as a constellation of artic-
ulatory gestures that can overlap in time. Gestures are defined as
discrete action units whose activation results in constriction forma-
tion or release by five distinct constrictors (lips, tongue tip, tongue
body, velum, and glottis) along the vocal tract. The kinematic state
of each constrictor is defined by its corresponding constriction de-
gree and location coordinates, which are called vocal tract constric-
tion variables (the time-function output of these variables are typ-
ically identified as tract-variable trajectories, in short TVs). Please
refer to Table 1 and Fig. 1 for more details regarding TVs. Table 2
presents the dynamic range and the measuring units for each TVs.
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Table 2
Units of measurement and dynamic
range of each TV.

TVs Unit Dynamic range
Max Min
GLO - 0.74 0.00
VEL - 0.20 -0.20
LP mm 12.00 8.08
LA mm 27.00 —4.00
TICD mm 31.07 —4.00
TBCD mm 12.50 -2.00

TTCL Degree 80.00 0.00
TBCL Degree  180.00  87.00
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Fig. 2. Gestural activations for the utterance “miss you.” Active gesture regions are
marked by rectangular solid blocks. Smooth curves in the background represent the
corresponding TVs.

Each gesture is associated with a given constrictor and is spec-
ified by an activation onset and offset time, and by a set of dy-
namic parameters (target, stiffness, and damping); when a given
gesture is activated, its parameters are inserted into the associ-
ated constrictor’s TV equations of motion. These equations are de-
fined as critically damped second-order systems (Saltzman and
Munhall, 1989), as shown in (1):

MZ+Bz+K(z—20)=0 (1)

where M, B, and K are the mass, damping, and stiffness parame-
ters of each TV (represented by z), and z0 is the TV’s target posi-
tion. Every parameter except M is a time-varying function of the
corresponding parameters of the currently active set of gestures.
Due to the assumption of constant mass and critical damping, the
damping coefficients are constrained to be simple functions of the
ongoing stiffness values. The articulatory gestures and their set of
tract variable trajectories or time functions (TVs) for an arbitrary
utterance can be generated by using the Haskins Laboratories Task
Dynamics Application (TaDA, (Nam et al., 2004)). Fig. 2 shows the
gestural activations for the utterance “miss you,” and its corre-
sponding TV trajectories.

Note that gestural onsets and offsets are not always aligned to
acoustic landmarks (e.g., the beginning of the frication for [s/ is
delayed with respect to the onset of the tongue tip constriction
gesture (TTCD) for /s/, due to the time needed for the tongue tip
to attain a position close enough to the palate to generate turbu-
lence).

It should also be noted that the TVs GLO and VEL, representing
glottal and velic opening/closing, are only obtained in a synthetic
speech setup, where the parameters are generated artificially using
TaDA. If deriving TVs from real articulatory measurements, then di-
rectly measuring those two TVs may not be possible, as positional
data from those articulators may not be available in practice.

3. Dataset for training the speech-inversion system

To train a model for estimating vocal tract constriction vari-
able trajectories (a.k.a. TVs) from speech, we require a speech
database containing ground-truth TVs. However, prior to this work,
no speech datasets existed that contain recorded ground-truth TVs
and their corresponding speech waveforms. Thus, we used the
Haskins Laboratories’ Task Dynamic model (TADA) (Nam et al.,
2004)) along with HLsyn (Hanson and Stevens, 2002) to gener-
ate a synthetic, English isolated word speech corpus along with
TVs. TADA along with HLsyn is an articulatory-model-based text-
to-speech (TTS) synthesizer that given text as input generates vocal
tract constriction variables and corresponding synthetic speech.

In this work, we used the CMU dictionary [22] and selected
111,929 words, whose Arpabet pronunciations we then fed to
TADA. In turn, TADA generated their corresponding TVs (refer to
Table 1) and synthetic speech. Each word from the CMU dictio-
nary was separately fed to TADA four or five times. For each it-
eration, TADA randomly selected (a) between a male and a fe-
male speaker, whose mean pitch was randomly picked from a
uniform distribution; (b) a different speaking rate (fast, normal,
or slow); and (c) a different set of articulatory weights to in-
troduce speaker-specific traits. This process enabled simulating a
diverse set of speakers. Altogether 534,322 audio samples were
generated (approximately 450h of speech), out of which 88% of
the data was used as the training set, 2% was used as the cross-
validation set, and the remaining 10% was used as the test set.
We name this as the Synthetic Multi-Speaker clean (SMS-clean)
dataset. Note that TADA generated speech signals at a sampling
rate of 8 kHz and TVs at a sampling rate of 200 Hz. In addition to
the multi-speaker dataset, we have also generated a single-speaker
version of the same 112K words from the CMU dictionary, and
we call this the Synthetic Single-Speaker clean (SSS-clean) dataset.
Please note that SMS-clean and SSS-clean sets are completely dis-
joint with respect to speaker characteristics. Note that the set of
words used in the training, cross-validation and testing data splits
were completely disjoint, that is, there were no overlapping words
used in any of those data splits. Further, the set of words used in
the training-testing-cross-validation splits of SSS-clean were same
as those used in the SMS-clean data splits. The training, testing
and cross-validation sets for SMS-clean and SSS-clean were created
by a non-overlapping split of 88%, 10% and 2% of the respective
datasets.

