
Speech Communication 43 (2004) 225–239

www.elsevier.com/locate/specom
Acoustic parameters for automatic detection of nasal manner

Tarun Pruthi *, Carol Y. Espy-Wilson

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA

Received 16 October 2003
Abstract

Of all the sounds in any language, nasals are the only class of sounds with dominant speech output from the nasal

cavity as opposed to the oral cavity. This gives nasals some special properties including presence of zeros in the

spectrum, concentration of energy at lower frequencies, higher formant density, higher losses, and stability. In this

paper we propose acoustic correlates for the linguistic feature nasal. In particular, we focus on the development of

Acoustic Parameters (APs) which can be extracted automatically and reliably in a speaker independent way. These APs

were tested in a classification experiment between nasals and semivowels, the two classes of sounds which together form

the class of sonorant consonants. Using the proposed APs with a support vector machine based classifier we were able

to obtain classification accuracies of 89.53%, 95.80% and 87.82% for prevocalic, postvocalic and intervocalic sonorant

consonants respectively on the TIMIT database. As an additional proof to the strength of these parameters, we

compared the performance of a Hidden Markov Model (HMM) based system that included the APs for nasals as part

of the front-end, with an HMM system that did not. In this digit recognition experiment, we were able to obtain a 60%

reduction in error rate on the TI46 database.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Nasals (/m/, /n/ and /ng/ for American English)

are produced (Fant, 1960; Flanagan, 1965; Fu-

jimura, 1962a,b; House, 1957; Nakata, 1959; Ste-
vens, 1998) when the velum lowers to allow

coupling to the nasal cavity and a complete closure

is formed in the oral cavity. The latter feature

resembles the feature characterizing the produc-
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tion of stop consonants and the former gives the

nasals their characteristic properties and reveals

itself most prominently in the spectrum of the

nasal murmur (the sound produced with a com-

plete closure at a point in the oral cavity, and with
an appreciable amount of coupling of the nasal

passages to the vocal tract). This coupling between

the oral and nasal cavities introduces zeros in the

nasal murmur spectrum. Thus, the nasal murmur

spectrum cannot be exactly modeled by an all-pole

transfer function, and it is difficult to study the

spectral properties of nasal murmurs because the

resonances have a very low amplitude caused by
close-lying antiresonances and/or the lossy nasal

tract. Nasals can be substantially coarticulated
ed.
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with vowels––so much so, that at times the infor-

mation about nasality is present only as vowel

nasalization (Fant, 1960; Flanagan, 1965; Stevens,

1998). Differences in the size and shape of nasal
and sinus cavities can lead to significant differences

in the spectral characteristics of nasal murmurs for

different speakers. A lot of other sounds can be

confused with nasals. Semivowels together with

nasals form the class of sonorant consonants. Be-

sides semivowels, voice bars (low frequency peri-

odic energy observed during the closure interval

for voiced stops) and non-strident voiced fricatives
produced with a weakened constriction so that

they surface as a sonorant consonant, can have

very similar spectral properties. Previous studies

(Fant, 1960; Fujimura, 1962a,b; Dickson, 1962;

Stevens, 1998) have provided us with a wealth of

information about the acoustic manifestations of

the feature nasal, but few have addressed the issue

of extracting the acoustic correlates of nasality
automatically. In this paper we focus on the

development of relevant Acoustic Parameters

(APs) that can be reliably and automatically ex-

tracted.

Cues from three different regions indicate the

presence of a nasal consonant: (1) the transition

region between the nasal and an adjacent vowel

where there is often an abrupt spectral change, (2)
the latter portion of a vowel preceding a nasal and

the earlier portion of a vowel following a nasal

where there might be nasalization because of the

adjacent nasal, and (3) the region of the nasal

murmur. The abrupt spectral change can be cap-

tured by an energy onset/offset measure. The

spectral change can be an onset, an offset, or both

an offset and an onset depending on whether the
nasal is prevocalic (preceding a vowel), postvocalic

(following a vowel) or intervocalic (between vow-

els) respectively. Nasalization in vowels is known

to introduce additional poles and zeros in the

vocal tract transfer function and cause a broad-

ening of the vowel formants, especially in the first

formant region. Several parameters have been

suggested to capture vowel nasalization (Chen,
1995, 1997; Glass, 1984; Glass and Zue, 1985). For

a database of 1200 words (200 words spoken by

3 male and 3 female speakers) excised from a

carrier phrase, Glass and Zue (1985) were able to
obtain a 74% average detection rate for nasalized

vowels. Chen (1995, 1997) did a more exhaustive

work on the acoustic correlates of nasality. How-

ever the parameters for vowel nasalization, as
suggested by Chen, were not automatically ex-

tracted. Hence work needs to be done to automate

the extraction of parameters for vowel nasaliza-

tion. In the current work we have not considered

vowel nasalization. Instead we have focused on the

extraction of parameters related to the nasal

murmur.

