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A probabilistic framework for a landmark-based approach to speech recognition is presented for
obtaining multiple landmark sequences in continuous speech. The landmark detection module uses
as input acoustic parameters �APs� that capture the acoustic correlates of some of the manner-based
phonetic features. The landmarks include stop bursts, vowel onsets, syllabic peaks and dips,
fricative onsets and offsets, and sonorant consonant onsets and offsets. Binary classifiers of the
manner phonetic features—syllabic, sonorant and continuant—are used for probabilistic detection
of these landmarks. The probabilistic framework exploits two properties of the acoustic cues of
phonetic features—�1� sufficiency of acoustic cues of a phonetic feature for a probabilistic decision
on that feature and �2� invariance of the acoustic cues of a phonetic feature with respect to other
phonetic features. Probabilistic landmark sequences are constrained using manner class
pronunciation models for isolated word recognition with known vocabulary. The performance of the
system is compared with �1� the same probabilistic system but with mel-frequency cepstral
coefficients �MFCCs�, �2� a hidden Markov model �HMM� based system using APs and �3� a HMM
based system using MFCCs. © 2008 Acoustical Society of America. �DOI: 10.1121/1.2823754�
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I. INTRODUCTION

In a landmark-based automatic speech recognition
�ASR� system, the front-end processing �or low-level signal
analysis� involves the explicit extraction of speech-specific
information. This speech-specific information consists of the
acoustic correlates of the linguistic features �Chomsky and
Halle, 1968� which comprise a phonological description of
the speech sounds. The processing occurs in two steps. The
first step consists of the automatic detection of acoustic
events �also called landmarks� that signal significant articu-
latory changes such as the transition from a more open to a
more closed vocal tract configuration and vice versa �i.e.,
changes in the manner of articulation�, a sudden release of
air pressure and changes in the state of the larynx. There is
evidence that the auditory system responds in a distinctive
way to such acoustic events �e.g., Delgutte and Kiang, 1984�.
The second step involves the use of these landmarks to ex-
tract other relevant acoustic information regarding place of
articulation that helps in the classification of the sounds spo-
ken. Given the extensive variability in the speech signal, a
complete ASR system would integrate this front-end process-
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ing with a lexical access system that handles pronunciation
variability and takes into account prosody, grammar, syntax
and other higher-level information.

State-of-the-art ASR systems are based on hidden Mar-
kov modeling �HMM� and the standard parametrization of
the speech signal consists of Mel-frequency cepstral coeffi-
cients �MFCCs� and their first and second derivatives
�Rabiner and Juang, 1993; Young et al., 2006�. The HMM
framework assumes independence of the speech frames so
that each one is analyzed and all of the MFCCs are looked at
in every frame. In contrast, a landmark-based approach to
speech recognition can target level of effort where it is
needed. This efficiency can be seen in several ways. First,
while each speech frame may be analyzed for manner-of-
articulation cues resulting in the landmarks, analysis thereaf-
ter is carried out only at significant locations designated by
the landmarks. This process in effect takes into account the
strong correlation among the speech frames. Second, analy-
sis at different landmarks can be done with different resolu-
tions. For example, the transient burst of a stop consonant
may be only 5 ms long. Thus, a short temporal window is
needed for analysis. On the other hand, vowels which are
considerably longer �50 ms for a /schwa/ to 300 ms for an
/ae/� need a longer analysis window. Third, the acoustic pa-
rameters �APs� used to extract relevant information will de-
pend upon the type of landmark. For example, at a burst
landmark, appropriate APs will be those that characterize the
spectral shape of the burst �maybe relative to the vowel to
take into account contextual influences� to distinguish be-
tween labial, alveolar and velar stops. However, at a vowel
landmark, appropriate APs will be those that look at the rela-

tive spacing of the first three formants to determine where
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the vowel fits in terms of the phonetic features front, back,
high and low.

Another prominent feature of a landmark ASR system is
that it is a tool for uncovering and subsequently understand-
ing variability. Given the physical significance of the APs
and a recognition framework that uses only the relevant APs,
error analysis often points to variability that has not been
accounted for. For example, an early implementation of the
landmark-based ASR system �Bitar, 1997� used zero crossing
rate as an important measure to capture the turbulent noise of
strident fricatives. The zero crossing rate will not be large,
however, during a voiced strident fricative /z/ when it con-
tains strong periodicity. In this case, the high-frequency ran-
dom fluctuations are modulated by the low-frequency peri-
odicity. This situation occurs when the /z/ is produced with a
weakened constriction so that the glottal source is compara-
tively stronger �and, therefore, the supraglottal source is
weaker� than it is during a more canonically produced /z/.
Spectrographically, a weakened /z/ shows periodic formant
structure at low frequencies like a sonorant consonant and
some degree of turbulence at high frequencies like an ob-
struent. This understanding led to the development of an
aperiodicity/periodicity/pitch �APP� detector which, along
with fundamental frequency information, provides a spectro-
temporal profile of aperiodicity and periodicity �Deshmukh
et al., 2005�. The APP detector, however, was not used in this
work due its computational requirements.

A significant amount of work has gone into understand-
ing the acoustic correlates of the linguistic features �Stevens,
2002�. Studies have shown that the acoustic correlates of the
phonetic features can be reliably and automatically extracted
from the speech signal �Espy-Wilson, 1987; Bitar, 1997; Ali,
1999; Carbonell et al., 1987; Glass, 1984; Hasegawa-
Johnson, 1996� and that landmarks can be automatically de-
tected �Bitar, 1997; Salomon, 2000; Ali, 1999; Liu, 1996�.
Stevens �2002� has laid out a model for lexical access based
on acoustic landmarks and phonetic features. However, to
date, no one has implemented a complete ASR system based
on a landmark approach. The previous landmark-detection
systems �Bitar, 1997; Salomon, 2000; Ali, 1999; Liu, 1996�
performed well, but they lacked a probabilistic framework
for handling pronunciation variability that would make the
systems scalable to large-vocabulary recognition tasks where
higher-level information has to be integrated. For example, it
could not be demonstrated in these systems that a voiced
obstruent realized as a sonorant consonant will ultimately be
recognized correctly due to higher-level constraints. These
systems were primarily rule based and it has been pointed
out �Rabiner and Juang, 1993� that in rule-based systems, the
difficulty in the proper decoding of phonetic units into words
and sentences increases sharply with an increase in the rate
of phoneme insertion, deletion and substitution. In this work,
a probabilistic framework is developed that selectively uses
knowledge-based APs for each decision and it can be con-
strained by a high-level pronunciation model of words and
probability densities of durations of phonetic units. Since
recognition can be constrained by higher-level knowledge,
the system does not have to decode phonetic units into words

in a separate step.
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Probabilistic frameworks exist for segment-based �Glass
et al., 1996; Zue et al., 1989; Halberstadt, 1998� and
syllable-based �Chang, 2002� ASR. But these systems are not
targeted at selectively using knowledge-based acoustic cor-
relates of phonetic features for detection of landmarks or for
place of articulation detection. Many HMM-based ap-
proaches to speech recognition have used knowledge-based
APs �Bitar and Espy-Wilson, 1996; Deshmukh et al., 2002;
Hosom, 2000�, or the concept of phonetic features �Deng and
Sun, 1994; Kirchhoff, 1999; Eide et al., 1993�. However,
these were not landmark-based methods in that they did not
involve an initial step of segmenting or detecting events in
speech.