To assess the performance of the speech-inversion system un-
der noisy conditions and to train speech-inversion models with
noisy acoustic signals, we added noise to each of the synthetic
acoustic waveforms. Fourteen different noise types (such as babble,
factory noise, traffic noise, highway noise, crowd noise, etc.) were
added with a signal-to-noise ratio (SNR) between 10 and 80 dB. We
combined this noise-added data with the SMS-clean data, and the
resulting combined dataset is named the Synthetic Multi-Speaker
noisy (SMS-noisy) dataset. In addition, we selected a held-out set
of ~50K test files and noise types different than that used to cre-
ate the SMS-noisy set. This unseen noise types consisted of animal
noises such as cricket-chirping, dog barking etc., and were added
with SNR between 10 and 60 dB, we name this as SMS-unseen-
noisy test set. This test set was created to assess the generalization
capability of each of the speech inversion models explored in this
work.



106 V. Mitra et al./Speech Communication 89 (2017) 103-112

4. Speech inversion - TV estimation

The task of estimating articulatory trajectories (in this case, the
TVs) from the speech signal is commonly known as speech-to-
articulatory inversion or simply speech-inversion. During speech-
inversion, the acoustic features extracted from the speech signal
are used to predict the articulatory trajectories, where an inverse
mapping is learned by using a parallel corpus containing acoustic
and articulatory pairs. The task of speech-inversion is well known
to be an ill-posed inverse transform problem, where the challenge
arises from the non-linearity and non-unique nature of the inverse
transform (Richmond, 2001; Mitra, 2010). However, tract variables
being a relative measure (e.g., LA is a measure of the distance be-
tween the upper and lower lip, instead of an absolute flesh point
location defined in Cartesian coordinates as in pellet data), are
found to suffer less from non-linearity and non-uniqueness com-
pared to traditional flesh-point measures such as pellet trajectories
(McGowan, 1994; Mitra et al,, 2010b). Richmond (2001) demon-
strated that the challenge of the inverse transform can be reduced
by adding context to the input acoustic features.

Based on our previous observations (Mitra et al., 2014c), we ex-
plored using speech subband amplitude modulation features such
as normalized modulation coefficients (NMCs) (Mitra et al., 2012).
NMCs are noise-robust acoustic features obtained from tracking
the amplitude modulations (AM) of gammatone-filtered subband
speech signals in the time domain. The AM estimates were ob-
tained by using the discrete energy separation algorithm based on
the nonlinear Teager's energy operator. The modulation informa-
tion after root-power compression was used to create a cepstral
feature, where the first thirteen discrete cosine transform (DCT)
coefficients were retained. These cepstral NMCs are usually known
as the NMC cepstral or (NMCC). In addition, we also explored us-
ing the above features without the DCT transform, which resulted
in a 40-dimensional feature vector, and we denote them as NMCs.
The features were Z-normalized before being used to train the
DNN/CNN models. Further, the input features were contextualized
by splicing multiple frames. In this work, we separately explored
the optimal splicing window for the DNN and CNN models.

We explored DNNs and CNNs for training speech-inversion
models. Contextualized (spliced) acoustic features in the form of
NMCs and NMCCs were used as input, and the TV trajectories were
used as the targets. Initially, we kept the splicing fixed at 21 frames
(10 frames on either side of the current frame), and we optimized
the network size by using the development set. The network’s hid-
den layers had sigmoid activation functions, and the output layer
had linear activation. The networks were trained with stochastic
gradient descent, where early stopping was used based on the
cross-validation error. We optimized the number of hidden layers,
the number of neurons, and the splicing window for the DNN- and
CNN-based speech-inversion models using the SMS-clean dataset.
We found that a four-hidden-layer DNN and a three-hidden-layer
CNN containing 2048 neurons in each hidden layer was optimal
for the speech-inversion task. The input feature-splicing window
was also optimized, where we observed that a splicing size of
75 frames (~375ms of speech information) for the DNNs and a
splicing size of 71 frames (~355 ms of speech information) for the
CNNs were good choices. Based on our earlier experiments, we
used a convolution layer in the CNN model with 200 filters and
a band size of eight, where max-pooling was performed over three
samples.

Speech-inversion systems are typically found to be speaker
sensitive, with the training of speaker-invariant models challeng-
ing. Speaker-dependent inverse models are usually more accu-
rate than speaker-independent models, due to the acoustic vari-
ation introduced by different speakers. To compare the perfor-
mance of speaker-independent models with respect to the speaker-

Table 3

rppyc for each TV obtained from a speaker-dependent (SSS-clean) and a speaker-
independent (SMS-clean) data based DNN speech-inversion system, using held-out
test sets from each of those two datasets.

