Detection of speech landmarks: Use of temporal information
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Studies by Shannoet al.[Science270 303-304(1995], Van Tasellet al.[J. Acoust. Soc. AnB2,
1152-1161(1987], and others show that human listeners can understand important aspects of the
speech signal when spectral shape has been significantly degraded. These experiments suggest that
temporal information is particularly important in human speech perception when the speech signal

is heavily degraded. In this study, a system is developed that extracts linguistically relevant temporal
information that can be used in the front end of an automatic speech recognition system. The
parameters targeted include energy onset and ofsetaputed using an adaptive algorithand
measures of periodic and aperiodic content; together these are used to find abrupt acoustic events
which signify landmarks. Overall detection rates for strongly robust events, robust events, and weak
events in a portion of the TIMIT test database are 98.9%, 94.7%, and 52.1%, respectively. Error
rates increase by less than 5% when the speech signals are spectrally impoverished. Use of the four
temporal parameters as the front end of a hidden Markov m@delM )-based system for the
automatic recognition of the manner classes “sonorant,” “fricative,” “stop,” and “silence” results

in the same recognition accuracy achieved when the standard 39 cepstral-based parameters are used,
70.1%. The combination of the temporal parameters and cepstral parameters results in an accuracy
of 74.8%. © 2004 Acoustical Society of AmericdDOI: 10.1121/1.1646400

PACS numbers: 43.72.Ar, 43.72.NlBOS] Pages: 1296—-1305

I. INTRODUCTION information derived from the temporal structure of the
speech signal. These cues are not targeted by traditional
This paper investigates the use of temporal informatiorspeech recognition systems, which generally focus on spec-
for extraction of linguistically relevant details from a speechtral features using data-derived spectral templates. Temporal
signal. This study has been considered in the context of processing is a significant factor in the auditory system, as
longer-term program on lexical access from feattesFF)  observed by effects such as the phase locking of auditory-
(Stevens, 1986; 2002and event-based speech recognitionnerve firing to periodic signalé@vioore, 1997. As such, this
(EBS) (Espy-Wilson, 1994; Juneja and Espy-Wilson, 2003 information should be available for use in human speech
which is a furthering of the lexical access from spectrarecognition.
(LAFS) proposed by Klatt1979. LAFF and EBS are para- The ability of human listeners to understand spectrally
digms for (human or machinespeech recognition in which degraded speech has been examined in several st(&lies
landmarks in a speech signal are first located, and then feannon et al, 1995; Van Tasellet al, 1987; Turneret al,
tures are attached to those landmarks. In this paper, mott995, among otheysvhich demonstrate the ability of human
vated by studies of speech perception under certain types @ifteners to recognize speech—particularly manner, nasality,
degradation, we have concentrated on access to temporal iand voicing—from primarily temporal cues. The general re-
formation. The goal of this work is to develop a system thatsult has been that spectrally degraded speech still contains
automatically extracts temporal cues that can be used in tHemited information about manner, nasality, and voicing. In
front end of an automated speech recognition system. light of these results, it is proposed that it should be possible
to build a detector for acoustic evenfgrototypical land-
marks that is both largely independent of detailed spectral
The motivations for this work come most importantly information and resistant to noise. Further, addition of tem-
from studies of speech perception. A major problem in theporal parameters should also improve performance and in-
development of speech recognition systems is the detectiacrease noise resistance for a system based on spectral infor-
of speech from noisécf. Viikki, 2001) or otherwise reduced mation. Note, however, that improved performance may not
spectral information. Recent studies show that human listereccur if the noise has speech-like temporal characteristics.
ers can understand some aspects of the speech signal eveurner et al. (1995 have shown that the use of temporal
when spectral shape has been significantly degraded. iformation is prevented when the speech signal is corrupted
source of information that may be of use, particularly undeiby modulated babble noise.
heavily degraded conditions, is that of temporal cues—

A. Background

B. Temporal information

dCurrently at MIT, Research Lab of Electronics, Speech Communication . - .
Group, 77 Massachusetts Avenue, Rm. 36-511, Cambridge, MA 02142,  For the purpose of this study, it is helpfu_l to spe_C|fy
Electronic mail: ariel@speech.mit.edu exactly what is considered to be the “temporal information”
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FIG. 1. Sample landmarks in the word “tornadoe&)
Release of stop consonantb) frication/aspiration
boundary(nonrequired eveirt (c) onset of vowel;(d)
closure for nasal consonartg) release of nasal conso-
nant;(f) closure and release of stop consonant produced
as a flapyg) closure for fricative consonant) release