In this paper, a probabilistic framework for a landmark-
based ASR system called event-based system �EBS� �Bitar,
1997� is presented. The focus of this paper is on the imple-
mentation and performance of the probabilistic landmark de-
tection module of the framework. The framework was dis-
cussed in brief earlier �Juneja and Espy-Wilson, 2004� but it
was not sufficiently detailed because of the limited space
available. Initial results during the development of the proba-
bilistic landmark detection system were reported earlier
�Juneja and Espy-Wilson, 2002, 2003� but these only in-
volved statistical classifiers for phonetic features and did not
involve the probabilistic scoring with duration constraints.
Because of the lack of probabilistic duration constraints
these initial systems resulted in numerous insertions of seg-
ments of very small durations �5–10 ms� and such small
segments of continuant sounds had to be removed to get a
good recognition accuracy. Also because of the lack of
probabilistic scoring, these systems could not be constrained
by pronunciation models. In this work, the complete proba-
bilistic framework for landmark detection is described in de-
tail along with the details of the experiments.

The performance of the framework is demonstrated with
the broad-class recognition and landmark detection task us-
ing the TIMIT database �NIST, 1990� and a vocabulary-
constrained broad class recognition task on isolated digits
using the TIDIGITS database �LDC, 1982�. These recogni-
tion tasks require only the first step of the front-end process-
ing where information is sought regarding only the manner
features. For comparison, a traditional HMM-based recogni-
tion system is implemented. In one case, the traditional
MFCCs and their first and second derivatives serve as input
to the HMM system. In another implementation, the same
APs used in EBS serve as input to the HMM system. Finally,
the APs in the EBS system are replaced with the MFCCs.
This four-way comparison allows the evaluation of the effec-
tiveness of not only the probabilistic landmark framework as
compared to the statistical HMM system, but also the
knowledge-based APs with the MFCCs.

II. METHOD

A. Overview

Figure 1 shows a block diagram of EBS and it highlights
the part of EBS that is the focus of this paper. To start the
landmark detection process, the knowledge-based APs �Bitar,

1997� shown in Table I for each of the phonetic features—
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sonorant, syllabic, continuant—and silence are automatically
extracted from each frame of the speech signal. Then, a sup-
port vector machine �SVM� �Vapnik, 1995� based binary
classifier is applied at each node of the hierarchy shown in
Fig. 2 such that only the relevant APs for the feature at that
node serve as input to the classifier. Probabilistic decisions
obtained from the outputs of SVMs are combined with class
dependent duration probability densities to obtain one or
more segmentations of the speech signal into the broad
classes—vowel �V�, fricative �Fr�, sonorant consonant �SC—
including nasals semivowels�, stop burst �ST� and silence
�SILEN—including stop closures�. A segmentation is then
used along with the knowledge-based measurements to de-
terministically find landmarks related to each of the broad
class segments. For a fixed vocabulary, segmentation paths
can be constrained using broad class pronunciation models.

The phonetic feature hierarchy shown in Fig. 2 is the
upper part of a complete hierarchy that has manner features
at the top, place features at the lower nodes and phonemes at
the lowest level. Several studies have provided evidence for
a hierarchical organization of the phonetic features �e.g.,
Clements, 1985�. Probabilistic hierarchies with phonemes at
the terminal nodes have been used before in speech recogni-
tion �Halberstadt, 1998; Chun, 1996� where the use of such
hierarchies occurs after an initial segmentation step. EBS

FIG. 1. �Color online� Overview of the landmark-based speech recognition
system.

TABLE I. APs used in broad class segmentation. fs: sampling rate F3: third f
band �aHz,bHz�.

Phonetic Feature

Silence �1�
�0,

sonorant �1�

syllabic �1� E

continuant �1
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uses the hierarchy as a uniform framework for obtaining
manner-based landmarks and place and voicing feature de-
tection. The complete hierarchy used by EBS is shown in
Juneja, 2004.

Figure 3 shows the two kinds of landmarks that EBS is
expected to extract �the landmark locations in this figure are
hand marked�—abrupt landmarks and nonabrupt landmarks.
In the previous implementation of EBS �Bitar, 1997�, the
maxima and minima of the APs E�640 Hz,2800 Hz� and
E�2000 Hz,3000 Hz� were used in a rule-based system to
obtain the nonabrupt landmarks that occur at syllabic peaks
and syllabic dips. Thresholds on energy onsets and energy
offsets were used to obtain the abrupt stop burst landmarks.
Figure 3 shows that E�640 Hz,2800 Hz� has maxima in the
vowel nuclei at the syllabic peak landmarks and minima in
the sonorant consonant regions at the syllabic dip landmarks.
Spurious peaks or dips caused insertions and peaks or dips
that are not fully realized caused deletions in this system.
There was no way to recover from such errors.

The presented framework can be viewed as a probabilis-
tic version of the system in �Bitar, 1997� as it finds the land-
marks using the following two steps:

1. The system derives multiple probabilistic segmentations
from statistical classifiers �that use relevant APs as input�
taking into account the probability distributions of the du-
rations of the broad class segments. The probabilistic du-
ration models penalize the insertions of very small broad
class segments �for example, 5–10-ms-long vowels� by
assigning low duration probabilities to such sounds.

nt average �a,b�: frequency band �aHz,bHz�, E�a,b�: energy in the frequency

APs

,F3-1000�, �2� E�F3, fs /2�, �3� ratio of spectral peak in
z� to the spectral peak in �400, fs /2�, �4� Energy onset
�Bitar, 1997� �5� Energy offset �Bitar, 1997�

F3-1000�, �2� E�F3, fs /2�, �3� Ratio of E�0,F3-1000� to
E�F3-1000, fs /2�, �4� E�100,400�

,2800� �2� E�2000,3000� �3� Energy peak in �0,900 Hz�
�4� Location in Hz of peak in

�0,900 Hz�
rgy onset �Bitar, 1997�, �2� Energy offset �Bitar, 1997�,

�3� E�0,F3-1000�, �4� E�F3-1000, fs /2�

FIG. 2. Probabilistic Phonetic Feature Hierarchy.
orma

E�0
400 H

E�0,

�640

� Ene
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2. The landmarks are then derived using the boundaries of
the broad classes as abrupt landmarks and the maxima
and minima of the AP E�640 Hz,2800 Hz� inside indi-
vidual sonorant segments to get the nonabrupt landmarks.
The global maximum inside the vowel segment is used to
get the syllabic peak landmark and the global minima
inside the sonorant consonant is used to get the syllabic
dip landmark. Therefore, presence of multiple peaks or
dips does not cause insertions at this step.