GLO  VEL LA LP TICD TTCL TBCD  TBCL

SSS-clean 098 096 093 096 095 0.94 0.95 0.97
SMS-clean 097 095 091 097 095 0.94 0.94 0.96

Table 4

rppyc for each TV obtained from a speaker-dependent (SSS-clean) and a speaker-
independent (SMS-clean) data based DNN speech-inversion system, using SMS-
unseen-noisy test set.

GLO  VEL LA LP TICD TITCL TBCD  TBCL

SSS-clean 063 062 0.61 0.68  0.62 0.64 0.59 0.78
SMS-clean 086 080 075 091 0.80 0.83 0.79 0.89

dependent models, we used the SMS-clean and SSS-clean datasets
to train and test two DNN speech-inversion systems, and the re-
sults are shown in Table 3.

The shape and dynamics of the estimated articulatory trajec-
tories were compared with the actual ones using the Pearson
product-moment correlation (PPMC) coefficient. The rppyc gives
a measure of amplitude and dynamic similarity between the
groundtruth and the estimated TVs, and are defined as follows-

NY L eiti— [XL e ][ XL 6]
TppPvC = (2)

\/N Y et (X ei)z\/N Y2 - (XL ti)z

where e represents the estimated TV vector and t represents the
actual TV vector having N data points.

Table 3 shows that the performance for the speaker-
independent and for the speaker-dependent models are quite simi-
lar, where the latter outperforms the former marginally for five out
of the eighth TVs. This indicates that the DNN model, given the
diverse speaker dataset (SMS-clean), learned a speaker-invariant
speech-inversion mapping that, enabled it to perform almost as
well as the speaker-dependent model. We also compared the per-
formance of the speaker-dependent model (trained by SSS-clean
data) and multi-speaker model (trained by SMS-clean data), by us-
ing the multi-speaker held-out SMS-unseen-noisy test and the re-
sults are shown in Table 4. It can be seen from Table 4, that the
model trained with multi-speaker data has higher generalization
capability than the model trained single speaker data. For almost
all TV trajectories in Table 4, the SMS-clean trained model outper-
formed the SSS-clean trained model.

In automatic speech recognition, CNNs have become highly rel-
evant due to their implicit data-driven filtering capability. Vocal
tract shape varies with speaker, and the vocal tract is responsi-
ble for filtering the glottal source (which is itself variable). Nat-
urally, the differences in vocal tract shape lead to differences in
the speech signal’s fine spectral structure. Variations in the speech
signal due to vocal tract differences adversely impacts ASR perfor-
mance, and typically vocal tract length normalization (VTLN) tech-
niques are employed (Zhan and Waibel, 1997) to compensate for
that. For DNN/CNN models using filterbank energy features, it has
been observed that VTLN no longer seems to significantly improve
speech recognition accuracy (Mitra et al., 2014d), as the DNN/CNN
models rich projections through multiple hidden layers allow them
to learn a speaker-invariant representation of the data.

Table 5 presents the rppyc values from the test set obtained
from the DNN and CNN systems trained and tested with SMS-
clean data, and we name these models DNN¢ gan and CNNcigan-
Table 5 shows that the DNN and CNN systems exhibit very simi-
lar performance with respect to each other for almost all the TVs
for the SMS-clean test set. This similarity in performance can be
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Table 5
rppyc for each TV obtained from the best DNNcigan, CNNcigan, DNNyoisy and
CNNporsy systems when evaluated with the SMS-clean dataset.

GLO  VEL LA LP TICD TTCL TBCD  TBCL

DNNeeaw 097 095 091 097 095 094 094 096
CNNgeay 097 096 091 097 095 094 094 096
DNNyosy 096 094 090 096 094 093 092 095
CNNyosy 097 096 092 097 096 094 094 097

Table 6
rppyc for each TV obtained from the best DNNcigan, CNNcigan, DNNyoisy and
CNNnoisy systems when evaluated with the SMS-noisy dataset.

GLO VEL LA LP TICD TTCL TBCD  TBCL

DNNceaw 085 080 077 091 083 084 080 089
CNNggay 085 083 075 092 081 084 080 089
DNNyosy 093 090 087 095 092 091 089 094
CNNyosy 096 095 091 097 094 093 092 096

Table 7
rppyc for each TV obtained from the best DNNcigan, CNNcigan, DNNyoisy and
CNNporsy systems when evaluated with the SMS-unseen-noisy test set.

GLO  VEL LA LP TICD TTCL TBCD  TBCL

DNNceaw 086 080 075 091 080 083 079  0.89
CNNepay 087 084 076 092 080 084 080 089
DNNyosy 093 090 086 095 091 090 088 093
CNNyosy 095 094 090 097 094 093 092 095

attributed to the diversity of the training data, which contained
numerous speaker configurations, consequently making the DNN
system more robust to speaker variation. To investigate the ro-
bustness of speech-inversion models to noise, we trained DNN and
CNN models using the SMS-noisy train set (we call these models
DNNpojsy and CNNygjsy), using the same network configuration as
learned from the experiments with the SMS-clean data. The last
two rows of Table 5 presents the rppyc values from the SMS-clean
test set and shows that the CNNygsy model almost always outper-
forms the DNNyq;sy model.