of fricative consonant.
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in the signal. Temporal information is defined here in termsbe essentially complete with respect to the perceptually
of bandpass components of the speech signal. RAG9D sharpest events, for example events corresponding to stop-
proposes three categories of temporal information in speecltonsonant bursts, strident fricatives, and stressed vowels.
(1) “envelope information”(with fluctuations at rates from 2 Note that insertions are somewhat less critical as they can be
to 50 H2 which contains amplitude and duration cues todiscarded by further analysis. On the other hand, it is likely
manner of articulation and voicing, as well as informationthat some weaker events are going to be captured less often:
about vowel identity(for example vowel lengthand pro-  semivowels(particularly the glides /w/ and /y/for which
sodic cues;(2) “periodicity information” (fluctuations at the primary cues consist of formant movemeiEspy-
rates from approximately 50 to 500 Hhich provides cues  wjilson, 1992; weak fricatives which have become sonorant,
to VOiCing which can aid in manner identiﬁcation, as well aSSuch as a common pronunciation of the /V/ in "everyday"
marking stress locations by changes in pitch; &8id“fine  (catford, 1977; Espy-Wilson, 1994; Deshmukh and Espy-
structure” (fluctuations at higher ratgsvhich largely pro-  wilson, 2003 and other cases of events that do not involve a
vides information also available from spectral shape. Not&jgnificant degree of energy fluctuation. In cases of heavily
that normal-hearing subjects cannot detect amplitude fluctugsoarticulated segments, it is expected that the output of the
tions above about 1000 Hz; and response to modulation deystem will reflect the type of events that actually occurred
grades rapidly above 100 H¥iemeister, 1978 This SUg-  rather than the canonical events expected from segment-
gests that, at most, human listeners can only derive firStyaseq japelge.g., sonorant events rather than onset and off-

formant information from the temporal fine structure, if any g4t of frication for the v/ in “everyday” when it is manifest
information regarding fluctuations above the rate of pitch,¢ 5 sonorant consonant

modulations is perceptually significant. Only the first two The parameters used to locate landmarks in the speech

categories of temporal information are considered in th's'signal are changes in spectral energy or in the periodicity

StUdé I ina inf tion is to aid in th content of the signal, corresponding to the two relevant types
ur.goa’ in using temporai nformation 1S o aid in the ¢ temporal information discussed above. This work relies on

a_maly5|s of the speech signal. I_n the human speech prOduﬁie assumption that abrupt landmarks are initially located
tion system, a sequence of discrete elemdptsonemes, based on only amplitude changes in the sig(@levens,

words, etq is translated into an analog, continuous aCOUSt?CZOOZ). It is at later stages of processing that spectral infor-

signal by the vocal apparatus. The process of understandlr_}gaﬁon is integrated, and then higher-level information such

speech can be considered to be a reconstruction of the dis- : . s .
as phonotactics and lexical constraints is applied. The ques-

crete stream of symbols from the speech signal. Howeve% in thi dv is h h inf . be d d
not all regions of a signal have the same information content; on m.t Is study IS how much in ormation can e etecte
steady-state portions can be sampled slowly to determin%egardmg manner mformagon n speggh from strictly tempo-
overall properties, while abrupt points such as the criticafaI mforr_natlor!. Itis certain that_ additional use (.)f spgctral
point of a transition for a consonantal closure can contain énformapon, wider context, and high-level constraints will be
significant number of linguistically important cues in a con- s to. improve thg results. .

centrated region. These transition regions can contain infor- This work builds on work .by Espy-W|Ispr(1992),
mation about the adjacent segments, most importantly in th@/here the degree O_f qbruptness In an energy difference mea-
type of transitions in and out of the target position. In thigSure was used to distinguish the glides /w,y,r/ from the con-

paper, we are concerned with landmarks involving abrupfonantal sonorant consonants /m,n,l/, and by Bil&97,
acoustical changes, a set of which is illustrated for an utterVhere energy differences were used to find stop bursts and to
ance in Fig. 1. perform segmentation. The methodology is similar to re-

search by Liu1994), who used energy differences computed
from specific frequency bands to find certain types of land-
marks in the speech signal. In addition, it bears similarity to
The goal of event detection is to generate a set of landthe processing used by Browne and Co@k&94, who used
marks referred to asventghat will direct further analysis of onsets and offsets and pitch information as cues in a system
the speech signal. To ensure the success of further levels &@ir auditory scene analysis. In this study, event detection is
processingoutside the scope of this papethis set should based on general processing of all frequency bands and the

C. System goals
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Envelope Featiwe
/ Processing = | Eataction | ™= FIG. 2. Overall structure of analysis algorithm. Several
Aunditory . . Cross—channel Event stages of computation are performed within each chan-
Filterbank \ . . Integration ™| Detection nel, followed by integration into summary measures for
Envelope Featuwe use in event detection.
Processing Extiaction /

signal processing is adaptive. Energy change is combinethg set with the hand labels. Note that the robust set con-

with information about periodicity and aperiodicity to detect tained approximately 70% of the total set of landmarks under

events; and analysis is performed for both clean and spe@nalysis.

trally impoverished speech signals. In addition, we compare  In addition to using this clean version of TIMIT to test

the performance of these temporal parameters with the tradeur algorithm, we also spectrally impoverished the TIMIT

tional cepstral-based parameters in the manner classificatiatatabase to see how well the temporal parameters perform

of speech using an HMM-based recognition systéioung,  with degraded spectral information. The spectral impoverish-

1995. ment was performed using a bank of four filters in a tech-
nigue developed by Shannet al. (1995.