SVMs are used for the purpose of binary classification
�although other classifiers, for example, neural networks or
Gaussian mixture models could be used as well� of phonetic
features because of their ability to generalize well to new test
data after learning from a relatively small amount of training
data. Additionally, SVMs have been shown to perform better
than HMMs for phonetic feature detection in speech �Niyogi,
1998; Keshet et al., 2001� and for phonetic classification
from hand-transcribed segments �Clarkson and Moreno,
1999; Shimodaira et al., 2001�. The success of SVMs can be
attributed to their property of large margin classification. Fig-
J. Acoust. Soc. Am., Vol. 123, No. 2, February 2008 A. Juneja and C
ure 4 shows two types of classifiers for linearly separable
data: �1� a linear classifier without maximum margin and �2�
a linear classifier with maximum margin. It can be seen from
Fig. 4 that the maximum margin classifier is more robust to
noise because a larger amount of noise �at least half of the
margin for the samples shown� is required to let a sample
point cross the decision boundary. It has been argued �Vap-
nik, 1995� that a maximization of the margin leads to the
minimization of a bound on the test error. Mathematically,
SVMs select a set of NSV support vectors �xi

SV�i=1
NSV that is a

subset of l vectors in the training set �xi�i=1
l with class labels

�yi�i=1
l , and find an optimal separating hyperplane f�x� �in the

sense of maximization of margin� in a high dimensional
space H,

f�x� = �
i=1

NSV

yi�iK�xi
SV,x� − b . �1�

The space H is defined by a linear or nonlinear kernel func-
tion K�xi ,x j� that satisfies the Mercer conditions �Burges,
1998�. The weights �i, the set of support vectors �xi

SV�i=1
NSV the

FIG. 3. Illustration of manner landmarks for the utter-
ance “diminish” from the TIMIT database. �a� Phoneme
Labels, �b� Spectrogram, �c� Landmarks characterized
by sudden change, �d� Landmarks in stable regions of
speech, �e� Onset waveform �an acoustic correlate of
phonetic feature −continuant�, �f� E�640,2800� �an
acoustic correlate of syllabic feature�. The ellipses show
how landmarks were obtained in �Bitar, 1997� using
certain APs. Ellipse 1 shows the location of stop burst
landmark for the consonant /d/ using the onset. Ellipse
2 shows the location of syllabic dip for the nasal /m/
using the minimum of E�640,2800�. Ellipse 3 shows
that the maximum of the E�640,2800� can be used to
locate a syllabic peak landmark of the vowel /ix/.

FIG. 4. �a� small margin classifiers, �b� maximum mar-
gin classifiers.
. Y. Espy-Wilson: Probabilistic detection of speech landmarks 1157



bias term b are found from the training data using quadratic
optimization methods. Two commonly used kernels are the
radial basis function �RBF� kernel and the linear kernel. For
the RBF kernel, K�xi ,x�=exp�−� �xi−x�2� where the param-
eter � is usually chosen empirically by cross validation from
the training data. For the linear kernel, K�xi ,x�=xi .x+1.

B. Probabilistic framework

The problem of speech recognition can be expressed as
the maximization of the posterior probability of sets of pho-
netic features where each set represents a sound or a pho-
neme. A set of phonetic features include �1� manner phonetic
features represented by landmarks and �2� place or voicing
phonetic features found using the landmarks. Mathemati-
cally, given an acoustic observation sequence O, the problem
can be expressed as

ÛL̂ = arg max
U,L

P�U,L�O� = arg max
U,L

P�L�O�P�U�O,L� ,

�2�

where L= �li�i=1
M is a sequence of landmarks and U= �ui�i=1

N is
the sequence bundles of features corresponding to a pho-
neme sequence. The meaning of these symbols is illustrated
in Table II for the digit “zero.” Computation of P�L �O� is the
process of probabilistic detection of acoustic landmarks
given the acoustic observations and the computation of
P�U �L ,O� is the process of using the landmarks and acoustic
observations to make probabilistic decisions on place and
voicing phonetic features. The goal of the rest of the paper is
to show how P�L �O� is computed for a given landmark se-
quence and how different landmark sequences and their
probabilities can be found given an observation sequence.

There are several points to note with regards to the no-
tation in Table II.

1. li denotes a set of related landmarks that occur during the
same broad class. For example, the syllabic peak �P� and
the vowel onset point �VOP� occur during a vowel. The
VOP should occur at the start of the vowel and P should
occur during the vowel when the vocal tract is most open.
Also, certain landmarks may be redundant in the se-
quence. For example, when a vowel follows a sonorant
consonant, the sonorant consonant offset and the vowel

TABLE II. An illustrative example of the symbols B

/z/ /I/

U⇒ u1 u2

−sonorant +sonorant
+continuant +syllabic

+strident −back
+voiced +high

+anterior +lax
B⇒ Fr V
L⇒ l1 l2

Fon VOP
Foff P
onset are identical.
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2. Each set of landmarks li, as shown in Table III, is related
to a broad class Bi of speech selected from the set: vowel
�V�, fricative �Fr�, sonorant consonant �SC�, stop burst
�ST�, silence �SILEN�. For example, P and VOP are re-
lated to the broad class V. Let B= �Bi�i=1

M denote the se-
quence of broad classes corresponding to the sequence of
sets of landmarks L. Note that, in this paper, that ST de-
notes the burst region of a stop consonant, and the closure
region is assigned the broad class SILEN.

3. The number of broad classes M and the number of
bundles of phonetic features N may not be the same in
general. This difference may occur because a sequence of
sets of landmarks and the corresponding broad class se-
quence may correspond to one set of phonetic features or
two sets of phonetic features. For example, SILEN-ST
could be the closure and release of one stop consonant, or
it could be that the closure corresponds to one stop con-
sonant and the release corresponds to another stop conso-
nant �e.g., the cluster /kt/ in the word “vector”�. Likewise,
one set of landmarks or the corresponding broad class
may correspond to two sets of place features. For ex-
ample, in the word “omni” with the broad class sequence
V-SC-V, the SC will have the features of the sound /m/
�calculated using the SC onset� as well as the sound /n/
�calculated using SC offset�.

The landmarks and the sequence of broad classes can be
obtained deterministically from each other. For example, the
sequence B= �SILEN,Fr,V,SC,V,SC,SILEN� for “zero” in
Table II will correspond to the sequence of sets of landmarks
L shown. Therefore

nd U.

/r/ /o/ /w/

u3 u4 u5

+sonorant +sonorant +sonorant
−syllabic +syllabic −syllabic

−nasal +back −nasal
+rhotic −high +labial

+low
SC V SC
l3 l4 l5

Son VOP Son
D P D

Soff Soff

TABLE III. Landmarks and corresponding broad classes.

Broad class segment Landmark type

Vowel �V� Syllabic peak �P�
Vowel onset point �P�

Stop �ST� Burst
Sonorant consonant
�SC�

Syllabic dip �D�

SC onset �Son�
SC offset �Soff�

Fricative �Fr� Fricative onset �Fon�
Fricative offset �Foff�
, L a
and C. Y. Espy-Wilson: Probabilistic detection of speech landmarks



P�L�O� = P�B�L��O� , �3�

where B�L� is a sequence of broad classes for which the
landmark sequence L is obtained. Note that the symbols B, U
and L contain information about the order in which the broad
classes or landmarks occur, but they do not contain informa-
tion about the exact start and end times of each of those
units. The equivalence of broad classes and landmarks is not
intended as a general statement and it is assumed to hold
only for the landmarks and broad classes shown in Table III.

C. Segmentation using manner phonetic features

Given a sequence of T frames O= �o1 ,o2 , . . . ,oT�, where
ot is the vector of APs at time t �t is in the units of frame
numbers�, the most probable sequence of broad classes B
= �Bi�i=1

M and their durations D= �Di�i=1
M have to be found. The

frame ot is considered as the set of all APs computed at
frame t to develop the probabilistic framework, although
EBS does not use all of the APs in each frame. The probabil-
ity P�B �O� can be expressed as

P�B�O� = �
D

P�B,D�O� . �4�

The computation of P�B ,D �O� for a particular B and all D is
a very computationally intensive task in terms of storage and
computation time. Therefore, an approximation is made that
is similar to the approximation made by Viterbi decoding in
HMM-based recognition systems and the SUMMIT system
�Glass et al., 1996�,

P�B�O� 	 max
D

P�B,D�O� . �5�

Because the probabilities P�B �O� calculated this way for dif-
ferent B will not add up to one, the more correct approxima-
tion is

P�B�O� 	
maxDP�B,D�O�

�B
maxDP�B,D�O�

. �6�

Provided that a frame at time t lies in the region of one
of the manner classes, the posterior probability of the frame
being part of a vowel at time t can be written as �see Fig. 2�

Pt�V�O� = Pt�+ speech, + sonorant, + syllabic�O�

= Pt�+ speech�O�Pt�+ sonorant� + speech,O� ,

�7�

Pt�+ syllabic� + sonorant, + speech,O� , �8�

where Pt is used to denote the posterior probability of a
feature or a set of features at time t. A similar expression can
be written for each of the other manner classes.