Next, we evaluated the DNNggany and CNNcgan speech-
inversion models by using the noisy test set of the SMS-noisy data,
and the results are shown in Table 6, where similar to Table 5,
both the DNN and CNN models are found to perform quite simi-
lar to each other. We also evaluated the performance of DNNyoisy
and CNNygjsy models on the SMS-noisy test set and the results are
shown in last two rows of Table 6. Table 6 shows that the CNNygjsy
model outperforms the DNNyg;sy model for all the TVs.

Finally, we compared the performance of the DNNcgan,
CNNciean, DNNyoisy and CNNygisy models using the SMS-unseen-
noisy test, to assess how the performance of these models gen-
eralize to unseen noisy types. Table 7 shows the noise trained
models (DNNyoisy and CNNyoysy) performed much better than the
models trained with clean data only (DNN¢gany and CNNcigan)-
Table 7 also shows that the CNNygisy model performed signifi-
cantly better than the DNNygisy model. Table 7 shows that the
multi-condition trained speech inversion models can generalize
well to other noise types.

Results from Tables 5-7 suggest that the CNN model learned a
more robust and invariant transform from speech to TVs compared
to the DNN models, and is thus more noise robust than the DNN
model. Comparing the performance of the DNN and CNN models
trained with clean and noisy data, irrespective of which dataset
was used to train and test the CNN models, their performance re-
mained almost the same, indicating that a CNN model may be a
better choice when dealing with varying acoustic conditions.

5. Dataset for speech recognition experiments

The DARPA WSJ1 CSR dataset was used in the experiments pre-
sented in this paper. For training, a set of 35,990 speech utterances
(77.8 h) from the WSJ1 collection, having 284 speakers was used.
For testing, the WSJ-eval94 dataset composed of 424 waveforms
(0.8 h) from 20 speakers was used. Note that for all the experi-
ments reported here, speaker-level vocal tract length normalization
(VTLN) was not performed. We denote this dataset as WS]1 in our
experiments described in this paper.

For the speech recognition task under noisy and channel-
degraded conditions, we used the Aurora-4 (noisy Wall Street Jour-
nal [WSJ0]) dataset (Hirsch, 2001). Aurora-4 contains six additive
noise versions with channel-matched and mismatched conditions.
It was created from the standard 5K WSJO database and has 7180
training utterances of approximately 15-hours duration and 330
test utterances. In all experiments, we used 16 kHz sampled data
for training and testing our speech recognition systems. Note that
TADA, along with HLsyn, generates synthetic speech data sampled
at 8 kHz; hence, our speech-inversion system can use a bandwidth
of 0 to 4kHz (corresponding to 8 kHz sampled data) to extract the
TVs for speech recognition experiments. In Aurora-4, two training
conditions were specified: (1) clean training, which is the full SI-
84 WS]J training set without added noise; and (2) multi-condition
training, with approximately half of the training data recorded by
using one microphone, and the other half recorded by using a dif-
ferent microphone, with different types of added noise at differ-
ent signal-to-noise ratios (SNRs). The Aurora-4 test data includes
14 test sets from two different channel conditions and six different
added noises in addition to the clean condition. The SNR was ran-
domly selected between 0 and 15dB for different utterances. The
six noise types used were: car, babble, restaurant, street, airport,
and train station. The evaluation set consisted of 5K words under
two different channel conditions. The original audio data for test
conditions 1-7 was recorded with a Sennheiser microphone, while
test conditions 8-14 were recorded by using a second microphone
randomly selected from a set of 18 different microphones (more
details in Hirsch, 2001).

In addition to the above two datasets, we also investigated the
performance of the tract variable trajectories in the Switchboard
(SWB-300) ASR task. For the SWB-300 task, the training data con-
sisted of 262 h of Switchboard data, which contained telephone-
conversation speech between two strangers on a pre-assigned
topic. The Hub5 2000 evaluation set was used to evaluate model
performance, where 2.1h (21.4K words, 40 speakers) of Switch-
board data and 1.6 h (21.6 K words, 40 speakers) of CallHome au-
dio. The SWB-300 acoustic models were decoded with a 4-gram
language model.

6. ASR systems

We trained different acoustic models for the WSJ1 and Aurora-
4 speech recognition tasks, where we explored traditional DNNs,
CNNs, and time-frequency convolutional nets (TFCNNs) (Mitra and
Franco, 2015). The acoustic models were trained with gammatone
filterbank energies (GFBs). For SWB-300 ASR task, we trained a six-
hidden-layer DNN acoustic model with 2048 neurons in each layer
and Damped Oscillator Coefficients (DOCs) (Mitra et al., 2013b) as
the acoustic feature. The DOC features model the auditory hair
cells using a bank of forced damped oscillators, where gamma-
tone filtered bandlimited subband speech signals are used as the
forcing function. The oscillation energy from the damped oscilla-
tors are used as the DOC features after power-law compression.
From our experiments with SWB-300, we observed that the DOC
features after feature space maximum likelihood linear regression
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(fMLLR)-based speaker adaptation, using a sequence trained DNN
model, provides a strong baseline system.