II. METHOD FOR LANDMARK DETECTION

EXPERIMENTS

A. Database B. Signal analysis

The TIMIT databas€Seneff and Zue, 1988vas used as Signal analysis consisted of a series of stages per chan-
a corpus of labeled speech data. This is a widely availablgel, as shown in Fig. 2. The signal was first filtered into a set
database of speech recorded in quiet and labeled at the levefl bandpass frequency channels, and each narrow-band sig-
of words and phonetic strings. Although it would have beennal was examined independently. In each channel, the signal
more useful to use a database labeled at the landmark levehderwent envelope analysis and feature extraction, which
(e.g., a database currently under development at the Masseensisted of periodicity measurements and an energy onset/
chusetts Institute of Technology; see Chatial, 1997, a  offset measure. This was followed by combination into a
large enough database of this type was not yet available. Theumber of cross-channel summary measures as functions of
TIMIT database consists of 6300 utterances spoken by 630me: summary levels of aperiodicity and periodicity, pitch,
speakers, of which 4620 utterances make up the suggeste#id energy onset and offset measures. The resulting wave-
training set and 1680 are in the test set. In particular, we useldrms were analyzed to locate events in the speech signal.
the phonetically compadisx) sentences. Training was per- The filter bank used was a 60-channel auditory gamma-
formed using a set of 26x sentence$spoken by 10 males, tone filter bank with characteristic frequencigsFs based
10 female$ randomly drawn from the TIMIT training set. on the ERB scal¢Patterson, 1992 An auditory filter bank
Testing was performed using all 12& sentences from the was chosen for spectral analysis in order to provide an accu-
TIMIT core test set(spoken by 8 female speakers and 16rate weighting of frequency components, most importantly in
male speakers, evenly distributed over all 8 dialect regionsterms of the strength of events corresponding to voiced ex-
For the purpose of comparing with the detected land<itation of speech relative to their unvoiced counterparts.
marks, a set of expectdgosited landmarks was generated In order to avoid excessive smoothing in the time do-
from the phonetically labeled transcriptions available in themain, an envelope operator based on the Hilbert information
TIMIT database using a simple rule-based algorithm basetRabiner and Gold, 1975vas used. The envelopegt) of
on the manner class of adjacent segments at each boundaifye individual channels are obtained by the function
The posited landmarks are expected to have some inherent _ :
error as the mapping is underspecified. Some of the under- &= +]-Hix (O},
specification in the TIMIT labels is accounted for by insert-wherex;(t) is the input signal, ani{x;(t)} is the Hilbert
ing events that are labeled as “nonrequired” because they argansform of the input signal. Given a real narrow-band sig-
possible, and may be caught by the matching algorithm, butal as input, the Hilbert transform produces a version of its
not necessarily strongly expected. An example of a nonreinput signal that is precisely 90° out of phase, such that the
quired event is the frication/aspiration boundéeyent b in  amplitude of the complex sum of these two signals is an
Fig. 1. [Note from part(e) of Fig. 4 that this boundary is estimate of the low-frequency amplitude modulation applied
detected as a C event by our algorithnh.The 20 utterances to the signal. This transform is an improvement over a
in the training database were also hand labeled for morgéimple smoothing operation because abrupt changes are pre-
reliable system development and training. For analysis of theéerved, at the maximum rate that can be captured by a par-
effect of using generated landmark labels, the trained systefieular channel given its CF.
was evaluated on both the generated labels and the hand
labels of the training set. The overall error rate was 18.5%1 Periodicity and aperiodicity feature extraction
for the training set with the generated labels and 14.8% for"
the training set with the hand labels. Focusing on only the  The first feature extraction algorithm applied to the tem-
robust set of landmarks, the error rate was 6.54% for th@oral envelopes makes a three-way classification between si-
training set with the generated labels and 6.06% for the trainlence, periodic, and aperiodic in each channel every 2.5 ms.
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\ Cross—channel FIG. 3. Structure of energy analysis component of fea-
Envelope Encigy . X .
: —_— ) —= | Integation of ture extraction. Note that the first difference operators
Precessing Diffecence ! \ .
\ / Enewgy Diff used as the energy difference measure are adapted
: Channel Petiodicity * To Event based on periodicity information within each channel.
: ‘-—\ : Detection Following this, summary onset and offset measures are
Envelope Encigy
Processing Diffecence

computed across all channels.