Calculation of the posterior probability for each feature
requires only the acoustic correlates of that feature. Further-
more, to calculate the posterior probability of a manner pho-
netic feature at time t, only the acoustic correlates of the
feature in a set of frames �t−s , t−s+1, . . . , t+e�, using s pre-
vious frames and e following frames along with the current

frame t, are required to be used. Let this set of acoustic
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correlates extracted from the analysis frame and the adjoin-
ing frames for a feature f be denoted by xt

f. Then Eq. �8� can
be rewritten as

Pt�V�O� = Pt�+ speech�xt
speech�Pt�+ sonorant�

+ speech,xt
sonorant�

Pt�+ syllabic� + sonorant, + speech,xt
syllabic� . �9�

The probability P�B ,D �O� can now be expanded in terms of
the underlying manner phonetic features of each broad class.
Denote the features for class Bi as the set �f1

i , f2
i , . . . , fNBi

i �, the

broad class at time t as bt, and the sequence �b1 ,b2 , . . . ,bt� as
bt. Note that B is the broad class sequence with no informa-
tion about the duration of each broad class in the sequence.
On the other hand, bt denotes a broad class at frame t. There-
fore, the sequence bt includes the information of durations of
each of the broad classes until time t. Using this notation, the
posterior probability of a broad class sequence B and dura-
tions D can be expanded as

P�B,D�O� = 

i=1

M



t=1+�j=1

i−1Dj

Di+�j=1
i−1Dj

Pt�Bi�O,bt−1� . �10�

The variable t in the above equation is the frame number, the
limits of which can be explained as follows. � j=1

i−1Dj is the
sum of the durations of the i−1 broad classes before the
broad class i, and � j=1

i Dj is the sum of durations of the first
i broad classes. Then, � j=1

i Dj −� j=1
i−1Dj is the duration of the

ith broad class. Therefore, numbers �1+� j=1
i−1Dj ,2

+� j=1
i−1Dj , . . . ,Di+� j=1

i−1Dj� are the frame numbers of the
frames that occupy the ith broad class. When the lower and
upper limits of t are specified as 1+� j=1

i−1Dj and Di+� j=1
i−1Dj,

respectively, it means that the product is taken over all the
frames of the ith broad class.

Making a stronger use of the definition of acoustic cor-
relates by assuming that the acoustic correlates of a manner
feature at time t are sufficient even if bt−1 is given,

P�B,D�O� = 

i=1

M



t=1+�j=1

i−1Dj

Di+�j=1
i−1Dj



k=1

NBi

Pt�fk
i �xt

fki
, f1

i , . . . , fk−1
i ,bt−1� .

�11�

Now expanding the conditional probability,

P�B,D�O� = 

i=1

M



t=1+�j=1

i−1Dj

Di+�j=1
i−1Dj



k=1

NBi Pt�fk
i ,xt

fk
i

, f1
i , . . . , fk−1

i ,bt−1�

Pt�xt
fk
i

, f1
i , . . . , fk−1

i ,bt−1�
.

�12�
Splitting the priors gives
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P�B,D�O� = 

i=1

M



t=1+�j=1

i−1Dj

Di+�j=1
i−1Dj



k=1

NBi

Pt�fk
i �f1

i , . . . , fk−1
i ,bt−1�

�
Pt�xt

fk
i

�f1
i , . . . , fk

i ,bt−1�

Pt�xt
fk
i

�f1
i , . . . , fk−1

i ,bt−1�
. �13�

The probability terms not involving the feature vector xt
fk
i

can
now be combined to get the prior probabilities of the broad
class sequence and the sequence dependent durations, that is,



i=1

M



t=1+�j=1

i−1Dj

Di+�j=1
i−1Dj



k=1

NBi

Pt�fk
i �f1

i , . . . , fk−1
i ,bt−1� = P�B,D�

= P�B�P�D�B� . �14�

Now given the set �f1
i , . . . , fk−1

i � or the set �f1
i , . . . , fk

i �, xt
fk
i

is
assumed to be independent of bt−1. This independence of the
APs from the previous broad class frames is hard to estab-
lish, but it can be shown to hold better for the knowledge-
based APs than for the mel-frequency cepstral coefficients
�MFCCs� �see Fig. 5� under certain conditions as discussed
in Sec. III B. In words, this independence means that given a
phonetic feature or the phonetic features above that feature in
the hierarchy, the APs for that phonetic feature are assumed
to be invariant with the variation of the broad class labels of
the preceding frames. For example, the APs for the feature
sonorant in a +sonorant frame are assumed to be invariant
of whether the frame lies after vowel, nasal or fricative
frames. This is further discussed in Sec. III B. Making this
independence or invariance assumption and applying Eq.
�14� in Eq. �13�,

TABLE IV. Sounds used in training of each classifie

Phonetic feature Sounds with +1

speech All speech sounds excl
closures

sonorant Vowels, nasals and se

syllabic Vowels
continuant Fricatives
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P�B,D�O� = P�B�P�D�B�

i=1

M



t=1+�j=1

i−1Dj

Di+�j=1
i−1Dj

�

k=1

NBi Pt�xt
fk
i

�f1
i , . . . , fk

i �

Pt�xt
fk
i

�f1
i , . . . , fk−1

i �
, �15�

which can be rewritten as

P�B,D�O� = P�B�P�D�B�

i=1

M



t=1+�j=1

i−1Dj

Di+�j=1
i−1Dj

�

k=1

NBi Pt�fk
i �xt

fk
i

, f1
i , . . . , fk−1

i �
Pt�fk

i �f1
i , . . . , fk−1

i �
. �16�

The posterior Pt�fk
i �xt

fk
i

, f1
i , . . . , fk−1

i � is the probability of the

binary feature fk
i obtained using the APs xt

fk
i

and it is obtained
in this work from an SVM-based binary classifiers as de-
scribed in Sec. I below. The term Pt�fk

i �x1
i , . . . , fk−1

i � normal-
izes the imbalance of the number of positive and negative
samples in the training data. The division on the right side of
Eq. �16� can be considered as the conversion of a posterior
probability to a likelihood by division by a prior. The prior is
computed as the division of the number of training samples
for the positive value of the feature to the number of training
samples for the negative value of the feature.

1. Training and application of binary classifiers

One SVM classifier was trained for each of the phonetic
features shown in Fig. 2. The input to the classifier is the set
of APs shown in Table I for that feature. The sounds used to
get the training samples of class +1 and class −1 for each
SVM are shown in Table IV. For the feature continuant, the

FIG. 5. �Color online� �a� Projection of 39 MFCCs into
a one-dimensional space with vowels and nasals as dis-
criminating classes, �b� similar projection for four APs
used to distinguish +sonorant sounds from −sonorant
sounds. Because APs for the sonorant feature discrimi-
nate vowels and nasals worse than MFCCs, they are
more invariant.