Fujimura (1962a,b) identified four properties
that characterize the spectra of nasal murmurs: (1)

the existence of a very low first formant at about

300 Hz, (2) the existence of zeros in the spectrum,

(3) relatively high damping factors of the for-

mants, and (4) high density of formants. The first

and the second properties are the result of pro-

viding another path for the airflow. The frequency

of the zero varies depending on the place where
closure is made in the oral cavity. The third and

fourth properties are the result of higher losses

from the soft walls of the nasal cavity with a large

surface area and a longer length of the nasal cav-

ity, respectively. He also mentioned that the

spectral characteristics of the nasal murmur are

relatively stable in the low-frequency regions, and

might constitute a reliable criterion to recognize
the class of nasal consonants.

Weinstein et al. (1975) used formant based para-

meters to detect nasal consonants in sonorant re-

gions. They obtained detection rates of 80%, 60%

and 84% for prevocalic, postvocalic and intervo-

calic nasals respectively on a corpus of 111 sen-

tences spoken by 6 male and 1 female speakers.

Hess (1976) obtained 90% recognition rate for
German nasals in continuous speech spoken by a

single speaker. In this case the training and test data

were the same. Dixon and Silverman (1976) were

able to obtain a 92.5% recognition rate for nasals in

continuous speech spoken by a single speaker.

Mermelstein (1977) proposed the use of relative

energy change in the frequency bands 0–1, 1–2,

and 2–5 kHz, and the frequency centroid of the
0–500 Hz band at four time instances spaced 12.8

ms apart to capture the dynamic transition be-

tween vowel and nasal and to categorize the

transitions as belonging to nasals or non-nasals.
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Using this technique, Mermelstein was able to

obtain a 91% correct nasal/non-nasal detection

rate on a database of 524 potential nasal transition

segments from 11 sentences spoken by each of the
two speakers. In this case, however, testing was

done on the same database as training. When one

of the speakers was used for training and the other

used for testing, the correct detection rate fell to

85%. The detection rate fell to 89% when different

text was used for training and testing. This varia-

tion in performance illustrates significant depen-

dence of the parameters on speakers and the actual
utterances.

Glass (1984) and Glass and Zue (1986) did

some experiments on the automatic extraction of

acoustic parameters for distinction between nasals

and a class of impostors consisting of liquids,

glides, voice bars and weak voiced fricatives. They

used the following parameters: (1) difference in

average energy between the consonant and adja-
cent vowel, (2) percentage of time a resonance was

centered between 200 and 400 Hz, (3) average

amplitude of the resonance in the region between

200 and 400 Hz relative to the total energy in the

consonant, (4) ratio of energy between 0 and 350

Hz to energy between 350 and 1000 Hz, and (5)

change in low-frequency energy throughout the

consonant. These parameters attempted to capture
much of the same information as suggested by

Fujimura. Using a binary tree classification tech-

nique on a database of 600 sentences spoken by 30

male and 30 female speakers, Glass and Zue were

able to obtain average classification rates of 79%

correct for nasals, and 85% correct for the

impostor class. The boundaries of the test tokens

and their broad phonetic context (to classify them
into prevocalic, intervocalic and postvocalic) were

assumed to be known in this experiment.