A periodic signal is defined to be one that contains regulaf30 mg in aperiodic regions, to maximally smooth the first
temporal fluctuations at rates from roughly 55-500 Hzdifference output in fricated segments; &3 the difference
(Deshmukh and Espy-Wilson, 2003 time is tuned to exactly twice the pitch period in periodic
regions, to prevent detection of spurious energy fluctuation

due to misalignment with the pitch period. There is also a

The other major feature extraction algorithm used is aryje\y rate control of 0.5 ms per millisecorithe difference
energy onset/offset detector based on a first-difference me%’perator is sampled every in® prevent discontinuities.
sure, originally derived from the onset/offset parameters de-

signed by Espy—.Wlls.or(.1992» to capture rate of spectral 3. Summary measures
change for distinguishing between sonorant consonants. o
These parameters were later used by Bit897) to detect The measurements made in individual channels are com-
the abrupt onset of stop consonants. The onset/offset measUt#ed o produce summary measures. The silence/periodic/
in this study is constructed from first differences in eachaperiodic decisions are combined across (;hannels to produce
channel output from the temporal envelope analysis stagiV0 measurements callé?l,gandAPeqg, Which are the pro-
described abovésee partsd) and (e) of Fig. 4]. The first portions of perlodlc energy and aperiodic energy in the sig-
difference is computed as a log difference between the surf@l. respectively. _

amplitude of two adjacent nonoverlapping windows of the ~ From the per-channel differences, two measures are

signal in a particular channel, as per the formula computed: the positive differencdicreasing levels are
summed to produce an “onset” signal, and the negative dif-

ferenceqdecreasing levelsare summed to produce an “off-
set” signal. The offset parameter is usually inverted for
analysis to make it positive, allowing generalization of all
further computations; note, however, that the noninverted
negative version of the parameter is the one shown in all
figures. A scaling by M, whereN is the total number of

wherex;(n) is an individual channel input signak is the  channels, produces an average energy change per channel on
time difference between the two windows, and the windows, 4B scale

w(n) are rectangular windows of length The computed
difference is scaled in decibelslB). This first difference
operation is essentially the same as the rate-of{R@R)
detector used by Liy1994, but the two windows are adja-
cent in time to minimize error in location of the detected off(n)zi E D, (N).
peaks. Nipjm<o

It was observed that by increasing the window sizexl

2. Energy operator feature extraction

0

D; y=20log _2 X:(N+m)w(m)

[

—20log Z Xi(n+m—k)w(m—Kk),

1

onn=g > Dixn),

iDj (>0

" ndinaly increasink. referred t the differen This set of parameters in combination over a speech signal

'::i?ne‘)asfg? the f?r)s/t di(;fgf‘esncg’ Csme uetati(;)n ar?oisz in tﬁeemceea visibly provides useful information about the content of the
omp ' . . .~ signal, as can be seen in Fig. 4 for the same utterance used in

surement over the utterance is reduced, particularly in fricaz

tive regions. However, an unfortunate side effect of Iength-Flg' L. Note that the periodicity and aperiodicity proportion

ening the window sizes was a decrease in the strength rpefc\su.res ir(b) prov!de a decomposition of the signal into
peaks and temporal accuracy in the onset signal associat riodic(roughly, voiced and aperiodic elements. Also note

) . at the onset and offset measuregdhhave peaks at most
with stop bursts. In order to obtain the advantages of a Ion%f the important events in the signal
window size, a method of dynamically adapting the differ- '
ence time based on features of the signal measured by tllg Event detection
periodicity detector was developed. Under this method, the™
energy difference detector is adapted in each channel inde- The manner classes of speech segments are listed in
pendently, with difference length targets based on the exisfable |, along with corresponding source types. Derived
tence of silence or periodic/aperiodic excitation, and accordfrom these classes for the purpose of detection, a set of event
ing to the pitch estimate in periodic regions, as followl: types based on acoustic parameters was defined, and is listed
the difference time is shorten€dl mg for silence to sharpen in Table Il. The categories correspond to the polafagset
the response to onsets that are preceded by silexex- or offset of energy of the event, and their correlation with
pected for stop bursis(2) the difference time is lengthened periodic and/or aperiodic excitation. Events are labeled
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FIG. 4. Parameter extraction results for the word “tor-
nadoes.”(a) Spectrogram;(b) proportion of periodic
(solid line) and aperiodid¢solid line with “ <" overlaid)

