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Studies by Shannonet al. @Science,270, 303–304~1995!#, Van Tasellet al. @J. Acoust. Soc. Am.82,
1152–1161~1987!#, and others show that human listeners can understand important aspects of the
speech signal when spectral shape has been significantly degraded. These experiments suggest that
temporal information is particularly important in human speech perception when the speech signal
is heavily degraded. In this study, a system is developed that extracts linguistically relevant temporal
information that can be used in the front end of an automatic speech recognition system. The
parameters targeted include energy onset and offsets~computed using an adaptive algorithm! and
measures of periodic and aperiodic content; together these are used to find abrupt acoustic events
which signify landmarks. Overall detection rates for strongly robust events, robust events, and weak
events in a portion of the TIMIT test database are 98.9%, 94.7%, and 52.1%, respectively. Error
rates increase by less than 5% when the speech signals are spectrally impoverished. Use of the four
temporal parameters as the front end of a hidden Markov model~HMM !-based system for the
automatic recognition of the manner classes ‘‘sonorant,’’ ‘‘fricative,’’ ‘‘stop,’’ and ‘‘silence’’ results
in the same recognition accuracy achieved when the standard 39 cepstral-based parameters are used,
70.1%. The combination of the temporal parameters and cepstral parameters results in an accuracy
of 74.8%. © 2004 Acoustical Society of America.@DOI: 10.1121/1.1646400#

PACS numbers: 43.72.Ar, 43.72.Ne@DOS# Pages: 1296–1305
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I. INTRODUCTION

This paper investigates the use of temporal informat
for extraction of linguistically relevant details from a spee
signal. This study has been considered in the context
longer-term program on lexical access from features~LAFF!
~Stevens, 1986; 2002! and event-based speech recogniti
~EBS! ~Espy-Wilson, 1994; Juneja and Espy-Wilson, 200!,
which is a furthering of the lexical access from spec
~LAFS! proposed by Klatt~1979!. LAFF and EBS are para
digms for ~human or machine! speech recognition in which
landmarks in a speech signal are first located, and then
tures are attached to those landmarks. In this paper, m
vated by studies of speech perception under certain type
degradation, we have concentrated on access to tempor
formation. The goal of this work is to develop a system th
automatically extracts temporal cues that can be used in
front end of an automated speech recognition system.

A. Background

The motivations for this work come most important
from studies of speech perception. A major problem in
development of speech recognition systems is the detec
of speech from noise~cf. Viikki, 2001! or otherwise reduced
spectral information. Recent studies show that human lis
ers can understand some aspects of the speech signal
when spectral shape has been significantly degraded
source of information that may be of use, particularly und
heavily degraded conditions, is that of temporal cues

a!Currently at MIT, Research Lab of Electronics, Speech Communica
Group, 77 Massachusetts Avenue, Rm. 36-511, Cambridge, MA 02
Electronic mail: ariel@speech.mit.edu
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information derived from the temporal structure of th
speech signal. These cues are not targeted by traditi
speech recognition systems, which generally focus on sp
tral features using data-derived spectral templates. Temp
processing is a significant factor in the auditory system,
observed by effects such as the phase locking of audit
nerve firing to periodic signals~Moore, 1997!. As such, this
information should be available for use in human spee
recognition.

The ability of human listeners to understand spectra
degraded speech has been examined in several studies~Sh-
annon et al., 1995; Van Tasellet al., 1987; Turneret al.,
1995, among others! which demonstrate the ability of huma
listeners to recognize speech—particularly manner, nasa
and voicing—from primarily temporal cues. The general
sult has been that spectrally degraded speech still cont
limited information about manner, nasality, and voicing.
light of these results, it is proposed that it should be poss
to build a detector for acoustic events~prototypical land-
marks! that is both largely independent of detailed spect
information and resistant to noise. Further, addition of te
poral parameters should also improve performance and
crease noise resistance for a system based on spectral
mation. Note, however, that improved performance may
occur if the noise has speech-like temporal characteris
Turner et al. ~1995! have shown that the use of tempor
information is prevented when the speech signal is corrup
by modulated babble noise.

B. Temporal information

For the purpose of this study, it is helpful to speci
exactly what is considered to be the ‘‘temporal informatio