Chen (2000) worked on a nasal detection

module for a knowledge-based speech recognition

system. The purpose was to improve the sonorant

landmark detector implemented by Liu (1996) in

detecting nasals, and to eliminate false nasal

landmarks by incorporating parameters for nasal
murmur and vowel nasalization. The nasal land-

mark was indicated by the most negative sum of

the difference in the amplitudes of the first four

formants of consecutive spectra (sum.diff) from
the middle of the vowel into the nasal murmur. To

compute the murmur parameters, peak amplitudes

in five frequency bands were measured: A1n (0–788
Hz), A2n (788 Hz–2 kHz), A3n (2–3 kHz), A4n (3–4
kHz), and A5n (4–5 kHz). The sum of the differ-

ences in amplitudes between A1n and other

amplitudes (sum.amp.diff), A1n � A2n, A1n � A3n,
A2n � A3n, and the frequency of the lowest peak

F 1n were used as the murmur parameters. Vowel

nasalization parameters A1� P0a and A1� P1a
were obtained by subtracting the adjusted nasal

peak amplitudes P0a (peak around 250 Hz) and
P1a (peak around 1 kHz) from the first formant

amplitude A1. Using discriminant analysis on the

training set (20 sentences from lexical access from

features (LAFF) database) with five descriptors

(sum.diff, vowel nasalization parameter, F 1n,
A1n � A2n and A1n � A3n), classification accuracies

of 88% and 74% were obtained for distinguishing

between the nasal and non-nasal tokens. Again,
these parameters were not automatically extracted,

and they were tested on a small database with very

few speakers. However, this module addressed the

cases where one or more of the three cues for na-

sals, abrupt spectral change, vowel nasalization,

and nasal murmur, are absent.

Based on the review of previous work and our

own experiments, we have narrowed down on the
following four APs: (1) an energy onset/offset

measure to capture the consonantal nature of na-

sals (i.e. abrupt spectral change that occurs at the

closure and release of nasal consonants), (2) an

energy ratio and (3) a low spectral peak measure to

capture the nasal murmur, and (4) an envelope

variance parameter to capture the spectral and

temporal stability during the nasal murmur. We
have not developed any cues for automatic detec-

tion of vowel nasalization as of yet. As a result, we

focus only on the nasals which are realized as

sonorant consonants. In much of our analysis we

have only focused on nasals and semivowels al-

though voice bars and non-strident voiced fric-

atives might be confused with nasals at times. The

reason for this is that semivowels are the only class
of sounds that share the features +sonorant,

+voiced and )syllabic with nasals. Voice bars and

non-strident voiced fricatives are )sonorant sounds
and should be distinguished by a sonorancy
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classifier instead of a nasal classifier. This is the

approach we intend to follow when we integrate the

APs for nasals proposed in this paper to our pho-

netic-feature-hierarchy-based speech recognition
system (Juneja and Espy-Wilson, 2002, 2003). In

some cases, non-strident voiced fricatives, espe-

cially /v/, might be manifested as a +sonorant, but it

is not possible to detect such cases from the tran-

scription provided with TIMIT (1990) database.

The rest of the paper is organized as follows: In

Section 2 we give details of our parameters, the

theory and motivation behind using those
parameters, and the histograms depicting the dis-

tributions for each of the parameters. Section 3

gives details of our classification experiment. Sec-

tion 4 gives details of the recognition experiment

conducted to provide further evidence of the via-

bility of the APs developed. This is a digit recog-

nition experiment and so is not limited to just

nasals and semivowels. Section 5 includes a dis-
cussion of the current work, comparison with

previous works, and suggestions for future work.

Section 6 concludes the paper.
2. Acoustic parameters (APs)

The coupling of the oral and nasal cavities

during the nasal murmur causes the dominant first

formant to shift to very low frequencies. Also, the

closure in the oral cavity introduces zeros in the
nasal murmur spectrum that occur mostly above

1000 Hz. This low frequency prominence together

with the zeros leads to a significant drop in energy

in the spectrum of the nasal murmur immediately

above the first formant region. We use an onset/

offset measure to capture the sharp decrease in

energy at the vowel–nasal boundary, and a spec-

tral peak frequency measure and an energy ratio to
capture the prominent low frequency peak and the

sharp decrease in energy at frequencies immedi-

ately above it. Since there are no moving parts in

the nasal cavity, we expect the nasal murmur

spectrum to show some amount of stability. This

should be true at least for the low frequency re-

gions of the spectrum. There might be movements

at higher frequencies because of movement in the
location of pole–zero pairs (Fujimura, 1962a,b).
We capture this stability by a waveform envelope

variance parameter.