(c) energy;(c) smoothed pitch estimate in periodic regions;
(d) onset and offset parameters, chosen pdatems,
posited eventgnonrequired marked with)? (e) de-
tected events.
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based on their occurrence either at a boundary where perpnset/offset peaks located near the beginning/end of an ape-
odic content begins or endstV, correlated with voicing riodic region are labeled asC. The locality criteria are
onset or offset or when surrounded by periodic excitation determined from trained thresholds. Remaining boundaries
(=S, correlated with sonorant consonant boundaries  of confidently periodic/aperiodic regions are labeled as land-
their occurrence at a boundary of aperiodic excitation or amarks of the corresponding types, but note that the times are
least occurring outside of periodic excitatichC, correlated less accuraté.Remaining onset/offset peaks are labeled as
with obstruent consonantsThe output of the event detector =S if they are within a periodic region, atC if they are
consists of this set of event labels. Pat of Fig. 4 shows a outside of any periodic region. The full set of trained param-
posited set of these events generated from TIMIT labels; pakters used in this process is listed in detail in Table IlI.
(e) shows detected events from the speech signal.

The normalized summary periodic and aperiodic energyp. Training procedure
measures,Pg,q and AP, are analyzed(after median
smoothing to locate potential confident regions and their
boundaries. The set of confidently periodic/aperiodic region
is determined by applying a minimum threshold for a re-
quired maximum value oP.,q or AP, for a region. Fol-

Some adjustment was performed on a number of the
éime, energy, and confidence-level thresholds involved in
event extraction. These included the pairs of thresholds used
for determining confident regions of periodicity or aperiod-

lowing this, lower thresholds are used to find the boundarie&dty as discussed above. The training procedure adjusted a

of each region. Aperiodic regions are discarded unless et of 12 parameters, listed in Table Ill. The procedure was a

least one end of the region is associated with an onset/offsgf duence of Nelder—Mead simplex optimization stages on

event, i.e., the beginning of the region near an onset event pree subsets of the paramet@s defined in Table 1)| per-

the end of the region near an offset event. They are als prmed over the SCOr&=Nmagcnes™ Ninserions (Nelder and
discarded if the aperiodic region is shorter than 10 ms. Mead, 1965%. This cost is equivalent to minimizing the total

The onset and offset parameters are converted into grror rate, as the base number of posited required events will

sequence of potential events by use of a convex hull-basedft changdand as ‘QTUCh a deprease in the number qf matches
peak-picking algorithm. There are thresholds for minimumcorresponds to an increase in the number of deleyidrte
peak height, and a required minimum dip between two adja-

cent peaks. Onset and offset peaks are associated wilAt-E ! Eventtypes.

boundaries of periodic/aperiodic regions in order to classifyf apel Name Description

event types. Onset/offset peaks located near the beginning/v
end of a periodic region are labeled a¥. Correspondingly,

\oicing onset ~ Onset corresponding to beginning of periodicity
(beginning of a vowel or sonorant consonant
—V  \oicing offset  Offset corresponding to end of periodicity
(end of a vowel or sonorant consonant
+S  Sonorant onset  Onset within periodic region
(onset at release of nasal or semivowel

TABLE I. Modes of speech productioimanner classes

Manner Oral tract Primary source o o ;

—S  Sonorant offset  Offset within periodic region
Vowel Open Periodic (offset at release of nasal or semivowel
Semivowel Slightly constricted Periodic +C  Obstruent onset Onset corresponding to beginning of aperiodicity
Nasal Closedwith nasal coupling Periodic (stop consonant burst, affricate or fricative onset
Fricative Narrow constriction Aperiodic —C  Obstruent offset Offset corresponding to end of aperiodicity
Stop Completely closed Aperiodic (stop, affricate or fricative offsgt
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TABLE lll. Parameters with trained valueB,,, and P refer to the boundaries of a periodic regi@®,, and
AP are the corresponding locations for an aperiodic region.

Parameter Description Value
Periodicity parameters

thefore: Pon Max. time fromP,, to corresp. onset pedpeakprecedes 59.8 ms
Pon)

tatter: Pon Max. time from P, to corresp. onset pealpeak follows 4.48 ms
Pon)

TperroN “Peak threshold” onP¢,q to consider a region as periodic 58.7%

Trer “Boundary threshold” onP4to located ends of a periodic 31.1%
region

trPo Maximum time betweel® , and corresponding offset peak 61.7 ms

Aperiodicity parameters

t:AP Max. time betweemP,,/AP.; and corresponding on/off 31.1 ms
peak

TaperraN “Peak threshold” onAP,4to consider a region as aperiodic 84.2%

Taper “Boundary thresh.” onAP,,4 to located ends of aperiodic 66.0%
region

Onset/offset parameters

Tonpeak Minimum peak height in onset measure 4.70
Tondip Minimum dip between peaks in onset measure 4.70
Toft peak Minimum peak height in offset measure 5.15
Toft dip Minimum dip between peaks in offset measure 5.15

procedure was dependent on initial conditions, which were A set of summary statistics was defined to analyze

set by trial and error and knowledge of front-end behaviormatching results. All are defined in terms of the base Kate