Sounds with −1 label

stop Silence, pauses and stop closures

wels Fricatives, affricates and
stop bursts

Nasals and semivowels
Stop bursts
r.

label

uding

mivo
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stop burst frame identified as the first frame of a stop conso-
nant using TIMIT labeling was used to extract APs represen-
tative of the value −1 of that feature. For the +1 class of the
feature continuant, the APs were extracted from all of the
fricative frames. For the other features, all frames for each of
the classes were extracted as training samples. Flap �/dx/�,
syllabic sonorant consonants �/em/, /el/, /en/, /er/ and /eng/�
and diphthongs �/i+/, /e+/, /ow/, /a+/, /aw/, and /uw/� were
not used in the training of the feature syllabic, and affricates
�/jh/ and /ch/� and glottal stops were not used in training of
the feature continuant, but these sounds were used for frame-
based testing. The reason for not using these sounds for
training is that they have different manifestations. For ex-
ample, the affricates /ch/ and /jh/ may appear with or without
a clear stop burst. However, such information is not marked
in the TIMIT hand-transcribed labels.

SVM Light �Joachims, 1998�, an open-source toolkit for
SVM training and testing, was used for building and testing
the classifiers. Two types of SVM kernels were used—linear
and radial basis function �RBF�—to the build corresponding
two types of classifiers. The optimal number of adjoining
frames s and e used in each classifier as well as the optimal
SVM related parameters �e.g., the bound on slack variables
�i and � for RBF kernels� were found using cross validation
over a separate randomly chosen data set from the TIMIT
training set.

A SVM outputs a real number for a teat sample. To
convert this real number into a probability, the real space of
the SVM outputs is divided into 30 bins of equal sizes be-
tween −3 and +3. This range was chosen empirically from
observations of many SVM outputs. After the SVMs are
trained, the proportion of samples of class +1 to the total
numbers of training samples in each of the bins is noted and
the proportions for all of the bins are stored in a table. While
testing, the bin corresponding to the real number obtained for
a particular test sample is noted and its probability is looked
up from the stored table.

2. Probabilistic segmentation

A Viterbi-like probabilistic segmentation algorithm
�Juneja, 2004� takes as input the probabilities of the manner
phonetic features—sonorant, syllabic, continuant—and si-
lence from the SVM classifiers and outputs the probabilities
P�B �O� under the assumption of Eq. �5�. The algorithm is
similar to the one used by Lee �1998�. The algorithm oper-

ates on the ratio of posterior probabilities on the right side of
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Eq. �16�, unlike the algorithm developed by Lee �1998�
where segment scores of observations in speech segments are
used. Another difference is that the transition points in the
segmentation algorithm in the current work are obtained as
those frames at which the ranking of the posterior probabili-
ties of the broad classes changes. In the work by Lee �1998�,
the transitions points were calculated from the points of sig-
nificant change in the acoustic representation.

D. Deterministic location of landmarks

Once a broad class sequence with the start and end times
of each of the broad classes is found, the landmarks are
located deterministically. Fon and Foff are allotted the start
and end times of the broad class Fr. Son and Soff are as-
signed the start and end times of the broad class SC. The stop
burst B is found as the location of the maximum value of the
temporal onset measure within a 60 ms window centered at
the first frame of the segment ST. VOP is assigned the first
frame of the segment V, and P is assigned the location of
highest value of E�640,2800� in the segment V. The syllabic
dip D for an intervocalic SC is assigned the location of the
minimum in E�640,2800� in the segment SC. For prevocalic
and postvocalic SC, D is assigned the middle frame of the
SC segment.

E. Constrained landmark detection for word
recognition

For isolated word or connected word recognition, man-
ner class segmentation paths are constrained by a pronuncia-
tion model in the form of a finite state automata �FSA� �Ju-
rafsky and Martin, 2000�. Figure 6 shows an FSA-based
pronunciation model for the digit “zero” and the canonical
pronunciation /z I r ow/. The broad manner class representa-
tion corresponding to the canonical representation is Fr-V-
SC-V-SC �the last SC is for the off glide of /ow/�. The pos-
sibility that the off-glide of the final vowel /ow/ may or may
not be recognized as a sonorant consonant is represented by
a possible direct transition from the V state to the SILEN
state. Starting with the start state S0, the posterior probability
of a particular path through the FSA for zero can be calcu-
lated using the likelihood of a transition along a particular
broad class Bi as



NBi Pt�fk

i �xt
fk
i

, f1
i , . . . , fk−1

i �
P �f i �f i , . . . , f i �

.

FIG. 6. A phonetic feature-based pronunciation model
for the word “zero.”
k=1 t k 1 k−1

. Y. Espy-Wilson: Probabilistic detection of speech landmarks 1161



The likelihoods of all of the state transitions along a path
are multiplied with the prior P�B� and the duration densities
P�D �B� using the durations along that path. The probabilistic
segmentation algorithm gives for an FSA and an observation
sequence the best path and the posterior probability com-
puted for that path. Note that word posterior probabilities can
be found by multiplying the posterior probability P�L �O� of
the landmark sequence with the probability P�U �OL� of the
place and voicing features computed at the landmarks
�Juneja, 2004�, about computing complete word probabilities
is out of the scope of this paper.

III. EXPERIMENTS AND RESULTS

A. Database

The “si” and “sx” sentences from the training section of
the TIMIT database were used for training and development.
For training the SVM classifiers, randomly selected speech
frames were used because SVM training with all of the avail-
able frames was impractical. For training the HMMs, all of
the si and sx sentences from the training set were used. All of
the si and sx sentences from the testing section of the TIMIT
database were used for testing how well the systems perform
broad class recognition. The 2240 isolated digit utterances
from the TIDIGITS training corpus were used to obtain
word-level recognition results. If spoken canonically, the
digits are uniquely specified by their broad class sequence.
Thus, word-level results are possible for this constrained da-
tabase. Note that the TIMIT database is still used for training
since the TIDIGITS database is not transcribed. Thus, this
experiment not only shows how well the systems perform
word-level recognition, but it also allows for cross-database
testing.

B. Sufficiency and invariance

In this section, an illustration of how the APs satisfy the
assumptions of the probabilistic framework better than the
MFCCs is presented. Although it is not clear how sufficiency
and invariance can be rigorously established for certain pa-
rameters, some idea can be obtained from classification and
scatter plot experiments. For example, sufficiency of the four
APs used for the sonorant feature detection—E�0,F3�,
E�100 Hz,400 Hz�, E�F3, fs /2�, ratio of the E�0,F3� to the
energy in �F3, half of sampling rate�1—can be viewed in
relation to the 39 mel-frequency cepstral coefficients
�MFCCs� in terms of classification accuracy of the sonorant
feature. Two SVMs with linear kernels were trained, one for
the APs and one for the MFCCs, using a set of 20,000 ran-
domly selected sample frames of each of the +sonorant and
−sonorant frames from dialect region 1 of the TIMIT train-
ing set. The same number of samples were extracted from
dialect region 8 of the TIMIT training set for testing. A frame
classification accuracy of 93.0% was obtained on data using
the APs and SVMs, which compares well to 94.2% accuracy
obtained using the MFCCs and SVMs. Note that for the two
SVMs the same speech frames were used for training as well
as testing and only the types of acoustic features were differ-

ent.
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In Eq. �16�, the APs xt
fk
i

for a manner feature were as-
sumed to be independent of the manner class labels of the
preceding frames bt−1 when either �f1

i , . . . , fk
i � or �f1

i , . . . , fk−1
i �

was given. For example, for the feature fk
i = +sonorant, the

set �f1
i , . . . , fk

i � is �+speech , +sonorant� and �f1
i , . . . , fk−1

i � is
�+speech�. Consider the case where �f1

i , . . . , fk
i � is given, that

is, the value of the feature whose APs are being investigated
is known. A typical case where the assumption may be hard
to satisfy is when the APs for the sonorant feature are as-
sumed to be invariant of whether the analysis frame lies in
the middle of a vowel region or the middle of a nasal region
�both vowels and nasals are +sonorant�.That is, bt−1 will be
composed of nasal frames in one case and vowel frames in
the other case.