The histograms in this section were generated

by extracting APs for 600 tokens each of prevo-
calic, postvocalic and intervocalic nasals and

semivowels chosen randomly from 2586 ‘si’ and

‘sx’ sentences spoken by 90 female and 235 male

speakers from the dialect regions 1–7 of TIMIT

(1990) training database. The APs were normal-

ized to have zero mean and unit variance. The

histograms show these normalized values. Further,

the histograms for the postvocalic cases only show
the values for liquids (/l/, /r/) because there are no

postvocalic glides (/w/, /y/).

2.1. Energy onsets/offsets

Fig. 1b shows the wideband spectrogram of a

typical intervocalic nasal and Fig. 2b shows the

wideband spectrogram of a typical intervocalic

semivowel. Contrast the sharp energy offset and

energy onset at the vowel–nasal and nasal–vowel

boundaries with the small energy offset and energy
onset at the vowel–semivowel and semivowel–

vowel boundaries. As the energy onsets/offsets are

only measured at the vowel–sonorant consonant

boundaries, we have an onset for prevocalic

sonorant consonants, an offset for postvocalic

sonorant consonants and an offset and an onset

for intervocalic sonorant consonants. In this work

we have used the onset/offset detector implemented
by Salomon et al. (2004). The strength of the on-

set/offset was obtained by searching for a peak/dip

in the onset/offset waveform between the center of

the following/preceding vowel and the center of

the sonorant consonant. For the intervocalic case

onset/offset strength¼max(onset strength, )offset
strength), where the onset strength and offset

strength were obtained as described above. Our
experiments indicated that this simplification does

not compromise performance but provides the

benefit of having the same number of parameters

for all 3 cases. Fig. 3 shows the histograms for the

energy onsets/offsets for the three cases of prevo-

calic, postvocalic and intervocalic sonorant con-

sonants. It can be seen from the histograms that

nasals, in general, have higher onsets and offsets as
compared to semivowels.



Fig. 1. A typical nasal. The figure shows underlined portion of the sentence ‘‘Women may never become completely equal to men’’.

(a) Signal waveform, (b) wideband spectrogram, (c) Hilbert envelope, and (d) zoomed-in portion of the Hilbert envelope in the

nasal region.
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2.2. Energy ratio

Observe the presence of energy at very low

frequency and the sudden drop in energy above it

for the nasal in Fig. 1b as opposed to the semi-

vowel in Fig. 2b with considerably more high fre-

quency energy. We used the ratio of energies
between 0–320 and 320–5360 Hz for our energy

ratio parameter. These frequency values were ob-

tained by an automatic parameter optimization

technique described in detail in Bitar and Espy-

Wilson (1997). Fig. 4 shows histograms for the

energy ratio parameter for the three cases of pre-

vocalic, postvocalic and intervocalic sonorant

consonants. The histograms show that nasals have
higher values for the energy ratio than semivowels.

2.3. Spectral peak frequency

Semivowels tend to have a much higher fre-
quency value for the first spectral prominence as
compared to nasals. This is evident from a com-

parison of Figs. 1b and 2b. In this case the

prominence occurs at about 250 Hz for the nasal

as opposed to 430 Hz for the semivowel. Our

spectral peak frequency measure is the frequency

corresponding to the maximum of the log magni-

tude FFT spectrum in 0–800 Hz range. This fre-
quency range was also obtained by the automatic

parameter optimization technique described in

detail in Bitar and Espy-Wilson (1997). Chen

(2000) suggested a frequency range of 0–788 Hz

which is very similar to the range we obtained by

our automatic parameter optimization technique.

For the energy ratio and spectral peak frequency

parameters we used a 512-point FFT calculated
with a hanning window of size 25 ms and a shift of

2.5 ms. These two parameters were calculated for

the center five frames of the nasal/semivowel seg-

ment and averaged to get the final value. Fig. 5

shows the histograms for the spectral peak fre-

quency parameter for the three cases of prevocalic,



Fig. 2. A typical semivowel. The figure shows underlined portion of the sentence ‘‘The prowler wore a ski mask for disguise’’.

(a) Signal waveform, (b) wideband spectrogram, (c) Hilbert envelope, and (d) zoomed-in portion of the Hilbert envelope in the semi-

vowel region.
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postvocalic and intervocalic sonorant consonants.

The histograms show that nasals tend to have

lower values for the spectral peak frequency as

compared to semivowels.