n
2.
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FIG. 1. Sample landmarks in the word ‘‘tornadoes.’’~a!
Release of stop consonant;~b! frication/aspiration
boundary~nonrequired event!; ~c! onset of vowel;~d!
closure for nasal consonant;~e! release of nasal conso
nant;~f! closure and release of stop consonant produc
as a flap;~g! closure for fricative consonant;~h! release
of fricative consonant.
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in the signal. Temporal information is defined here in ter
of bandpass components of the speech signal. Rosen~1992!
proposes three categories of temporal information in spe
~1! ‘‘envelope information’’~with fluctuations at rates from 2
to 50 Hz! which contains amplitude and duration cues
manner of articulation and voicing, as well as informati
about vowel identity~for example vowel length! and pro-
sodic cues;~2! ‘‘periodicity information’’ ~fluctuations at
rates from approximately 50 to 500 Hz! which provides cues
to voicing which can aid in manner identification, as well
marking stress locations by changes in pitch; and~3! ‘‘fine
structure’’ ~fluctuations at higher rates! which largely pro-
vides information also available from spectral shape. N
that normal-hearing subjects cannot detect amplitude fluc
tions above about 1000 Hz; and response to modulation
grades rapidly above 100 Hz~Viemeister, 1979!. This sug-
gests that, at most, human listeners can only derive fi
formant information from the temporal fine structure, if a
information regarding fluctuations above the rate of pi
modulations is perceptually significant. Only the first tw
categories of temporal information are considered in t
study.

Our goal in using temporal information is to aid in th
analysis of the speech signal. In the human speech pro
tion system, a sequence of discrete elements~phonemes,
words, etc.! is translated into an analog, continuous acous
signal by the vocal apparatus. The process of understan
speech can be considered to be a reconstruction of the
crete stream of symbols from the speech signal. Howe
not all regions of a signal have the same information cont
steady-state portions can be sampled slowly to determ
overall properties, while abrupt points such as the criti
point of a transition for a consonantal closure can conta
significant number of linguistically important cues in a co
centrated region. These transition regions can contain in
mation about the adjacent segments, most importantly in
type of transitions in and out of the target position. In th
paper, we are concerned with landmarks involving abr
acoustical changes, a set of which is illustrated for an ut
ance in Fig. 1.

C. System goals

The goal of event detection is to generate a set of la
marks referred to aseventsthat will direct further analysis of
the speech signal. To ensure the success of further leve
processing~outside the scope of this paper!, this set should
J. Acoust. Soc. Am., Vol. 115, No. 3, March 2004
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be essentially complete with respect to the perceptu
sharpest events, for example events corresponding to s
consonant bursts, strident fricatives, and stressed vow
Note that insertions are somewhat less critical as they ca
discarded by further analysis. On the other hand, it is lik
that some weaker events are going to be captured less o
semivowels~particularly the glides /w/ and /y/!, for which
the primary cues consist of formant movement~Espy-
Wilson, 1992!; weak fricatives which have become sonora
such as a common pronunciation of the /v/ in ‘‘everyda
~Catford, 1977; Espy-Wilson, 1994; Deshmukh and Es
Wilson, 2003! and other cases of events that do not involv
significant degree of energy fluctuation. In cases of hea
coarticulated segments, it is expected that the output of
system will reflect the type of events that actually occurr
rather than the canonical events expected from segm
based labels~e.g., sonorant events rather than onset and
set of frication for the /v/ in ‘‘everyday’’ when it is manifes
as a sonorant consonant!.

The parameters used to locate landmarks in the spe
signal are changes in spectral energy or in the periodi
content of the signal, corresponding to the two relevant ty
of temporal information discussed above. This work relies
the assumption that abrupt landmarks are initially loca
based on only amplitude changes in the signal~Stevens,
2002!. It is at later stages of processing that spectral inf
mation is integrated, and then higher-level information su
as phonotactics and lexical constraints is applied. The qu
tion in this study is how much information can be detect
regarding manner information in speech from strictly temp
ral information. It is certain that additional use of spect
information, wider context, and high-level constraints will b
able to improve the results.

This work builds on work by Espy-Wilson~1992!,
where the degree of abruptness in an energy difference m
sure was used to distinguish the glides /w,y,r/ from the c
sonantal sonorant consonants /m,n,l/, and by Bitar~1997!,
where energy differences were used to find stop bursts an
perform segmentation. The methodology is similar to
search by Liu~1994!, who used energy differences comput
from specific frequency bands to find certain types of lan
marks in the speech signal. In addition, it bears similarity
the processing used by Browne and Cooke~1994!, who used
onsets and offsets and pitch information as cues in a sys
for auditory scene analysis. In this study, event detection
based on general processing of all frequency bands and
1297Salomon et al.: Landmark detector
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FIG. 2. Overall structure of analysis algorithm. Sever
stages of computation are performed within each ch
nel, followed by integration into summary measures f
use in event detection.
in
ct
pe
ar
ad
ti

b
le
e
le
s

T
63
s
s
r-
,
.

16
ns
nd
d
th
se
d
re

de
rt-
a
b
r

o
th
te

ha
5%
fo

th
th
ai

on-
der

t
IT
form
sh-
h-

han-
set
sig-

gnal
ich
set/
a

s of
h,
ave-
al.
a-

cu-
in

ex-

o-
tion

ig-
its
the
an
ied

a
pre-

par-

m-
n si-
ms.
signal processing is adaptive. Energy change is comb
with information about periodicity and aperiodicity to dete
events; and analysis is performed for both clean and s
trally impoverished speech signals. In addition, we comp
the performance of these temporal parameters with the tr
tional cepstral-based parameters in the manner classifica
of speech using an HMM-based recognition system~Young,
1995!.