Such independence can roughly be measured by the
similarity in the distribution of the vowels and nasals based
on the APs for the feature sonorant. To test this indepen-
dence, sonorant APs were extracted from dialect region 8 of
the TIMIT training set from each of the nasal and vowel
segments. Each set of APs was extracted from a single frame
located at the center of the vowel or the nasal. The APs were
then used to discriminate vowels and nasals using Fischer
linear discriminant analysis �LDA�. Figure 5�a� shows the
distribution of the projection of the 39 MFCCs extracted
from the same 200 frames into a one-dimensional space us-
ing LDA. A similar projection is shown for the four sonorant
APs in Fig. 5�b�. It can be seen from these figures that there
is considerably more overlap in the distribution of the vowels
and the nasals for the APs of the sonorant feature than for
the MFCCs. Thus, the APs for the sonorant feature are more
independent of the manner context than are the MFCCs. The
overlap does not show worse performance of the APs com-
pared to MFCCs because the sonorant APs are not meant to
separate vowels and nasals. They separate vowels, nasals and
semivowels �i.e., sonorants� from fricatives, stop consonants
and affricates �i.e., obstruents�. Thus, the APs for the feature
sonorant are invariant across different +sonorant sounds but
successfully discriminate +sonorant sounds from −sonorant
sounds. Further discussion of the sufficiency and the invari-
ance properties of the APs can be found in Juneja �2004�.

C. Frame-based results

The SVMs for each feature utilized APs extracted from
the analysis frame as well as s starting frames and e ending
frames. The values of the two variables e and s were ob-
tained for each classifier by performing validation over a
subset of the TIMIT training data �Juneja, 2004�. Training
was performed on randomly picked samples �20,000 samples
for each class� from the si and sx sentences of the TIMIT
training set. The binary classification results on the whole of
the TIMIT test set at the optimal values of s and e are shown
in Table V in two cases—�1� when all the frames were used
for testing and �2� when only the middle one-third portion of
each broad class was used for testing. The difference in the
results indicates the percentage of errors that are made due to
boundary or coarticulation effects. Note that in the presented
landmark-based system, it is not important to classify each

frame correctly. The results on the middle one-third segment
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are more representative of the performance of the system
because if the frames in a stable region are correctly recog-
nized for a particular manner feature, this would mean that
the corresponding landmarks may still be correctly obtained.
For example, if the middle frames of an intervocalic sonorant
consonant are correctly recognized as syllabic, then the cor-
rect recognition of frames near the boundary is not signifi-
cant because landmarks for the sonorant consonant will be
obtained accurately. For the feature continuant, the classifi-
cation error on middle frames is not relevant because the
SVM is trained to extract the stop burst as opposed to a
certain stable region of speech. Also the transient effects at
broad class boundaries are minimized by low probability
density values of very small broad class durations.

Figures 7–10 show the most significant sources of error
for each of the phonetic features. The errors include mis-
classifications of the +feature sounds as −feature, and vice
versa. For the feature sonorant, it can be seen that the sounds
/v/ and the glottal stop /q/ are often detected as +sonorant.
The sound /v/ is often manifested as a sonorant consonant so
that the assignment of +sonorant for /v/ is expected. In the
case of the glottal stop, a separate detector is required either
at the broad class recognition level or further down the hier-
archy to recognize glottalization because it can be significant
for lexical access, especially in the detection of the conso-
nant /t/ �Stevens, 2002�. For the feature syllabic, classifica-
tion accuracy for nasals as -syllabic is above 90%. But the
semivowels—/+/, /r/, /l/ and /w/ have lower accuracies which
is expected because of the vowel-like behavior of these

TABLE V. Binary classification results for manner features in %. Accurac
distinguishes the stop releases from the beginning of fricatives.

Feature s e

sonorant 4 1
syllabic 16 24
Speech/silence 3 2
continuant 4 4

FIG. 7. �Color online� Sounds with high error percentages for the feature

sonorant; “voic-stop” represents voiced stop consonants.
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sounds. About 30% of the frames of reduced vowels are also
misrecognized as sonorant consonants. This typically hap-
pened when a sonorant consonant followed a stressed vowel
and preceded a reduced vowel such that the reduced vowel is
confused as a continuation of the sonorant consonant. A simi-
lar result was shown by Howitt �2000� where the vowel land-
marks were missed for reduced vowels more than other vow-
els. The performance of the feature continuant is 95.6%
which indicates the accuracy on classification of onset
frames of all nonsonorant sounds. That is, an error was
counted if a stop burst was wrongly classified as
−continuant or a fricative onset was wrongly classified as a
stop burst. The major source of error is the misclassification
of 13.7% of fricative onsets as stop bursts.

D. Sequence-based results

The SVM models obtained in the frame-based analysis
procedure were used to obtain broad class segmentation as
well as the corresponding landmark sequences for all of the
si and sx sentences of the TIMIT test set using the probabi-
listic segmentation algorithm. Not all broad class sequences
were allowed as the segmentation paths were constrained
using a pronunciation graph such that �1� SCs only occur
adjacent to vowels, �2� ST is always preceded by SILEN �for
stop closure� and �3� each segmentation path starts and ends
with silence. The same pronunciation graph was used for
both the EBS system and the HMM system. The duration
probability for each broad class was modeled by a mixture of
Rayleighs using a single Rayleigh density for the classes SC,

middle frames is not shown for the feature continuant because the feature

ccuracy on middle frames Accuracy on all frames

96.59 94.39
85.00 80.06
94.60 93.50
… 95.58

FIG. 8. �Color online� Sounds with high error percentages for the feature
y on

A

continuant. Fon represents fricative onsets.
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V, Fr and ST, and a mixture of two Rayleigh densities for
SILEN �one density targets short silence regions like pauses
and closures and the other density targets beginning and end-
ing silence�. The parameter for each Rayleigh density was
found using the empirical means of the durations of each of
the classes from the TIMIT training data.

For the purpose of scoring, the reference phoneme labels
from the TIMIT database were mapped to manner class la-
bels. Some substitutions, splits and merges as shown in Table
VI were allowed in the scoring process. Specifically, note
that two identical consecutive broad classes were allowed to
be merged into one since the distinction between such
sounds is left to the place classifiers. Also note that affricates
were allowed to be recognized as ST+Fr as well as Fr, and
similarly diphthongs—-/i+/, /e+/, /ow/, /a+/, /aw/, and /uw/—
were allowed to be recognized as V+SC as well as V be-
cause the off glides may or may not be present. Scoring was
done on the sequences of hypothesized symbols without us-
ing information of the start and end of the broad class seg-
ments which is similar to word level scoring in continuous
speech recognition.

The same knowledge-based APs were used to construct
an 11-parameter front end for a HMM-based broad class seg-
mentation system. The comparison with the HMM-based
system does not show that the presented system performs

FIG. 9. �Color online� Sounds with high error percentages for the feature
syllabic. “Red-vow” represents reduced vowels.