The training process was iterated twice to ensure some déhe number of posited tokens not counting neutral deletions

gree of convergence. (of tokens marked as non-requije®efiningNp as the total
number of posited tokenéncluding those marked nonre-
quired, D as the number of error deletiofisf required to-

E. Scoring algorithm kens, Dy as the number of neutral deletior®as the num-

A standard algorithm used for scoring speech recognizePer (_)f substitutions, antl as the number of m_sertlons, the
performance at the phonetic level was modified to supporf”etr'cs are computed according to the following formulas:
scoring landmark results. The algorithm was derived from
the DARPA speech recognizer performance evaluation tools N=Np—Dy (base rate of matched tokens
(Pallett, 1989. This code aligns a recognized token string
with reference labels using a dynamic programming algo- ) N-D-S
rithm. The original code supported scoring costs for inser-  detéction rateRy =—yg—,
tions, deletions, and substitutions in a stream of labels.

Modifications were made to perform the task of landmark D
scoring:(a) a cost was added for the difference in tirfie deletion rateRp=—,
ms) from the posited label to the detected label, to ensure N
that label matches and substitutions were close in time
(insertion/deletion costs are equivalent to the cost of match-
ing a label 50 ms from its posited locatiorib) support for
nonrequired events with zero deletion cost was added;
support for pairs of co-occurring events which could be |
found in either order was added, for example the onset of a insertion rate: R, == .

o . - N
fricative at the same point as the offset of the preceding
vowel; and(d) substitution cost was doubled in the case that
the polarity was incorrect, such thatC for —C was a more |||. METHOD FOR BROAD-CLASS RECOGNITION
costly substitution thar-V for —C, as it was more likely in  EXPERIMENTS
the polarity mismatch cases that there was actually both an
insertion and a deletion, rather than just a substitufigul- A. Database
ditional adjustments in the final score were made to ignore  The TIMIT database was used for the recognition ex-
insertions before the beginning and after the end of the laperiments. The training data consisted of 2710 utterances
beled speech, under the assumption that integrating an enffem the suggested training section of the TIMIT database.
point detector in the system would prevent positing events athe performance of the recognizers was based on 504 utter-
these locations. ances from the suggested test set.

S
substitution rate: RS:N ,
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FIG. 5. Parameter extraction results for the fragment
“is going,” displaying the difficulty of locating the

: boundary between a vowel and an adjacent voiced fri-
(b) cative /z/.(a) Spectrogram{b) proportion of periodic

: (solid line) and aperiodigsolid line with “ X" overlaid)
energy;(c) onset and offset parameters, chosen peaks
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B. Models IV. RESULTS

Acoustic models were built for four manner classes: so-A. Detection of events in clean and spectrally
norant(includes vowels and sonorant consongrgsop, fri-  impoverished speech

cative, and affricate. In addmgn, a model was built for si- Results for the event detection in clean and spectrally
lence. The back-end processing was done using an HMMg,yerished speech are plotted separately for the categories
based recognition systenfYoung, 1995. Each model «gyongly robust,” “robust,” and “weak” event types in Fig.
consisted of a three-stafplus 2 terminal stateHMM with 5 \yeak events were a set of events that were expected to be
eight Gaussian mixtures in each state. Each mixture was injass arupt, including releases and closures for nasals, voiced
tialized as zero mean and unit diagonal covariance. EacRonstrident fricatives, and voiced stops labeled as flaps. The
mixture had diagonal variance and all the mixtures weight§ast of the events were considered robust, and a subset of
in all the states were initialized at the same value. Left-toy,ese that were detected with an error (aeludes deletions
righF state transitic_m with one skip was incorporated with theand substitutionsless than 2% in clean speech was labeled
additional constraint that each model had to start at the firsg syrongly robust. Details of the detection rates for different
state. All of the allowable transitions were initialized as equi-g\ents are given in the Appendix. Events were detéatdith
probable. _ . an overall detection rate of 80.2% on the clean test data set
Three different front ends were used in the recognitionith an insertion rate of 8.7%, and 76% on the impoverished
experiments. The first front end consisted of 12 melyegt set with an insertion rate of 36.6%. Note that for each
frequency cepstral coefficient®FCCs and energy with  cateqory, the difference between the detection results for the
their delta and acceleration coefficients. The second front|ogn speech and the impoverished speech is within 5%.