II. METHOD FOR LANDMARK DETECTION
EXPERIMENTS

A. Database

The TIMIT database~Seneff and Zue, 1988! was used as
a corpus of labeled speech data. This is a widely availa
database of speech recorded in quiet and labeled at the
of words and phonetic strings. Although it would have be
more useful to use a database labeled at the landmark
~e.g., a database currently under development at the Ma
chusetts Institute of Technology; see Choiet al., 1997!, a
large enough database of this type was not yet available.
TIMIT database consists of 6300 utterances spoken by
speakers, of which 4620 utterances make up the sugge
training set and 1680 are in the test set. In particular, we u
the phonetically compact~sx! sentences. Training was pe
formed using a set of 20sx sentences~spoken by 10 males
10 females! randomly drawn from the TIMIT training set
Testing was performed using all 120sx sentences from the
TIMIT core test set~spoken by 8 female speakers and
male speakers, evenly distributed over all 8 dialect regio!.

For the purpose of comparing with the detected la
marks, a set of expected~posited! landmarks was generate
from the phonetically labeled transcriptions available in
TIMIT database using a simple rule-based algorithm ba
on the manner class of adjacent segments at each boun
The posited landmarks are expected to have some inhe
error as the mapping is underspecified. Some of the un
specification in the TIMIT labels is accounted for by inse
ing events that are labeled as ‘‘nonrequired’’ because they
possible, and may be caught by the matching algorithm,
not necessarily strongly expected. An example of a non
quired event is the frication/aspiration boundary~event b! in
Fig. 1. @Note from part~e! of Fig. 4 that this boundary is
detected as a2C event by our algorithm.# The 20 utterances
in the training database were also hand labeled for m
reliable system development and training. For analysis of
effect of using generated landmark labels, the trained sys
was evaluated on both the generated labels and the
labels of the training set. The overall error rate was 18.
for the training set with the generated labels and 14.8%
the training set with the hand labels. Focusing on only
robust set of landmarks, the error rate was 6.54% for
training set with the generated labels and 6.06% for the tr
1298 J. Acoust. Soc. Am., Vol. 115, No. 3, March 2004
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ing set with the hand labels. Note that the robust set c
tained approximately 70% of the total set of landmarks un
analysis.

In addition to using this clean version of TIMIT to tes
our algorithm, we also spectrally impoverished the TIM
database to see how well the temporal parameters per
with degraded spectral information. The spectral impoveri
ment was performed using a bank of four filters in a tec
nique developed by Shannonet al. ~1995!.

B. Signal analysis

Signal analysis consisted of a series of stages per c
nel, as shown in Fig. 2. The signal was first filtered into a
of bandpass frequency channels, and each narrow-band
nal was examined independently. In each channel, the si
underwent envelope analysis and feature extraction, wh
consisted of periodicity measurements and an energy on
offset measure. This was followed by combination into
number of cross-channel summary measures as function
time: summary levels of aperiodicity and periodicity, pitc
and energy onset and offset measures. The resulting w
forms were analyzed to locate events in the speech sign

The filter bank used was a 60-channel auditory gamm
tone filter bank with characteristic frequencies~CFs! based
on the ERB scale~Patterson, 1992!. An auditory filter bank
was chosen for spectral analysis in order to provide an ac
rate weighting of frequency components, most importantly
terms of the strength of events corresponding to voiced
citation of speech relative to their unvoiced counterparts.

In order to avoid excessive smoothing in the time d
main, an envelope operator based on the Hilbert informa
~Rabiner and Gold, 1975! was used. The envelopesei(t) of
the individual channels are obtained by the function

ei~ t !5uxi~ t !1 j •H$xi~ t !%u,

wherexi(t) is the input signal, andH$xi(t)% is the Hilbert
transform of the input signal. Given a real narrow-band s
nal as input, the Hilbert transform produces a version of
input signal that is precisely 90° out of phase, such that
amplitude of the complex sum of these two signals is
estimate of the low-frequency amplitude modulation appl
to the signal. This transform is an improvement over
simple smoothing operation because abrupt changes are
served, at the maximum rate that can be captured by a
ticular channel given its CF.

1. Periodicity and aperiodicity feature extraction

The first feature extraction algorithm applied to the te
poral envelopes makes a three-way classification betwee
lence, periodic, and aperiodic in each channel every 2.5
Salomon et al.: Landmark detector
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FIG. 3. Structure of energy analysis component of fe
ture extraction. Note that the first difference operato
used as the energy difference measure are ada
based on periodicity information within each channe
Following this, summary onset and offset measures
computed across all channels.
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A periodic signal is defined to be one that contains regu
temporal fluctuations at rates from roughly 55–500
~Deshmukh and Espy-Wilson, 2003!.