TABLE VI. Allowed splits, merges and substitutions

Reference
Allowed

hypothesis

V+V V
Fr+Fr Fr
/q / +V, V+ / q / V
/t/, /p/, /k/, /g/, /d/ ST+Fr
/em/, /en/, /er/, /el/ V+SC
/hv/ SC, Fr
/dx/ SILEN+ST
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superior or inferior to the HMM-based systems, but it shows
an acceptable level of performance. The HMM-based sys-
tems have been developed and refined over decades and the
work presented in this paper is only the beginning of the
development of a full speech recognition system based on
phonetic features and acoustic landmarks.

All the HMMs were context-independent three-state �ex-
cluding entry and exit states� left-to-right HMMs with diag-
onal covariance matrices and eight-component mixture ob-
servation densities for each state. All the si and sx utterances
from the TIMIT training set were used for training the HMM
broad classifier. A HMM was built for each of the five broad
classes, and a separate HMM was built for each of the spe-
cial sounds—affricate, diphthong, glottal stop, syllabic sono-
rant consonant, flap /dx/ and voiced aspiration /hv/—making
a total of 11 HMMs. Only the five broad class models were
used in testing and the HMMs for the special sounds were
ignored, so that the training and testing sounds of HMM and
EBS were identical. The HMM models were first initialized
and trained using all of the training segments for each model
separately �for example, using semivowel and nasal seg-
ments for the sonorant consonant model�, and then improved
using embedded training on the concatenated HMMs for

FIG. 10. �Color online� Sounds with high error percentages in speech si-
lence distinction. “Weak-fric” represents weak fricatives and “strong-fric”
represents strong fricatives. “Voiced-clos” represents closures of voiced stop
consonants.

Reference
Allowed

hypothesis

SC+SC SC
SILEN+SILEN SILEN

/q/ ST, SC
/v/ SC, Fr

/ch/, /jh/ ST+Fr
/dx/ SC

/i+/, /ow/, /e+/,
/o+/, /aw/, /uw/,

/ow/

V+SC
.
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each sentence. Triphone models and other similarly im-
proved HMM models may give better results than the ones
presented in this paper, but the focus here is to build a base
line HMM system to which EBS’s performance can be com-
pared.

The results are shown in Table VII. The results are also
shown for EBS for two different front ends—AP and MFCC
�including MFCCs, their delta and acceleration coefficients
which gives a 39-parameter front end�. The performance of
all of the systems, except when EBS is used with MFCCs, is
comparable although the HMM-MFCC system gives the
maximum accuracy. The inferior performance of the MFCCs
with EBS is perhaps because of the better agreement of APs
with the invariance assumptions of the probabilistic frame-
work. Similarly, better performance of MFCCs in the HMM
framework may be because of better agreement with the di-
agonal covariance assumption of the HMM system applied
here. That is, APs are not processed by a diagonalization step
prior to application to the HMM systems while MFCCs go
through such a process. These are possible explanations of
these results and they are open to further investigation.

An example of landmarks generated by EBS on a test
sentence of TIMIT is shown in Fig. 11 which also shows

TABLE VII. Broad class segmentation results in percent. Correctness
�Corr�/Accuracy �Ace� are shown when the system is scored on the basis of
numbers of deletions, insertions and substitutions of broad classes. A “-” in
a cell means that the particular system was computationally too intensive to
get a result from.

EBS �RBF� EBS �linear� HMM

Corr/Acc Corr/Acc Corr/Acc
11 APs 86.2/79.5 84.0/77.1 80.9/73.7
39 MFCCs - 86.1/78.2 86.8/80.0
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how errors in the system can be analyzed. The pattern rec-
ognizer calls the /dh/ in “the” �as marked by the ellipse� a
sonorant constant �SC� instead of the correct broad class Fr.
The reason is that the parameter E�0,F3� /E�F3, fs /2� does
not dip adequately as it usually does in most
−sonorant sounds. This indicates that improved APs, for ex-
ample, from the APP detector �Deshmukh et al., 2005� that
directly captures the aperiodicity, are needed to correct errors
like this one.

The confusion matrix of various landmarks for EBS us-
ing the AP front end is shown in Table VIII without includ-
ing the sounds—diphthongs, syllabic sonorant consonants,
flaps, /v/, affricates and the glottal stop /q/. For this latter set
of sounds the confusion matrix is shown in Table IX. There
is a considerable number of insertion errors. Insertions are
common in any speech recognition system because typical
speaking rates vary from training segments to test segments.
There are sudden onsets of vowels and fricatives that give
rise to stop burst insertions; 68% of stop burst insertions
were at the begining of fricative segments and 46% were at
the beginning of the sentences possibly because speakers are
highly likely to start speaking with a sudden onset. High-
frequency noise in the silence regions and aspiration at the
end or beginning of vowels cause fricative insertions; 44% of
all fricative insertions occur with an adjoining silence region,
43% of the rest of the fricative insertions have an adjoining
vowel.

E. Word-level results and constrained segmentation
results

The SVM and HMM models obtained by training on the
TIMIT database were then applied to the isolated digits of
the TIDIGITS database in both the vocabulary constrained

FIG. 11. �Color online� Top: spectro-
gram of the utterance, “time they’re
worn.” A: Broad class labels, B: Land-
mark labels, C: phoneme labels, bot-
tom: ratio of E�0,F3� to E�F3, fs /2�.
Broad class and phoneme labels are
marked at the end of each sound, and
the landmark labels show the time in-
stant of each landmark. The ellipse
shows an error made by the system on
this utterance. E�0,F3� /E�F3, fs /2�
does not dip in the /dh/ region which
makes the pattern recognizer call the
fricative a +sonorant sound.
. Y. Espy-Wilson: Probabilistic detection of speech landmarks 1165



and the unconstrained modes. In the unconstrained mode, the
models were tested in exactly the same way as on the TIMIT
database. To get the results on constrained segmentation, the
segmentation paths were constrained using the broad class
pronunciation models for the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
The segmentation was identically constrained for both the
HMM system and EBS. The results are shown in Table X for
EBS �with linear as well as RBF kernels� and for the HMM
systems trained on TIMIT and tested on TIDIGITS. On mov-
ing from unconstrained to constrained segmentation, a simi-
lar improvement in performance of the EBS �RBF� and
HMM-AP systems can be seen in this table. This result
shows that EBS can be constrained in a successful manner as
for the HMM system. The overall performance of EBS using
RBFs is also very close to the HMM-AP system. HMM-AP
system shows better generalization than the HMM-MFCC
system over cross-database testing which may be attributed
to better speaker independence of the APs compared to the
MFCCs �Deshmukh et al., 2002�.

Figure 12 shows an example of the output of the uncon-
strained probabilistic segmentation algorithm for the utter-
ance “two” with canonical pronunciation /t uw/. The two
most probable landmark sequences obtained from the algo-
rithm are shown in this figure. The landmark sequence ob-
tained with the second highest probability for this case is the
correct sequence. It is hoped that once probabilistic place and
voicing decisions are made, the second most probable se-
quence of landmarks will yield an overall higher posterior
word probability for the word two.

Finally, word level accuracies were obtained for all of
the systems. The state-of-the-art word recognition accuracy
using word HMM models on TIDIGITS is above 98%
�Hirrsh and Pearce, 2000�. Recognition rates of 99.88% have
also been obtained when using word HMM models for rec-

TABLE VIII. Confusion matrix for landmarks with exclusion of affricates,
nonredundant landmarks are shown. For example, VOP implies presence of
matrix.