2.4. Envelope variance measure

Figs. 1c and 2c show the Hilbert envelope of the

signal, and Figs. 1d and 2d show zoomed-in por-

tions of the envelope during the nasal region and

the semivowel region respectively. It is clear from

these figures that nasals tend to have a much more
constant envelope as compared to semivowels.

Thus, the energy stability during the nasal murmur

can be captured by a parameter that aims to

quantify the variance of the envelope. To get this

stability measure, we used the standard deviation

of the Hilbert envelope of the signal waveform.

Fig. 6 shows the histograms for the envelope var-

iance parameter for the three cases of prevocalic,
postvocalic and intervocalic sonorant consonants.
The histograms show that nasals have a much

smaller standard deviation in the waveform enve-

lope when compared to semivowels.
3. Classification experiment

This experiment evaluated the efficiency of the

proposed APs on a classification task. Given a set
of nasal and semivowel segments, the system had

to assign a class to each of the segments.

3.1. Database

The training data consisted of 600 instances

each of prevocalic, postvocalic and intervocalic

nasals and semivowels totaling to 1800 nasal and

1800 semivowel tokens. These tokens were chosen

randomly from 2586 ‘si’ and ‘sx’ sentences spoken

by 90 female and 235 male speakers from the
dialect regions 1–7 of the TIMIT (1990) training



Fig. 3. Histograms for the energy offsets/onsets.
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database. The test data consisted of 504 ‘si’ sen-

tences spoken by 56 female and 112 male speakers

from dialect regions 1–8 of the TIMIT test data-

base.
3.2. Method

In this experiment, we used the TIMIT tran-

scription to get the nasal and semivowel bound-

aries, and to classify them into prevocalic,

postvocalic and intervocalic categories. The

TIMIT labels used for the various classes are
given in Table 1. Nasal flaps (/nx/) and syllabic

nasals (/em/,/en/) were not included in this study.

The APs were normalized to have zero mean

and unit variance, and were used to train three

different Support Vector Machines (SVMs) (Bur-

ges, 1998; Vapnik, 1995), one each for prevocalic,

postvocalic and intervocalic sonorant consonants.

The experiments were carried out using the
SVMlight toolkit (Joachims, 1999). We used only
linear kernels. The test data samples were classified

as belonging to class +1 (nasals) if the classifier

output was positive, and as belonging to class )1
(semivowels) if the classifier output was negative.
3.3. Results and conclusions

Tables 2–4 give confusion matrices of the clas-

sification results for prevocalic, postvocalic and

intervocalic sonorant consonants in the test data-

base. Averaging across nasals and semivowels gives

correct identification rates of 89.53%, 95.80% and
87.82% for prevocalic, postvocalic and intervocalic

sonorant consonants respectively. Weighted aver-

age of these values gives overall correct identifica-

tion rate of 91.52% for sonorant consonants.

Averaging across the three classes of sonorant

consonants gives average accuracies of 94.27% and

89.11% for nasals and semivowels respectively.

The best results were obtained for postvocalic
sonorant consonants. One reason for this is that



Fig. 4. Histograms for the energy ratio.
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we do not have the glides /w/ and /y/ in postvocalic

contexts and these phonemes constitute a major

source of errors in prevocalic and intervocalic

contexts. This is not unexpected because /w/ has a

very low Fl and F2 leading to a concentration of

energy in the low frequency regions, and /y/ has a

very low Fl and a high F2 leading to a sudden drop
in energy at frequencies immediately above the

first formant region. Two of our parameters,

spectral peak frequency measure and energy ratio,

capture exactly this information and therefore

can create confusions between nasals and glides.

Almost all the nasals which are misclassified have

a very low value for the energy ratio either because

of the high frequency of the prominent spectral
peak in the 0–800 Hz region, or simply because of

the presence of a lot of energy at frequencies above

320 Hz in the nasal murmur. The presence of a

significant amount of energy in the nasal murmur

also leads to smaller onsets and offsets in energy at

the nasal boundaries. Thus, our parameters fail to
classify such cases properly. An example of a nasal

with significant amount of energy at high fre-

quencies is given in Fig. 7.