2. Energy operator feature extraction

The other major feature extraction algorithm used is
energy onset/offset detector based on a first-difference m
sure, originally derived from the onset/offset parameters
signed by Espy-Wilson~1992! to capture rate of spectra
change for distinguishing between sonorant consona
These parameters were later used by Bitar~1997! to detect
the abrupt onset of stop consonants. The onset/offset mea
in this study is constructed from first differences in ea
channel output from the temporal envelope analysis st
described above@see parts~d! and ~e! of Fig. 4#. The first
difference is computed as a log difference between the
amplitude of two adjacent nonoverlapping windows of t
signal in a particular channel, as per the formula

Di ,k520 log (
m52`

`

xi~n1m!w~m!

220 log (
m52`

`

xi~n1m2k!w~m2k!,

wherexi(n) is an individual channel input signal,k is the
time difference between the two windows, and the windo
w(n) are rectangular windows of lengthk. The computed
difference is scaled in decibels~dB!. This first difference
operation is essentially the same as the rate-of-rise~ROR!
detector used by Liu~1994!, but the two windows are adja
cent in time to minimize error in location of the detect
peaks.

It was observed that by increasing the window sizes~and
correspondingly increasingk, referred to as the differenc
time! for the first difference computation, noise in the me
surement over the utterance is reduced, particularly in fr
tive regions. However, an unfortunate side effect of leng
ening the window sizes was a decrease in the strengt
peaks and temporal accuracy in the onset signal assoc
with stop bursts. In order to obtain the advantages of a l
window size, a method of dynamically adapting the diffe
ence time based on features of the signal measured by
periodicity detector was developed. Under this method,
energy difference detector is adapted in each channel i
pendently, with difference length targets based on the e
tence of silence or periodic/aperiodic excitation, and acco
ing to the pitch estimate in periodic regions, as follows:~1!
the difference time is shortened~5 ms! for silence to sharpen
the response to onsets that are preceded by silence~as ex-
pected for stop bursts!; ~2! the difference time is lengthene
J. Acoust. Soc. Am., Vol. 115, No. 3, March 2004
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~30 ms! in aperiodic regions, to maximally smooth the fir
difference output in fricated segments; and~3! the difference
time is tuned to exactly twice the pitch period in period
regions, to prevent detection of spurious energy fluctuat
due to misalignment with the pitch period. There is also
slew rate control of 0.5 ms per millisecond~the difference
operator is sampled every ms! to prevent discontinuities.

3. Summary measures

The measurements made in individual channels are c
bined to produce summary measures. The silence/perio
aperiodic decisions are combined across channels to pro
two measurements calledPengandAPeng, which are the pro-
portions of periodic energy and aperiodic energy in the s
nal, respectively.

From the per-channel differences, two measures
computed: the positive differences~increasing levels! are
summed to produce an ‘‘onset’’ signal, and the negative d
ferences~decreasing levels! are summed to produce an ‘‘off
set’’ signal. The offset parameter is usually inverted f
analysis to make it positive, allowing generalization of
further computations; note, however, that the noninver
negative version of the parameter is the one shown in
figures. A scaling by 1/N, whereN is the total number of
channels, produces an average energy change per chann
a dB scale

on~n!5
1

N (
i :Di ,k~n!.0

Di ,k~n!,

off~n!5
1

N (
i :Di ,k~n!,0

Di ,k~n!.

This set of parameters in combination over a speech sig
visibly provides useful information about the content of t
signal, as can be seen in Fig. 4 for the same utterance us
Fig. 1. Note that the periodicity and aperiodicity proportio
measures in~b! provide a decomposition of the signal int
periodic~roughly, voiced! and aperiodic elements. Also not
that the onset and offset measures in~d! have peaks at mos
of the important events in the signal.

C. Event detection

The manner classes of speech segments are liste
Table I, along with corresponding source types. Deriv
from these classes for the purpose of detection, a set of e
types based on acoustic parameters was defined, and is
in Table II. The categories correspond to the polarity~onset
or offset of energy! of the event, and their correlation wit
periodic and/or aperiodic excitation. Events are labe
1299Salomon et al.: Landmark detector
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FIG. 4. Parameter extraction results for the word ‘‘to
nadoes.’’ ~a! Spectrogram;~b! proportion of periodic
~solid line! and aperiodic~solid line with ‘‘3’’ overlaid!
energy;~c! smoothed pitch estimate in periodic region
~d! onset and offset parameters, chosen peaks~stems!,
posited events~nonrequired marked with ?!; ~e! de-
tected events.
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based on their occurrence either at a boundary where p
odic content begins or ends~6V, correlated with voicing
onset or offset!, or when surrounded by periodic excitatio
~6S, correlated with sonorant consonant boundaries!, or
their occurrence at a boundary of aperiodic excitation o
least occurring outside of periodic excitation~6C, correlated
with obstruent consonants!. The output of the event detecto
consists of this set of event labels. Part~d! of Fig. 4 shows a
posited set of these events generated from TIMIT labels;
~e! shows detected events from the speech signal.