The gammatone filters are a linear approximation of the audi-
tory filterbank of the human ear. In GFB processing, speech is an-
alyzed by using a bank of 40 gammatone filters equally spaced on
the equivalent rectangular bandwidth (ERB) scale. For this work,
the power of the bandlimited time signals within an analysis win-
dow of ~26 ms was computed at a frame rate of 10 ms. Subband
powers were then root compressed by using the 15th root, and the
resulting 40-dimensional feature vector was used as the GFB.

It was shown (Mitra et al., 2014d) that CNNs give lower WERs
compared to DNNs when using filterbank features for the Aurora-
4 ASR task, and GFBs offered performance gain over mel-filterbank
energies (MFBs). Hence, in this study, we used the GFB-CNN model
as our baseline system; however, for the sake of clarity, we show
the performance of the GFB-DNN systems as well.

To generate the alignments necessary for training the CNN
system, a Gaussian mixture model (GMM)-hidden Markov model
(HMM) model was used to produce the senones’ labels. Altogether,
the GMM-HMM system produced 3162 context-dependent (CD)
states for Aurora-4 and 1659 CD states for WSJ1. The input features
to the acoustic models were formed by using a context window of
15 frames (7 frames on either side of the current frame).

The acoustic models were trained by using cross-entropy on the
alignments from the GMM-HMM system. For the CNN, 200 con-
volutional filters of size 8 were used in the convolutional layer,
and the pooling size was set to 3 without overlap. The subsequent
fully connected network had four hidden layers, with 1024 nodes
per hidden layer, and the output layer included as many nodes as
the number of CD states for the given dataset. The networks were
trained by using an initial four iterations with a constant learn-
ing rate of 0.008, followed by learning-rate halving based on cross-
validation error decrease. Training stopped when either no further
significant reduction in cross-validation error was noted or when
cross-validation error started to increase. Backpropagation was per-
formed using stochastic gradient descent with a mini-batch of 256
training examples. For the DNN systems, we used five layers with
1024 neurons in each layer, with similar learning criteria as the
CNNs.

The TFCNN architecture was based wupon Mitra and
Franco (2015), where two parallel convolutional layers were
used at the input, one performing convolution across time, and
the other across the frequency scale of the input filterbank fea-
tures. That work showed that the TFCNNs gave better performance
compared to their CNN counterparts. Here, we used 75 filters to
perform time convolution, and 200 filters to perform frequency
convolution. Note that the convolutional-layer configurations for
the TFCNN model were investigated in our earlier work, Mitra and
Franco (2015), and the optimal configuration learned from that
work is used in the experiments reported in this paper. For time
and frequency convolution, eight bands were used. A max-pooling
over three samples was used for frequency convolution, while a
max-pooling over five samples was used for time convolution.
The feature maps after both the convolution operations were
concatenated and then fed to a fully connected neural net, which
had 1024 nodes and four hidden layers.

In this work, we present a modified deep neural network ar-
chitecture to jointly model the acoustic and the articulatory space.
The diagram of the network is shown in Fig. 3, illustrating two
parallel neural networks trained simultaneously. These two paral-
lel neural networks modeled two things: (1) learning the acoustic
space from the GFB features and (2) learning the articulatory space
from the TV trajectories. The acoustic space was learned by using
a time-frequency convolution layer, where two separate convolu-
tion filters operate on the input GFB features. These two convolu-
tion layers had the same parameter specification as that used in

Table 8
Aurora-4 evaluation partitions.

Sennheiser microphone  Randomly selected microphone

Clean speech A B
Noisy speech  C D

the TFCNNs. The articulatory space was learned by using a time-
convolution layer that contained 75 filters, followed by a max-
pooling over five samples. Note that the cross-TV convolution oper-
ation may not produce any meaningful information, whereas time
convolution on the TVs can help in extracting TV modulation-level
information, which was the motivation behind selecting a time-
convolution layer for learning the articulatory space. The fully con-
nected DNN layers were different in size; we observed that 800
neurons was nearly optimal for learning the acoustic space, and
that 256 neurons was nearly optimal for learning the articulatory
space. Note that the parallel networks were jointly trained.

We also investigated fusing information at the feature-map
level, where we jointly learned convolutional layers operating on
acoustic features (frequency-convolution) and TV trajectories (tem-
poral convolution). Unlike our previous work (Mitra et al., 2016)
where feature maps generated from two frequency convolution
layers each operating on a different acoustic feature were fused,
we performed frequency convolution on the spectral acoustic fea-
tures and time convolution on the TV trajectories, and we fused
the feature maps from these two layers to feed a single, fully con-
nected DNN, see Fig. 4. We name this configuration the fused CNN
(fCNN), where 200 filters were used for acoustic feature frequency
convolution and 75 filters were used for TV-trajectory time convo-
lution.