end consisted of the four temporal-based parameters: apef,s the temporal parameters are quite robust to spectral
odic energy measure, periodic energy measure, onset Wavgggradation.

form, and offset waveform. The third front end consisted of Nearly half of the error rate is due to missed landmarks

both the cepstral-based parameters and the temporal-basgdie boundary between a nasal consonant and a vowel, an
parameters. All qf the pa_rameters were computed at a rate f,ent type that was detected with only 45.6% accuracy. An-
5 ms and the window size was 20 ms. The mean of eacBer major error source was from landmarks for voiced non-
parameter was normalized to zero. strident fricatives; initial onsets preceding the fricative were
located only 48.1% of the time, and landmarks for a voiced
weak fricative adjacent to a vowel were detected with 49.0%
accuracy. A third difficult case involved locating landmarks
for stop consonants labeled as flaps, of which only 42.6%
were detected correctly. These three cases combined account
For scoring, the phonetic transcriptions provided withfor 69.5% of all errors made. Discounting these classes of
the TIMIT database were mapped into the four mannetandmarks, the detection rate was 91.8%; and the detection
classes and silence. Although separate models were built foate for a subset consisting of the most strongly robust event
affricates and stops, they were recognized as the same clasgpes was 98.5%.
Flaps were allowed to score as either a stop or a sonorant Landmark types that were detected well included stop
consonant. Glottal stops were allowed to score as either eonsonants and unvoiced fricatives: 90.9% of stop closures
vowel or a stop. following a vowel were detected, and 96.0% of stop bursts

C. Scoring
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0.6 rameters to the cepstral-based parameters results in close to a
I : 5% improvement in accuracy. This increase in performance
is due largely to improved detection of landmarks, particu-
larly for the stop and fricative consonants. Note that the per-
B Training Set formance of the recognizers may in fact be considerably bet-
ter than the numbers in Table IV suggest. In an analysis of
manner—class recognition experiments performed by Bitar
B Impoversished Test and Espy-Wilsor(1995 using some of the same TIMIT test
Set sentences, Bitar and Espy-Wilson found that presumed mis-
g BT classifications of voiced obstruents as sonorant consonants
0 ‘  Toml was not incorrect. Many of the voiced obstruents were in fact
Robust realized as sonorant consonants, even though this change in
the surface realizations of the voiced obstruents is not re-
FIG. 6. Landmark detection results for clean and impoverished speech. flected in the TIMIT transcriptions. More recent results
evaluating the proportion of periodic vs aperiodic energy in
were detectedincluding 99.0% of unvoiced stop releases speech signals by Deshmukh and Espy-Wil§é2003 show
Landmarks for unvoiced fricative closures and releases adjahat about 33% of voiced obstruents have a strong periodic
cent to a vowel were detected with 99.0% accurgagd component with little or no aperiodic component, and about
92.4% for voiced stridents Note that affricate consonants half of all voiced obstruents show strong periodicity.
were grouped with strident fricatives for this count. The
voiced /z/ and /zh/ fricatives can have a difficulty to locateV. DISCUSSION

poundary due to overlap with n('algh'bormg segments; see, for There are a number of key areas where accuracy could
instance, the utterance shown in Fig. 6. More results for ro;

. . . be improved, particularly in use of prediction and longer-
bust event types are given in the Appendix. . ; : . .
. . ._term integration of information. In the front end, silence de-
The results from this study are somewhat different in

organization than those of Li(1994, but a gross compari- tection may be improved by addition of masking constraints;

son of some of the results is possible. When tested across trtlhis will result in improved contextual reliability as a func-
. POSSIDIE. 1Bn of signal level. Of primary interest are spectral masking
full TIMIT test set using automatically generated labels, the

landmark detector developed by Liu had an error rate of 150/ef“fects of tones on noise with respect to thresholds for detec-

for deletions, 6% for substitutions, and 25% for insertions.{llon of aperiodicity in the presence of a primarily periodic

our overall error rate on a subset of the TIMIT test data iSS|gnal. The onset/offset detector could benefit from improved

. . adaptation of the temporal sensitivity parameter; one possi-
0 0,
gé’a}cgrafslitgr}fmmgig Iierlltet;]ae!sesrei\tlsncelidgge/; \tl\éhig d bility may be to examine separately adapting versions tuned
tected. 4.8% for substitutions. and 8.7% forri)nsert)o te %o periodic excitation and aperiodic events for optimal detec-
) +070 ' -0 A 4o of fricative events. Finally, it may be possible to modify
that these numbers may not be directly comparable sin

C . .
. . : e event extraction stage of the system to dynamically adapt
there are differences in the way the results were tallied. Onﬁwresholds as necessary. This could be done using temporal

possible conclusion from this comparison is that a Selecuo'&onstraints(expected events or segments per unit time

of broader frequency bands such as those used by Liu m ; - .
be more appropriate for the detection of nasals and Iatera?é/drag;igor speaking rateather than explicit required levels

wher mmary m r r Il fr n hann . . : .
ereas summary measures across afl frequency channeis “,, important area for further research will be improving

may be better for obstruertts. the extraction of temporal cues from noisy inputs. The
present system is subject to errditkely to be primarily

B. Temporal parameters vs cepstral parameters for insertions, which may be filterable based on spectral charac-

manner-class recognition teristicy given a signal mixed with rapidly fluctuating noise.