The normalized summary periodic and aperiodic ene
measures,Peng and APeng, are analyzed~after median
smoothing! to locate potential confident regions and th
boundaries. The set of confidently periodic/aperiodic regi
is determined by applying a minimum threshold for a
quired maximum value ofPeng or APeng for a region. Fol-
lowing this, lower thresholds are used to find the bounda
of each region. Aperiodic regions are discarded unless
least one end of the region is associated with an onset/o
event, i.e., the beginning of the region near an onset even
the end of the region near an offset event. They are a
discarded if the aperiodic region is shorter than 10 ms.

The onset and offset parameters are converted in
sequence of potential events by use of a convex hull-ba
peak-picking algorithm. There are thresholds for minimu
peak height, and a required minimum dip between two ad
cent peaks. Onset and offset peaks are associated
boundaries of periodic/aperiodic regions in order to class
event types. Onset/offset peaks located near the beginn
end of a periodic region are labeled as6V. Correspondingly,

TABLE I. Modes of speech production~manner classes!.

Manner Oral tract Primary source

Vowel Open Periodic
Semivowel Slightly constricted Periodic
Nasal Closed~with nasal coupling! Periodic
Fricative Narrow constriction Aperiodic
Stop Completely closed Aperiodic
1300 J. Acoust. Soc. Am., Vol. 115, No. 3, March 2004
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onset/offset peaks located near the beginning/end of an
riodic region are labeled as6C. The locality criteria are
determined from trained thresholds. Remaining bounda
of confidently periodic/aperiodic regions are labeled as la
marks of the corresponding types, but note that the times
less accurate.1 Remaining onset/offset peaks are labeled
6S if they are within a periodic region, or6C if they are
outside of any periodic region. The full set of trained para
eters used in this process is listed in detail in Table III.

D. Training procedure

Some adjustment was performed on a number of
time, energy, and confidence-level thresholds involved
event extraction. These included the pairs of thresholds u
for determining confident regions of periodicity or aperio
icity as discussed above. The training procedure adjuste
set of 12 parameters, listed in Table III. The procedure wa
sequence of Nelder–Mead simplex optimization stages
three subsets of the parameters~as defined in Table III!, per-
formed over the scoreS5Nmatches2Ninsertions ~Nelder and
Mead, 1965!. This cost is equivalent to minimizing the tota
error rate, as the base number of posited required events
not change~and as such a decrease in the number of matc
corresponds to an increase in the number of deletions!. The

TABLE II. Event types.

Label Name Description

1V Voicing onset Onset corresponding to beginning of periodicit
~beginning of a vowel or sonorant consonant!

2V Voicing offset Offset corresponding to end of periodicity
~end of a vowel or sonorant consonant!

1S Sonorant onset Onset within periodic region
~onset at release of nasal or semivowel!

2S Sonorant offset Offset within periodic region
~offset at release of nasal or semivowel

1C Obstruent onset Onset corresponding to beginning of aperiodi
~stop consonant burst, affricate or fricative onse!

2C Obstruent offset Offset corresponding to end of aperiodicity
~stop, affricate or fricative offset!
Salomon et al.: Landmark detector
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TABLE III. Parameters with trained values.Pon andPoff refer to the boundaries of a periodic region;APon and
APoff are the corresponding locations for an aperiodic region.

Parameter Description Value

Periodicity parameters
tbefore:Pon Max. time fromPon to corresp. onset peak~peakprecedes

Pon)
59.8 ms

tafter:Pon Max. time from Pon to corresp. onset peak~peak follows
Pon)

4.48 ms

TperIRGN ‘‘Peak threshold’’ onPeng to consider a region as periodic 58.7%
Tper ‘‘Boundary threshold’’ onPeng to located ends of a periodic

region
31.1%

t:Poff Maximum time betweenPoff and corresponding offset peak 61.7 ms

Aperiodicity parameters
t:AP Max. time betweenAPon /APoff and corresponding on/off

peak
31.1 ms

TaperIRGN ‘‘Peak threshold’’ onAPengto consider a region as aperiodic 84.2%
Taper ‘‘Boundary thresh.’’ onAPeng to located ends of aperiodic

region
66.0%

Onset/offset parameters
TonIpeak Minimum peak height in onset measure 4.70
TonIdip Minimum dip between peaks in onset measure 4.70
ToffIpeak Minimum peak height in offset measure 5.15
ToffIdip Minimum dip between peaks in offset measure 5.15
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procedure was dependent on initial conditions, which w
set by trial and error and knowledge of front-end behav
The training process was iterated twice to ensure some
gree of convergence.