For clarity’s sake, we also tried combining acoustic features
(such as GFB features) with the TVs and then training one sin-
gle network by using the combined feature. Such a system can
have several drawbacks: a CNN or TFCNN may not be a techni-
cally sound architecture, as the spatial convolution filter operating
across GFB features will capture meaningful information, but the
same filter operating across TVs or TV-GFB boundaries may not be
meaningful. The only meaningful architecture in such a case is a
DNN; however, based on prior studies, we know that DNNs are
slightly inferior to CNNs in terms of performance. Hence, to get
the best of both DNNs and CNNs, we designed the proposed hy-
brid convolutional neural network, which performs relevant con-
volutional operations based on individual feature types.

7. Speech recognition experiments and results

The eight TVs given in Tables 1 and 2 are insufficient by them-
selves for use as ASR features (Mitra et al., 2014c); hence, they
are typically combined with standard acoustic features. Our initial
ASR experiments were on Aurora-4, where the baseline system is
the same as that reported in Mitra and Franco (2015). As baseline
acoustic features, we tried both mel-filterbank (MFB) and gamma-
tone filterbank (GFB) features. Given that Aurora-4 has 14 differ-
ent evaluation conditions depending upon the noise conditions and
microphone types, we used the standard partition of the evaluation
set to report our results, which are outlined in Table 8.

Table 9 shows the results from the DNN, CNN, and TFCNN sys-
tems, represented in the form of word error rates (WERs). Note
that in all the Aurora-4 experiments reported in this paper, we
used the standard trigram language model distributed with the
WSJO dataset.

Table 9 shows that the CNN models perform better than the
DNN models, and that TFCNN performs the best for both features,
where the TFCNN-MFB system offers significant performance gain
over the CNN-MFB system. However, with GFB features, the per-
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Fig. 3. Schematics of the hybrid convolutional neural network (HCNN). The top layer represents the acoustic model, whose input is filterbank features, and the bottom layer
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Fig. 4. Schematics of a fused-feature-map convolutional neural network (fCNN). The top convolutional layer (across frequency scale) operates on the acoustic features, which
are the filterbank energy features, and the bottom convolutional layer (across time scale) operates on articulatory features, which are the TV trajectories.

Table 9

WER on multi-conditioned training task of Aurora-4
(16 kHz) from the different acoustic models using MFB and
GFB baseline features.

Features  Models A B C D Avg.

MFB DNN 43 9.6 8.8 18.4 12.9
CNN 3.5 6.2 6.6 15.7 10.1
TFCNN 3.6 5.8 6.6 146 95

GFB DNN 33 6.9 7.7 17.8 114
CNN 31 6.1 5.2 14.5 9.4
TFCNN 31 5.7 6.1 14.6 9.4

formance difference between the CNN and TFCNN systems is in-
significant. Note that based on our prior observations (Mitra et al.,
2014a), we used a five-hidden-layer DNN and a four-hidden-
layer + one-convolutional-layer CNN. The TFCNN had four hidden
layers +one frequency convolutional layer+one time convolutional
layer.

Next, we extracted the estimated TV trajectories for the train-
ing, testing, and cross-validation sets for the Aurora-4 multi-
conditioned train-test evaluation by using the speech-inversion
systems presented in Section 4. The estimated eight TV trajec-
tories were used in conjunction with the baseline acoustic fea-
tures. Table 9 shows that the GFB features provide a better base-
line than the MFB ones; hence, we used the GFB features as the

Table 10
WER on multi-conditioned training task of Aurora-4 (16 kHz) from the
different acoustic models using GFB+estimated TVs.

Features Models A B C D Avg.
GFB TFCNN 3.1 5.7 6.1 14.6 9.4
GFB+ TV-DNN¢izan DNN 38 74 88 195 125
CNN 33 62 61 15.1 9.8
TFCNN 32 59 63 148 95
GFB+ TV-CNNcgan DNN 37 77 89 192 124
CNN 36 62 62 147 97
TFCNN 32 60 60 150 96

baseline acoustic feature in conjunction with the estimated TV tra-
jectories. The TV trajectories estimated from using the DNNcigan
and DNNpgisy speech-inversion models are termed as the TV-
DNNcigan and TV-DNNyqjsy, respectively. Those obtained from the
CNNcigan and CNNpgisy models are termed the TV-CNN¢gan and
TV-CNNyoisy, respectively. As initial experiments, we did a sim-
ple feature fusion of the GFB feature and the estimated TVs (TV-
DNNcgan and TV-CNNcigan), and trained and tested the DNN,
CNN, and TFCNN systems. Table 10 shows the results.

Table 10 shows that simple combination of the acoustic features
with the articulatory features did not work well. For all model-
ing types, the combination of the GFB features with the estimated
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Table 11

WER on multi-conditioned training task of Aurora-4 (16 kHz) from the
baseline system using GFB feature and the HCNN using GFB-esti-
mated TV features. Bold numbers reflect the best results.

Model A B C D Avg.