The nasal /ng/ has a tendency to have a lot more

energy at high frequencies as compared to /m/ and

/n/. The reason for this could be that the first an-

tiresonance of /ng/ occurs at a frequency above
3000 Hz (Fujimura, 1962a,b; Stevens, 1998), which

is much higher than the frequency of the first an-

tiresonance for either /m/ or /n/. Further, the

movement of the tongue body at the velar closure/

release is much slower than the tongue tip move-

ment for an alveolar closure/release or the lip

movement for a labial closure/release (Stevens,

1998). Thus, the onsets and offsets are not as sharp
for /ng/ as for /m/ or /n/. This could explain the

poorer recognition rates of /ng/ as compared to /m/

and /n/.

Mermelstein (1977) reported that /l/ and /r/

before high vowels are often confused with nasals.

This is also true for the results obtained in this



Fig. 5. Histograms for the spectral peak frequency.

T. Pruthi, C.Y. Espy-Wilson / Speech Communication 43 (2004) 225–239 233
study. For the case of prevocalic semivowels, 31

out of the 47 incorrectly classified /l/’s occur before
the high vowels /ih/, /iy/, /uh/ and /uw/, and 4 out

of 8 incorrectly classified /r/’s occur before high

vowels. For the intervocalic case, however, only 12

out of 34 incorrectly classified /l/’s and 3 out of 13

incorrectly classified /r/’s occur before high vowels.

Another reason for misclassifications is that in a

lot of these cases the nasals/semivowels occur be-

fore unstressed vowels. In this context, the pho-
nemes fail to show many of their characteristic

properties suggesting that they are not fully artic-

ulated. Espy-Wilson (1992) also noted that the

onsets of prevocalic sonorant consonants before

unstressed vowels are much less than those of

prevocalic sonorant consonants before stressed

vowels. Further, onsets and offsets of intervocalic

sonorant consonants in a falling stress are smaller
than those of intervocalic sonorant consonants in

a rising stress environment.

Since we are relying heavily on the transcription

provided with the TIMIT database to classify
sonorant consonants as prevocalic, postvocalic

and intervocalic, and to get the phoneme bound-
aries, it is a potential source of errors. One of the

reasons for errors based on the transcription is

that the transcription might be incorrect. An

example of incorrect transcription in TIMIT is

given in Fig. 8. The spectrogram of the transcribed

nasal only shows frication, and the transcribed

region is also heard as just frication. A nasal is

audible in the neighborhood, but not where it is
marked.

In some cases, nasals which are realized com-

pletely as nasalized vowels are marked in the

transcription as sonorant consonants. This also

constitutes an error. An example of such a case is

given in Fig. 9. There is no energy offset/onset at

the boundaries of the transcribed intervocalic na-

sal. The two arrows in the figure show two low
frequency peaks running through the transcribed

nasal from, and into the preceding and following

vowels. The presence of an extra peak in the first

formant region is just the cue described by Chen



Table 1

TIMIT labels used for different categories

Category TIMIT labels

Vowels /iy/, /ih/, /eh/, /ey/, /ae/, /aa/,

/aw/, /ay/, /ah/, /ao/,

/oy/, /ow/, /uh/, /uw/, /ux/,

/er/, /ax/, /ix/, /axr/, /ax-h/

Nasals /m/, /n/, /ng/

Semivowels /l/, /r/, /w/, /y/

Fig. 6. Histograms for the envelope variance parameter.

Table 2

Confusion matrix for prevocalic sonorant consonants

Label Nasals Semivowels % Correct

m 149 10 93.71

n 110 9 92.44

l 47 250 84.18

r 8 345 97.73

w 36 212 85.48

y 23 71 75.53

Nasals 259 19 93.17

SVs 114 878 88.51
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(1995, 1997) for vowel nasalization. Our parame-

ters currently do not handle vowel nasalization.

Thus, such cases contribute to errors in the current

scenario.

The APs might be calculated at wrong locations

if the boundaries of phonemes are not exact. This

could be especially true for semivowels, particu-
larly in the intervocalic cases, where often there are

no apparent boundaries separating them from
adjacent vowels. For these cases, 1/3 of the sono-

rant region was assigned to the semivowel and the

remaining was assigned to the vowel in TIMIT

(1990). An example of inexact boundaries is given

in Fig. 10. In this case, the beginning of the /y/ is
marked in the middle of the frication for the pre-

ceding voiced fricative /v/.