E. Scoring algorithm

A standard algorithm used for scoring speech recogn
performance at the phonetic level was modified to supp
scoring landmark results. The algorithm was derived fr
the DARPA speech recognizer performance evaluation to
~Pallett, 1989!. This code aligns a recognized token stri
with reference labels using a dynamic programming al
rithm. The original code supported scoring costs for ins
tions, deletions, and substitutions in a stream of lab
Modifications were made to perform the task of landma
scoring: ~a! a cost was added for the difference in time~in
ms! from the posited label to the detected label, to ens
that label matches and substitutions were close in t
~insertion/deletion costs are equivalent to the cost of ma
ing a label 50 ms from its posited location!; ~b! support for
nonrequired events with zero deletion cost was added;~c!
support for pairs of co-occurring events which could
found in either order was added, for example the onset
fricative at the same point as the offset of the preced
vowel; and~d! substitution cost was doubled in the case t
the polarity was incorrect, such that1C for 2C was a more
costly substitution than2V for 2C, as it was more likely in
the polarity mismatch cases that there was actually both
insertion and a deletion, rather than just a substitution.2 Ad-
ditional adjustments in the final score were made to ign
insertions before the beginning and after the end of the
beled speech, under the assumption that integrating an
point detector in the system would prevent positing event
these locations.
, Vol. 115, No. 3, March 2004
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A set of summary statistics was defined to analy
matching results. All are defined in terms of the base rateN,
the number of posited tokens not counting neutral deleti
~of tokens marked as non-required!. DefiningNP as the total
number of posited tokens~including those marked nonre
quired!, D as the number of error deletions~of required to-
kens!, DN as the number of neutral deletions,S as the num-
ber of substitutions, andI as the number of insertions, th
metrics are computed according to the following formula

N5NP2DN ~base rate of matched tokens!,

detection rateRM5
N2D2S

N
,

deletion rateRD5
D

N
,

substitution rate:RS5
S

N
,

insertion rate: RI5
I

N
.

III. METHOD FOR BROAD-CLASS RECOGNITION
EXPERIMENTS

A. Database

The TIMIT database was used for the recognition e
periments. The training data consisted of 2710 utteran
from the suggested training section of the TIMIT databa
The performance of the recognizers was based on 504 u
ances from the suggested test set.
1301Salomon et al.: Landmark detector
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boundary between a vowel and an adjacent voiced
cative /z/. ~a! Spectrogram;~b! proportion of periodic
~solid line! and aperiodic~solid line with ‘‘3’’ overlaid!
energy;~c! onset and offset parameters, chosen pe
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B. Models

Acoustic models were built for four manner classes:
norant~includes vowels and sonorant consonants!, stop, fri-
cative, and affricate. In addition, a model was built for
lence. The back-end processing was done using an HM
based recognition system~Young, 1995!. Each model
consisted of a three-state~plus 2 terminal states! HMM with
eight Gaussian mixtures in each state. Each mixture was
tialized as zero mean and unit diagonal covariance. E
mixture had diagonal variance and all the mixtures weig
in all the states were initialized at the same value. Left-
right state transition with one skip was incorporated with
additional constraint that each model had to start at the
state. All of the allowable transitions were initialized as eq
probable.

Three different front ends were used in the recognit
experiments. The first front end consisted of 12 m
frequency cepstral coefficients~MFCCs! and energy with
their delta and acceleration coefficients. The second fr
end consisted of the four temporal-based parameters: a
odic energy measure, periodic energy measure, onset w
form, and offset waveform. The third front end consisted
both the cepstral-based parameters and the temporal-b
parameters. All of the parameters were computed at a ra
5 ms and the window size was 20 ms. The mean of e
parameter was normalized to zero.

C. Scoring

For scoring, the phonetic transcriptions provided w
the TIMIT database were mapped into the four man
classes and silence. Although separate models were bui
affricates and stops, they were recognized as the same c
Flaps were allowed to score as either a stop or a sono
consonant. Glottal stops were allowed to score as eith
vowel or a stop.
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IV. RESULTS

A. Detection of events in clean and spectrally
impoverished speech

Results for the event detection in clean and spectr
impoverished speech are plotted separately for the categ
‘‘strongly robust,’’ ‘‘robust,’’ and ‘‘weak’’ event types in Fig.
5. Weak events were a set of events that were expected t
less abrupt, including releases and closures for nasals, vo
nonstrident fricatives, and voiced stops labeled as flaps.
rest of the events were considered robust, and a subs
these that were detected with an error rate~includes deletions
and substitutions! less than 2% in clean speech was labe
as strongly robust. Details of the detection rates for differ
events are given in the Appendix. Events were detected3 with
an overall detection rate of 80.2% on the clean test data
with an insertion rate of 8.7%, and 76% on the impoverish
test set with an insertion rate of 36.6%. Note that for ea
category, the difference between the detection results for
clean speech and the impoverished speech is within
Thus, the temporal parameters are quite robust to spe
degradation.