GFB TEC(NN 31 57 61 146 94
GFB+TV-DNNcgay HCNN 33 57 55 142 92
GFB+TV-CNNggay  HCNN 30 57 55 142 91
GFB4+TV-DNNyosy HCNN 28 56 54 143 90
GFB+TV-CNNyosy HCNN 26 56 55 140 89
GFB+TV-DNNyosy fCNN 28 55 58 138 89
GFB+TV-CNNyosy fCNN 28 55 54 141 90

TV trajectories resulted in increased WER, suggesting that simple
feature-level fusion may not be a useful approach.

In our earlier experiments (Mitra et al., 2014c), we used a
GMM-HMM acoustic model trained on a simple concatenation of
acoustic features (mel-frequency cepstral coefficients, a.k.a MFCCs)
and TV trajectories, which were dimensionality reduced by a prin-
cipal component analysts (PCA) transform. In such a setup, the di-
mensionality reduction using PCA after acoustic feature and artic-
ulatory feature concatenation was a key component that helped to
improve the performance beyond the acoustic-feature-only base-
line. This work investigates DNN/CNN acoustic models and similar
to before, we observed that a simple concatenation of the two fea-
ture spaces (acoustic and articulatory) may not be useful, as each
of them may be capturing different linguistic attributes of speech,
which can often be complimentary to each other.

Given the difference in characteristics of the acoustic feature
(GFB) and the estimated TVs, using separate convolutional filtering
on each of them is intuitive. GFB are spectral-level features that
have spatial correlation across the feature dimensions; hence, fre-
quency convolution is meaningful for such features. The TVs, on
the other hand, are purely time trajectories of vocal tract constric-
tions; for them, temporal modulation extraction is more meaning-
ful than cross-TV correlation extraction. Hence, we explored the
hybrid convolutional net (HCNN), as shown in Fig. 3. Note that
the HCNN performs time-frequency convolution on the spectral
feature (such as the GFB or MFBs) and only time convolution on
the TVs. We further noticed that a much smaller number of neu-
rons were sufficient for the hidden layers modeling the TV tra-
jectories than those used for modeling the GFBs. We used 800
neurons in the four hidden layers processing the GFB features,
and 256 neurons in the four hidden layers processing the TV tra-
jectories; hence, the total number of neurons in the hidden lay-
ers between the HCNN and the baseline systems are comparable.
Table 11 shows the WERs obtained from the HCNNs trained with
the GFB+TV-DNN¢gan, GFB+TV-CNN¢igan, GFB+TV-DNNyqjsy, and
GFB+TV-CNNysy features. Note that the features used a splicing
of 15 frames, meaning a combination of 7 frames from either side
of the current frame, inclusive. Note that from prior experiments
we have observed that TFCNNs almost always perform better than
the CNNs (Mitra and Franco, 2015), more specifically for reverber-
ated conditions. As reverberation is a temporal distortion, the time
convolution in TFCNNs help to reduce the effect of reverberation.
Also we observed that for MFBs, TFCNNs significantly improve the
performance (see Table 9) making them competitive with respect
to noise robust features. Because of the versatility of TFCNNs per-
formance over CNNs, we have used them in our HCNN architec-
ture, rather than using the traditional CNNs to process the acoustic
observations.

Table 11 shows that the HCNN systems overall perform bet-
ter than the baseline system, demonstrating more than 5% over-
all relative reduction in WER compared to the baseline. Note that
the TVs estimated from the CNN system performed a little bet-
ter than those from the DNN system, giving lower error rates

in clean and channel mismatched cases. This finding is also evi-
dent from the rppyc scores shown in Tables 6 and 7, where the
CNN-based speech-inversion model trained on SMS-noisy data was
found to perform better than the corresponding DNN model. Also,
note that the HCNN’s major contribution was in conditions C and
D, which represented channel mismatch clean (C) and noisy (D)
scenarios. The results in Table 11 indicate that the additional ar-
ticulatory information helped to improve the ASR performance in
both matched and mismatched conditions. Table 11 also show the
results from the fCNN systems, where the results were similar as
HCNN systems. These results and the results in Table 10 indicate
that the benefits of the HCNN and fCNN systems derive both from
the systems’ individual convolutional layers tied to the acoustic
features and articulatory features, and from using time convolution
only for the articulatory features, which results in performance
improvement over the GFB baseline, which was not observed in
Table 10, where the features were concatenated together and were
fed to the same convolutional layer.

To get a more detailed understanding regarding how the artic-
ulatory features helped in each noise and channel conditions in
Aurora-4, we compare the individual WERs for each testing con-
dition, which is shown in Table 12.

Table 12 shows that for the clean conditions, using the artic-
ulatory features always improved the performance. We observed
that for clean data conditions the percentage of correct recogni-
tions increased, while both substitution and deletions decreased;
indicating that the additional TV information helped to improve
the discriminative power of the speech recognition model. Over-
all, the articulatory features reduced the WER in all conditions, ex-
cept babble and street in the Sennheiser microphone condition. For
the second microphone condition (i.e., using a microphone selected
randomly from a set of 18 microphones), the articulatory features
always improved performance. For train-station noise, using artic-
ulatory features always reduced the WER. Significance test on the
results from the clean matched channel data indicated that the
GFB+TV-CNNyoisy-HCNN systems is significantly better (p <0.001)
than the GFB-TFCNN system.