Table 3

Confusion matrix for postvocalic sonorant consonants

Label Nasals Semivowels % Correct

m 186 8 95.88

n 598 27 95.68

ng 137 7 95.14

l 8 217 96.44

r 7 163 95.88

Nasals 921 42 95.64

SVs 15 380 96.20

Table 4

Confusion matrix for intervocalic sonorant consonants

Label Nasals Semivowels % Correct

m 166 16 91.21

n 185 10 94.87

ng 17 7 70.83

l 34 166 83.00

r 13 145 91.77

w 21 89 80.91

y 7 11 61.11

Nasals 368 33 91.77

SVs 75 411 84.57

Fig. 8. Wideband spectrogram of a case where the transcription

is wrong. The figure shows underlined portion of the sentence

‘‘These needs usually concern the reduction of guilt and some

relief of tension’’ from TIMIT.

Fig. 9. Wideband spectrogram of a case where the nasal is

realized as a nasalized vowel. The figure contains the underlined

portion of the sentence ‘‘Women may never become completely

equal to men’’ from TIMIT.

Fig. 7. Wideband spectrogram of a case where the nasal has a

lot of energy at higher frequencies. The figure shows underlined

portion of the sentence ‘‘There are more obvious nymphoma-

niacs on any private-eye series’’ from TIMIT.

Fig. 10. Wideband spectrogram of a case where the boundaries

are not correctly marked. The figure shows underlined portion

of the sentence ‘‘It suffers from a lack of unity purpose and

respect for heroic leadership’’ from TIMIT.
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4. Recognition experiment

The use of the APs developed in our lab in a

Hidden Markov Model (HMM) back-end envi-

ronment was demonstrated in an earlier paper by

Deshmukh et al. (2002). It was mentioned in that

paper that one reason for the poorer performance
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of our APs as compared to Mel Frequency Ceps-

tral Coefficients (MFCCs) in an experiment with

training and testing on adults, was the absence of

APs for nasals and other critical features. The
purpose of this experiment was to substantiate

the claims made in that paper and to quantify the

reduction in confusions between English digits

(particularly the digits 1 and 9) by adding the APs

for nasals proposed in this paper to our old set of

APs.

4.1. Database

The TI46 (Liberman, 1993) database was used
for this experiment. The training set had 160

utterances of each digit: 10 repetitions by each of

the 8 male and 8 female speakers. The test set had

256 utterances of each digit: 16 repetitions by each

of the 8 male and 8 female speakers.

4.2. Method

For the purposes of this experiment, all the APs
were extracted at each frame of the speech signal

and fed into an HMM back-end for recognition of

digits. We used the mean of the Hilbert envelope in

each frame to convert the segment based para-

meter to a frame based one. We did not add our

F1 measure because the old set of APs already had

a F1–F0 parameter which essentially captures the

same information that our F1 measure tries to
Table 5

Confusion matrix with old set of 28 APs

One Five N

One 250 0

Five 0 254

Nine 4 2 2

Table 6

Confusion matrix with new set of 30 APs

One Five N

One 254 0

Five 0 254

Nine 0 1 2
extract. Further, the old set of APs had onset and

offset parameters (Bitar, 1997) which were re-

placed by the new onset and offset parameters

(Salomon et al., 2004) used in this work. In all, we
had a set of 30 APs instead of the old set of 28. We

used a 3-state (+2 terminal states) HMM with 8

Gaussian mixtures in each state for each digit. The

models were left-to-right models with no skips and

equiprobable transitions. Each mixture was ini-

tialized to have zero mean and unit variance. All

mixture weights were initialized to the same value.

HTK (Young, 1995) was used for these experi-
ments.

4.3. Results and conclusions

The confusion matrix for digits one, five and

nine obtained with our old set of APs is shown in

Table 5. We only show the results for one, five and

nine because those are the only digits where

reduction in confusions might be expected because

of APs for nasals. Notice that these digits did not

have any confusions with any other digits. Table 6

shows the confusion matrix with our new set of
APs. A comparison of the results in Tables 5 and 6

shows the marked reduction in the confusions

between the digits one, five and nine obtained by

adding the APs for nasals to our old set of APs.