Total Fon SIL VO

Fon 6369 5607 10
SIL 10,232 15 9281
VOP 12,467 50 56 11,1
Son 5504 155 65
B 9152 448 2
Insertions 3439 682 692 2

TABLE IX. Confusion matrix for affricates, syllabi
thongs and flap /dx/. Empty cells indicate that those c
those confusions were not available from the scoring

Total Fon SIL VO

/q/ 927 2
Diph 4390 23 18 399
SSCs 1239 11 14 107
/v/ 710 40
/dx/ 632 40 6
/ch/, /jh/ 570 562 0
/hv/ 233 0
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ognition of the TI-46 isolated digit database �Deshmukh et
al., 2002�. These results were obtained using the same topol-
ogy as in the present experiments �i.e., three-state HMMs
with eight-mixture components�. The difference is that in-
stead of three-state HMM word models, we are now using
three-state HMM broad class models to make the compari-
son with EBS. Note that a full word recognition system in-
cluding place features is not presented here and only broad
class models are presented. Therefore, a complete segmenta-
tion for a digit was scored as correct if it was an acceptable
broad class segmentation for that digit.

The results are shown in Table XI. A fully correct seg-
mentation of 68.7% was obtained using the EBS-AP system.
About 84.0% of the digits had a correct segmentation among
the top two choices. Note that the top two or three choices
can be combined with place information to get final prob-
abilities of words. A significant increase in correct recogni-
tion in the top two choices over the top one choice shows
that there is a good scope of recovery of errors when place
information is added. An accuracy of 67.6% was obtained by
the HMM-AP system and an accuracy of 63.8% was ob-
tained by the HMM-MFCC system. These results further
confirm the comparable performance of the EBS and the
HMM-AP systems. Specifically this result shows that a sys-
tem that selectively uses knowledge based APs for phonetic
feature detection can be constrained as well as the HMM
systems for limited vocabulary tasks and can also give a
similar performance in terms of recognition accuracy.

IV. DISCUSSION

A landmark-based ASR system has been described for
generating multiple landmark sequences of a speech utter-
ance along with a probability of each sequence. The land-

ic sonorant consonants, /v/, glottal stop /q/, diphthongs and flap /dx/. Only
llabic peak P and vice versa, therefore, only VOP is used in the confusion

Son B Deletions Correct �%�

136 185 430 88.03
104 0 820 90.71

18 24 1173 89.40
4565 95 1290 70.82
104 2755 797 84.98

1038 821

orant consonants �SSCs�, /v/, glottal stop /q/, diph-
sions were scored as correct but the exact number of
ram.

Son B Deletions Correct �%�

5 99.25
25 5 328 90.91
27 1 115 86.44

4 198 65.63
75 80.85

0 7 98.60
3 43 80.26
syllab
a sy

P

1
12
46

1
24
06
c son
onfu
prog

P

0
1
1
2
0
1
0
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mark sequences can be constrained using broad class pronun-
ciation models. For unconstrained segmentation on TIMIT,
an accuracy of 79.5% is obtained assuming certain allowable
splits, merges and substitutions that may not affect the final
lexical access. On cross database constrained detection of
landmarks, a correct segmentation was obtained for about
68.7% of the words. This compares well with a correct seg-
mentation for about 67.6% of the words for the HMM sys-
tem using APs and 63.8% for the HMM system using
MFCCs. The percentage accuracy of broad class recognition
improved from 74.3% for unconstrained segmentation to
84.2% for constrained segmentation which is very similar to
the improvement from 72.9 to 85.5% for the HMM system
using APs. These results show that EBS can be constrained
by a higher level pronunciation model similar to the HMM
systems.

The comparison with previous work on phonetic feature
detection is very difficult because of the different test condi-
tions, definitions of features and levels of implementation
used by different researchers. At the frame level, the 94.4%
binary classification accuracy on the sonorant feature com-
pares well with previous work by Bitar �1997� where an
accuracy of 94.6% for sonorancy detection on the same da-
tabase was obtained. The continuant result of 95.6% is not
directly comparable with previously obtained stop detection
results �Bitar, 1997; Liu, 1996; Niyogi, 1998�. In the work by
Niyogi �1998� results were presented at a frame rate of 1 ms,
and in the work by Liu �1996� and Bitar �1997�, results were
not presented at the frame level. A full probabilistic land-
mark detection system was not developed in the research
cited above. An 81.7% accuracy on the syllabic feature may
seem low, but note that there is usually no sharp boundary
between vowels and semivowels. Therefore, a very high ac-
curacy at the frame level for this feature is not only very

TABLE X. Broad class results on TIDIGITS �Correc

EBS �linear� E

Constrained 91.7/82.8 9
Unconstrained 89.5/64.0 9

FIG. 12. A sample output of the probabilistic landmark detection for the
digit “two.” The spectrogram is shown in �a�.Two most probable landmark
sequences �b� and �c� are obtained by the probabilistic segmentation algo-
rithm. The first most probable sequence �b� has a missed stop consonant but

the second most probable sequence gets it.
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difficult to achieve, but also it is not very important as long
as sonorant consonants are correctly detected. The authors
have not been able to find a previous result to which this
number can be suitably compared. At the sequence level, the
overall accuracy of 79.5% is comparable to 77.8% accuracy
obtained in a nonprobabilistic version of EBS �Bitar, 1997�.
Note that the most significant improvement over the system
by Bitar �1997� is that the current system can be constrained
for limited vocabulary and it can be used for obtaining mul-
tiple landmark sequences instead of one. There are various
other systems to which segmentation results can be com-
pared �Salomon et al., 2004; Ali, 1999�, but the comparison
is omitted in this work because the purpose of this paper is to
present how the ideas from such systems can be applied to a
practical speech recognizer.

The complete system for word recognition is currently
being developed. There has been some success in small vo-
cabulary isolated word recognition �Juneja, 2004� and in
landmark detection for large vocabulary continuous speech
recognition �Hasegawa-Johnson et al., 2005�. EBS benefits
directly from research in discriminative APs for phonetic
features, therefore, the system will improve as more power-
ful APs are designed for various phonetic features. By the
use of APs specific to each phonetic feature EBS provides a
platform for the evaluation of new knowledge gained on dis-
crimination of different speech sounds. EBS provides easier
evaluation of newly designed APs than HMM based systems.
If certain APs give better performance in binary classifica-
tion of phonetic features and are more context independent
than currently used APs, then they will give overall better
recognition rates. Therefore, complete speech recognition ex-
periments are not required in the process of designing the
APs. In the future, apart from the research that will be car-
ried out on the automatic extraction of APs for all the pho-
netic features, further research will be done on better glide
detection and incorporation of previous research �Howitt,
2000� on detection of vowel landmarks. APs to separate na-
sals from semivowels �Pruthi and Epsy-Wilson, 2003� and to
detection nasalization in vowels �Pruthi, 2007� will be inte-
grated along with an improved formant tracker Xia and
Espy-Wilson �2000�. Studies of pronunciation variability de-
rived from previous work �Zhang, 1998� as well as continu-
ing research will be integrated into EBS.

urate in percent�.

BF� HMM-MFCC HMM-AP

5.2 92.4/84.3 92.3/85.8
4.3 88.6/74.1 84.2/72.9

TABLE XI. Percent of TIDIGITS isolated digits with fully accurate broad
class sequence.

EBS �RBF� HMM-AP HMM-MFCC

68.7 67.6 63.8
t/Acc

BS�R

2.6/8
3.0/7
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