Nearly half of the error rate is due to missed landma
at the boundary between a nasal consonant and a vowe
event type that was detected with only 45.6% accuracy.
other major error source was from landmarks for voiced n
strident fricatives; initial onsets preceding the fricative we
located only 48.1% of the time, and landmarks for a voic
weak fricative adjacent to a vowel were detected with 49.
accuracy. A third difficult case involved locating landmar
for stop consonants labeled as flaps, of which only 42.
were detected correctly. These three cases combined acc
for 69.5% of all errors made. Discounting these classes
landmarks, the detection rate was 91.8%; and the detec
rate for a subset consisting of the most strongly robust ev
types was 98.5%.

Landmark types that were detected well included s
consonants and unvoiced fricatives: 90.9% of stop closu
following a vowel were detected, and 96.0% of stop bur
Salomon et al.: Landmark detector
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were detected~including 99.0% of unvoiced stop release!.
Landmarks for unvoiced fricative closures and releases a
cent to a vowel were detected with 99.0% accuracy~and
92.4% for voiced stridents!. Note that affricate consonant
were grouped with strident fricatives for this count. T
voiced /z/ and /zh/ fricatives can have a difficulty to loca
boundary due to overlap with neighboring segments; see
instance, the utterance shown in Fig. 6. More results for
bust event types are given in the Appendix.

The results from this study are somewhat different
organization than those of Liu~1994!, but a gross compari
son of some of the results is possible. When tested acros
full TIMIT test set using automatically generated labels, t
landmark detector developed by Liu had an error rate of 1
for deletions, 6% for substitutions, and 25% for insertio
Our overall error rate on a subset of the TIMIT test data
19% for deletions when laterals are included~15% when
laterals are not included in the events expected to be
tected, 4.8% for substitutions, and 8.7% for insertions!. Note
that these numbers may not be directly comparable s
there are differences in the way the results were tallied. O
possible conclusion from this comparison is that a selec
of broader frequency bands such as those used by Liu
be more appropriate for the detection of nasals and late
whereas summary measures across all frequency cha
may be better for obstruents.4

B. Temporal parameters vs cepstral parameters for
manner-class recognition

The manner class recognition results are given in Ta
IV. As can be seen, the four temporal parameters resu
performance that is comparable to that obtained with the
cepstral-based parameters. Adding the temporal-based

FIG. 6. Landmark detection results for clean and impoverished spee

TABLE IV. Recognition results~in percent! for the broad classes: Sonoran
~includes vowels and sonorant consonants!, fricative, stop and silence.

Correct Accuracy

MFCCs
~39 parameters!

73.9 70.1

Temporal measures
~4 parameters!

78.0 70.1

MFCCs1temporal measures
~43 parameters!

81.1 74.8
J. Acoust. Soc. Am., Vol. 115, No. 3, March 2004
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rameters to the cepstral-based parameters results in close
5% improvement in accuracy. This increase in performa
is due largely to improved detection of landmarks, partic
larly for the stop and fricative consonants. Note that the p
formance of the recognizers may in fact be considerably b
ter than the numbers in Table IV suggest. In an analysis
manner–class recognition experiments performed by B
and Espy-Wilson~1995! using some of the same TIMIT tes
sentences, Bitar and Espy-Wilson found that presumed m
classifications of voiced obstruents as sonorant conson
was not incorrect. Many of the voiced obstruents were in f
realized as sonorant consonants, even though this chan
the surface realizations of the voiced obstruents is not
flected in the TIMIT transcriptions. More recent resu
evaluating the proportion of periodic vs aperiodic energy
speech signals by Deshmukh and Espy-Wilson~2003! show
that about 33% of voiced obstruents have a strong perio
component with little or no aperiodic component, and ab
half of all voiced obstruents show strong periodicity.

V. DISCUSSION

There are a number of key areas where accuracy co
be improved, particularly in use of prediction and longe
term integration of information. In the front end, silence d
tection may be improved by addition of masking constrain
this will result in improved contextual reliability as a func
tion of signal level. Of primary interest are spectral maski
effects of tones on noise with respect to thresholds for de
tion of aperiodicity in the presence of a primarily period
signal. The onset/offset detector could benefit from improv
adaptation of the temporal sensitivity parameter; one po
bility may be to examine separately adapting versions tu
to periodic excitation and aperiodic events for optimal det
tion of fricative events. Finally, it may be possible to modi
the event extraction stage of the system to dynamically ad
thresholds as necessary. This could be done using temp
constraints ~expected events or segments per unit tim
adapted for speaking rate! rather than explicit required level
for peaks.