The addition of these parameters also reduced

some confusions for the digits two, three, four and

eight. Of these digits, only the digit four had
ine Total % Correct

5 255 98.0

0 254 100.0

48 254 97.6

ine Total % Correct

1 255 99.6

0 254 100.0

53 254 99.6
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confusions with one and five which were elimi-

nated. However, the reduction in confusions for

two, three, four and eight could be solely because

of our new improved onset and offset parame-
ters which have a wide application besides detec-

tion of nasals. For example, we expect these onsets

and offsets to give us better boundaries for

all consonants, not just nasals. The total-word-

correct scores increased from 98.82% for the

old set of APs to 99.53% for the new set of

APs. This corresponds to a 60% reduction in error

rate.
5. General discussion

In this paper we have developed APs to distin-

guish the class of nasals from other classes of

sounds. Results of our experiments demonstrate

that we are moving in the right direction in terms

of capturing the acoustic properties of the feature

nasal. Moreover, we are doing very well given the

fact that our classification experiment was per-
formed on a continuous speech database with a

large number of speakers and contextual varia-

tions. Unlike all previous research (Chen, 2000;

Glass, 1984; Glass and Zue, 1986; Mermelstein,

1977) which focused only on capturing spectral

properties of nasals, we used a temporal parameter

to capture the stability during the nasal murmur.

An interesting observation is that we claim to use a
parameter for stability during the nasal murmur

region whereas Mermelstein (1977) was in favor of

capturing the dynamic transition during the

murmur. A close inspection of his results shows

that the centroid frequency in 0–500 Hz band, and

the relative signal energy in 0–1 kHz band were

stable across the murmur duration. This is in

consonance with the observation we made earlier
that we expect the spectrum in the nasal murmur

region to be stable at least in the low frequency

regions.

Although we are able to get very good classifi-

cation rates with these parameters, we believe that

there is still scope for improvement. As was high-

lighted in Section 3.3, a majority of misclassifica-

tions of nasals occur when nasals have a lot of high
frequency energy. Although, a lot of these cases
can be perceived as nasals, our parameters failed

to classify such cases properly. This shows that we

are still missing out on some relevant information.

We already know from Fujimura’s (1962a,b) work
that we expect to have a higher density of for-

mants and larger bandwidths of formants in the

nasal murmur region because of the longer length

of the nasal cavity and higher losses in the nasal

tract. We still do not have any parameters to

capture this information. We originally had a

parameter to capture the density of formants

(Pruthi and Espy-Wilson, 2003), but we removed it
from consideration here because of the inherent

problems in reliably extracting formant-based

parameters. We might add that parameter later

when we are able to find ways to extract the for-

mant density information with sufficient accuracy.

Also, we do not have any parameters to capture

vowel nasalization. Vowels are almost always

nasalized when adjacent to nasals (although there
can be variations because of context, speaker or

language) (Stevens, 1998). So, nasalization can be

an important clue for the presence of nasals espe-

cially when the nasals are articulated only as

nasalization in vowels. Chen (1995, 1997) had

suggested parameters to capture vowel nasaliza-

tion, but those parameters were not automatically

extracted. So, work needs to be done to automate
the extraction of these parameters.

In the future, we would also like to do some

experiments to see if our APs are invariable to

changes in speakers, their age and gender. We

expect them to be invariant to speaker changes,

because the speakers in the test database in our

classification experiment were completely different

from those in the training database. But it needs to
be seen how these parameters will perform if they

are trained for females and tested for males or vice

versa. Similarly, it needs to be seen how these

parameters perform if they are trained on adults

and tested on children or vice versa. It would also

be interesting to see if the APs, as trained for

American English, are able to detect nasals in

another language, may be one with a larger num-
ber of nasals. That would be a very good test to

show that these parameters really capture the

acoustic correlates of nasality independent of the

actual phoneme or the language.
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6. Conclusions

In conclusion, we have developed acoustic

correlates for the linguistic feature nasal to dis-
tinguish nasals as a class from other classes of

sounds. These parameters can be extracted auto-

matically and reliably from the acoustic signal. An

interesting feature in this work was the use of a

temporal parameter to capture stability in the

nasal murmur. This AP is very different from the

spectral parameters that have been the focus of all

previous studies. The recognition experiment de-
scribed in this paper illustrates that we are moving

in the right direction in terms of capturing the

properties of nasals. Although we were able to

obtain very high classification rates, we believe

there is still scope for improvement. One area

which needs work is development of APs to cap-

ture nasalization in vowels. We believe this can

potentially give a big improvement in the detection
of nasals especially because at times nasals might

be articulated only as vowel nasalization. In the

future, we would also like to work on improving

the classification rates for the nasal /ng/.
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