The manner class recognition results are given in Tabld Ne use of a large number of narrow bands allows for adap-
IV. As can be seen, the four temporal parameters result iftion to noise if methods are developed to identify which
performance that is comparable to that obtained with the 39ands to ignore; such methods could include correlation

cepstral-based parameters. Adding the temporal-based paethods, or scene analysis techniques such as those used in
missing-data approaches to speech recognittnokeet al.,

0.5+

0.4

031 O Clean Test Set

0.2 -

0.1

TABLE V. Recognition resultgin percen} for the broad classes: Sonorant 1997).
(includes vowels and sonorant consongriticative, stop and silence. The next stage of this work will be to combine cues
derived from temporal information with a recognition system
Correct Accuracy based on spectral features, as both types of features will be
MFCCs 73.9 70.1 important for a complete system. It is clear that temporal
(39 parametejs information is used by the human speech recognition system,
Temporal measures 78.0 70.1 and so should be critical to achieving high-quality perfor-
:\:FpCaCrZTg;h;ral easures 811 . mance in a computer speech recognition system; spectral
(43 parametejs cues are also of significant importance, for example formant

frequencies and other spectral cues to place. This merging
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could involve spectral weighting of temporal components, orof a tunable onset/offset detector, it was determined that
a merger at the event output stage, increasing confidence some locations require different degrees of sensitivity to tem-
existence of an event if it is posited from multiple types of poral information. It has also pointed to certain landmark
information. Later stages of the recognizer will be able totypes where spectral features and perhaps more subtle tem-
take into account a broader range of temporal and spectraloral featuregon a longer time scalere important, particu-

cues. larly for landmarks related to sonorant consonants. It would
be expected that the optimal system would integrate both
VI. CONCLUSION temporal and spectral information.

This work has shown that use of temporal information
for landmark detection is feasible, particularly for a subset_ OfACKNOWLEDGMENTS
robust abrupt events such as stop bursts. Although previous
studies have investigated the use of temporal information in  This work was supported in part by NSF Grant No.
particular cases or as an additional measure, this work exXsBR-9729688 and NIH Grant No. 1K02 DC00149-01A1.
tends this body of work by using temporal information ev- Thanks to the three anonymous reviewers and the associate
erywhere as the primary information source. As noted by useditor for useful comments on this manuscript.

APPENDIX A: ERROR RATES IN THE DETECTION OF ROBUST EVENTS IN THE CLEAN TEST SET
% Deletion and

substitution % Deletion
Landmark type errors error # of tokens
Consonantal landmarks adjacent to vowels
Stop closure 9.14 1.57 383
Unvoiced stop release 1.03 0.34 291
\oiced stop release 8.51 0.00 188
Unvoiced fricative 1.01 1.01 397
Voiced fricative 7.05 7.05 156
Interconsonantal landmarks
Stop/strident fricative boundary 1.23 0.00 81
Strident fricative/stop boundary 5.49 4.40 91
Fricative/nasal and nasal/fricative 5.00 5.00 40
boundary
Initial and final events
Glottal onset/offset 10.50 5.88 238
Strident fricative(initial or final) 1.11 1.11 90
Unvoiced weak fricativeinitial or 11.11 11.11 9
final)

APPENDIX B: ERROR DETECTION RATE OF WEAK EVENTS IN CLEAN TEST SET
% Substitution

and deletion % Deletion
Landmark type errors errors # of tokens
Consonantal landmarks adjacent to a vowel
Stop (labeled as a flap 57.45 31.91 94
Stop releasélabeled without a burgt 46.67 13.33 15
Voiced weak fricative 51.03 51.03 194
Nasal 54.45 43.64 472
Aspiration (h) 31.82 31.82 44
Interconsonantal landmarks
Stop/nonstrident fricative or nonstrident 19.05 14.29 42
fricative/stop boundary
Non-strident fricative/nasal or 33.33 33.33 27
nasal/nonstrident fricative boundary
Stop/nasal or nasal/stop boundary 21.18 20.00 85
Initial and final events
Initial voiced nonstrident fricative 51.85 51.85 27
Aspiration (initial or final) 36.36 36.36 11
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