An important area for further research will be improvin
the extraction of temporal cues from noisy inputs. T
present system is subject to errors~likely to be primarily
insertions, which may be filterable based on spectral cha
teristics! given a signal mixed with rapidly fluctuating noise
The use of a large number of narrow bands allows for ad
tation to noise if methods are developed to identify whi
bands to ignore; such methods could include correlat
methods, or scene analysis techniques such as those us
missing-data approaches to speech recognition~Cookeet al.,
1997!.

The next stage of this work will be to combine cu
derived from temporal information with a recognition syste
based on spectral features, as both types of features wi
important for a complete system. It is clear that tempo
information is used by the human speech recognition syst
and so should be critical to achieving high-quality perfo
mance in a computer speech recognition system; spe
cues are also of significant importance, for example form
frequencies and other spectral cues to place. This mer

.
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could involve spectral weighting of temporal components,
a merger at the event output stage, increasing confidenc
existence of an event if it is posited from multiple types
information. Later stages of the recognizer will be able
take into account a broader range of temporal and spe
cues.

VI. CONCLUSION

This work has shown that use of temporal informati
for landmark detection is feasible, particularly for a subse
robust abrupt events such as stop bursts. Although prev
studies have investigated the use of temporal informatio
particular cases or as an additional measure, this work
tends this body of work by using temporal information e
erywhere as the primary information source. As noted by
1304 J. Acoust. Soc. Am., Vol. 115, No. 3, March 2004
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of a tunable onset/offset detector, it was determined t
some locations require different degrees of sensitivity to te
poral information. It has also pointed to certain landma
types where spectral features and perhaps more subtle
poral features~on a longer time scale! are important, particu-
larly for landmarks related to sonorant consonants. It wo
be expected that the optimal system would integrate b
temporal and spectral information.
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APPENDIX A: ERROR RATES IN THE DETECTION OF ROBUST EVENTS IN THE CLEAN TEST SET

Landmark type

% Deletion and
substitution

errors
% Deletion

error # of tokens

Consonantal landmarks adjacent to vowels
Stop closure 9.14 1.57 383
Unvoiced stop release 1.03 0.34 291
Voiced stop release 8.51 0.00 188
Unvoiced fricative 1.01 1.01 397
Voiced fricative 7.05 7.05 156

Interconsonantal landmarks
Stop/strident fricative boundary 1.23 0.00 81
Strident fricative/stop boundary 5.49 4.40 91
Fricative/nasal and nasal/fricative
boundary

5.00 5.00 40

Initial and final events
Glottal onset/offset 10.50 5.88 238
Strident fricative~initial or final! 1.11 1.11 90
Unvoiced weak fricative~initial or
final!

11.11 11.11 9

APPENDIX B: ERROR DETECTION RATE OF WEAK EVENTS IN CLEAN TEST SET

Landmark type

% Substitution
and deletion

errors
% Deletion

errors # of tokens

Consonantal landmarks adjacent to a vowel
Stop ~labeled as a flap! 57.45 31.91 94
Stop release~labeled without a burst! 46.67 13.33 15
Voiced weak fricative 51.03 51.03 194
Nasal 54.45 43.64 472
Aspiration ~h! 31.82 31.82 44

Interconsonantal landmarks
Stop/nonstrident fricative or nonstrident
fricative/stop boundary

19.05 14.29 42

Non-strident fricative/nasal or
nasal/nonstrident fricative boundary

33.33 33.33 27

Stop/nasal or nasal/stop boundary 21.18 20.00 85

Initial and final events
Initial voiced nonstrident fricative 51.85 51.85 27
Aspiration ~initial or final! 36.36 36.36 11
Salomon et al.: Landmark detector
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1The periodicity results are compiled only every 2.5 ms, whereas on
offset parameters are computed with a 1-ms frame rate. Also, the en
change measurement is inherently more accurate in time as the perio
computation is dependent on even longer time scales corresponding to
periods.

2Due to inclusion of a cost for the distance in time between the posited
generated events, this type of substitution would never be chosen b
scoring algorithm, as the cost structure makes it cheaper for the syste
count it as an insertion plus a deletion.

3Events for flaps~labeled ‘‘dx’’! were considered correct whether they we
detected as6V or 6S.

4Note that Liu provides detailed data similar to those listed in the Appen
but it is for the LAFF database which was hand labeled. Although a di
comparison is difficult given the differences in the databases and the
ferences in the generation of the reference labels, Liu’s detector may
form better on nasal consonants than our detector~29% error on closures
and 44% error on releases, vs 54.5% error!, but it does not reach our leve
of performance for unvoiced stop releases~8% error vs 1.0% error!.
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