In addition to the Aurora-4 speech recognition task, we also
applied the HCNN architecture to the clean WSJ1 evaluation task.
Similar to the findings in Table 9, we observed that the CNN mod-
els perform much better than the DNN acoustic models for the
baseline GFB features. The DNN systems had five hidden layers
with 1024 neurons in each layer, whereas the CNN systems had
four hidden layers of 1024 neurons in each layer and one convo-
lutional layer with 200 filters. Table 13 shows the WERs from the
MFB, GFB, GFB+TV-DNN¢igan and GFB+TV-CNN¢igan Systems for
WSJ1 speech recognition evaluation task.

Table 13 shows that the GFB features are a better baseline fea-
ture than the MFBs, and that the CNN models offer lower error
rates than DNNs. Interestingly, using the TFCNN model with GFB
feature shows no improvement over its CNN counterparts. When
estimated TVs were used along with the GFBs in the HCNN mod-
els, a reduction in error rate was observed. The TVs from the
DNN-based speech-inversion system gave the best performance in
the WSJ1 ASR task, with an observed relative reduction of 5.2%
in WER compared to the WER for the best CNN-GFB baseline
system.

For the SWB-300 baseline model, we trained a six-hidden layer
DNN having 2048 neurons, using fMLLR transformed damped os-
cillator cepstral coefficient (DOCC) (Mitra et al., 2013b) features as
input. The estimated TVs from the DNN speech-inversion model
was appended with the DOCC features, and they were fMLLR trans-
formed to train a six-hidden-layered DNN with 2048 neurons.
Table 14 shows the results from the sequence-trained DNN mod-
els.



Table 12

WER on multi-conditioned training task of Aurora-4 (16 kHz) from the baseline system using GFB feature and the HCNN using GFB+estimated TV features. Bold numbers reflect the best results.

Restaurant  Street  airport  Train-station  Avg.

Car  Babble

Restaurant  Street  Airport  Train-station  Clean

Car  Babble
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Table 13

WER from WSJ1 ASR experiments us-
ing baseline features (MFB and GFB) and
GFB +estimated TV feature with different
modeling techniques. Bold numbers re-
flect the best results.

Features Models ~ WER
MFB DNN 6.7
GFB DNN 6.4
GFB CNN 5.7
GFB TFCNN 5.7

GFB+TV-DNNggay HCNN 5.4
GFB4+TV-CNNgpay  HCNN 56
GFB+TV-DNNcipay  fCNN 56
GFB+TV-CNNcigay  fCNN 5.7

Table 14

WER from SWB-300 ASR exper-
iments using SWB part of the
Hub5 eval data.

Features WER

DOCC 118
DOCC+TV-DNNgpay 111

8. Conclusion

In this work, we presented DNN- and CNN-based speech-
inversion systems for estimating articulatory trajectories from the
speech signal. We demonstrated that with suitable network param-
eter selection, we could estimate with high accuracy articulatory
trajectories in the form of vocal tract constriction variables, where
the correlation coefficient between the estimated and ground-
truth trajectories correlated was greater than 0.9. We also inves-
tigated noise robustness of speech-inversion systems, where we
observed that speech-inversion performance degrades with pres-
ence of noise in the acoustic signal. We observed that training the
speech-inversion model with noisy data improves its noise robust-
ness. We also observed that sufficient diversity of speaker data
enables training speech-inversion models that perform as well as
speaker-specific inversion models.

We proposed a hybrid convolutional neural network (HCNN), in
which two parallel layers were used to jointly model the acous-
tic and articulatory spaces. The parameters of these two networks
were learned jointly with one objective function, with these two
networks sharing the same output layer. Speech recognition results
on the Aurora-4 and WSJ1 recognition tasks showed that the pro-
posed architecture using articulatory features demonstrated reduc-
tion in word error rates for each of the clean, noisy, and channel-
mismatched conditions. For the Aurora-4 and WSJ1 ASR tasks, the
best WERs from the HCNN system were found to be 8.9% and
5.4%, respectively, which, to the best of our knowledge, are state-
of-the-art results for these datasets. We also observed significant
improvement in performance for the SWB-1 speech recognition
task when articulatory features were used with the DOCC features,
compared to using the DOCC features alone.

In the future, we will investigate using HCNN for ASR tasks in-
volving languages other than English. The impact of the time reso-
lution of the tract variable trajectories for articulatory space mod-
eling was not investigated in great detail in this study. Given that
the HCNN performs time convolution on the articulatory features,
we must investigate whether finer articulatory resolution could
uncover more detail about articulatory trajectory temporal mod-
ulation. We also must explore if hidden variables in the form of
bottleneck features can be used for ASR. Using bottleneck features
derived from traditional acoustic features has recently shown sig-
nificant performance gains, and using articulatory-trajectory-based
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bottleneck features may potentially introduce complementary in-
formation and hence possibly add to those performance gains.
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