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Speech can be represented as a constellation of constricting vocal tract actions called gestures,

whose temporal patterning with respect to one another is expressed in a gestural score. Current

speech datasets do not come with gestural annotation and no formal gestural annotation procedure

exists at present. This paper describes an iterative analysis-by-synthesis landmark-based time-

warping architecture to perform gestural annotation of natural speech. For a given utterance, the

Haskins Laboratories Task Dynamics and Application (TADA) model is employed to generate a

corresponding prototype gestural score. The gestural score is temporally optimized through an

iterative timing-warping process such that the acoustic distance between the original and TADA-

synthesized speech is minimized. This paper demonstrates that the proposed iterative approach

is superior to conventional acoustically-referenced dynamic timing-warping procedures and pro-

vides reliable gestural annotation for speech datasets. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4763545]

PACS number(s): 43.72.Ar, 43.72.Ct, 43.70.Bk [DAB] Pages: 3980–3989

I. INTRODUCTION

Several recent studies have suggested that articulatory

gestures can be used as an alternative to non-overlapping

phone units (e.g., diphones) for more robust automatic

speech recognition (ASR), because they can effectively

model the effects on coarticulation of factors such as varying

prosodic phrasing (e.g., Sun and Deng, 2002; Zhuang et al.,
2009; Mitra et al., 2010b; Mitra et al., 2011). Articulatory

phonology (Browman and Goldstein, 1992) treats each word

as a constellation of vocal-tract constriction actions, called

gestures (roughly 1 to 3 gestures for each of the phones in a

phonetic transcription). Each gesture is viewed as a dynami-

cal system that controls one of the constricting devices

(end-effectors) of the vocal tract: LIPS, tongue tip (TT),

tongue body (TB), velum (VEL), and glottis (GLO). The

gestural goals, or targets, for the constrictions of these end-

effectors are defined in the set of tract variables (TVs), and

each TV has its own set of associated articulators. Table I

presents the constricting organs (end-effectors) and the asso-

ciated vocal TVs and Fig. 1 shows how the variables are

geometrically defined in the vocal tract. The 8 TVs [lip

protrusion (LP), lip aperture (LA), tongue tip constriction

location (TTCL), tongue tip constriction degree (TTCD),

tongue body constriction location (TBCL), tongue body con-

striction degree (TBCD), VEL, and GLO] in Table I and Fig.

1 are the set of task-specific coordinates for characterizing

the shape of the vocal tract tube in terms of constriction

degrees and locations along the TV dimensions, and the

kinematic trajectories of the TVs are the outcomes of con-

striction gestural activation.

a)Author to whom correspondence should be addressed. Electronic mail:

nam@haskins.yale.edu

3980 J. Acoust. Soc. Am. 132 (6), December 2012 0001-4966/2012/132(6)/3980/10/$30.00 VC 2012 Acoustical Society of America

Downloaded 09 Dec 2012 to 128.8.110.75. Redistribution subject to ASA license or copyright; see http://asadl.org/terms

mailto:nam@haskins.yale.edu


For example, the /b/ in “tub” corresponds to a constric-

tion gesture in the LA TV. Each gesture is specified for the

activation interval, i.e., where in time it is active, and the

dynamic parameters of gestural target and stiffness. The tar-

gets are defined in millimeters, degrees, or arbitrary units.

The targets of LP, LA, TTCD, and TBCD gestures are

defined in millimeters, those of TTCL and TBCL gestures in

degrees, and those of VEL and GLO gestures in arbitrary

units. The targets of LP are the horizontal location of the lips

and those of LA, TTCD, and TBCD are the constriction

degree of the constriction organs. The targets of TTCL and

TBCL are defined using a polar grid, ranging from 0� to

180� as shown in Fig. 1, in which 0� is in front of the chin,

90� at the center of the hard palate, and 180� is in the center

of the pharynx. The stiffness of a gesture determines how

fast the specified target is achieved. It is known that conso-

nant gestures achieve their targets more quickly than vowels

(Perkell, 1969, Fowler, 1980). Stiffness can distinguish con-

sonants from vowels. The target of the LA gesture for /b/ is a

complete constriction of the lips, defined by a �2 mm aper-

ture target, indicating compression of the lips. Available

data suggest that a labial stop release gesture requires 50 to

100 msec, thus the stiffness can be parameterized by a reso-

nant frequency of 8 Hz (8 closure-release cycles per second);

that of a vowel is set to 4 Hz. Consonants are defined by the

lips (LP and LA), tongue tip (TTCL and TTCD), or tongue

body (TBCD and TBCL) gestures, unrounded vowels are

defined by the tongue body (TBCL and TBCD) gestures

only, and rounded vowels are also associated with LA ges-

tures as well as TB gestures. Vowels are distinguished from

one another by the targets of TBCL and TBCD gestures. For

example, /i/ and /I/ are distinguished by different target val-

ues of TBCD (5 mm for /i/ and 8 mm for /I/) although their

TBCL values are both 95�. Both /i/ and /I/ are distinguished

from /A/ with a TBCL target of 180�.
Each word is represented as an ensemble of these dis-

tinctive gestures coordinated in time with respect to one

another in the form of a gestural score. Gestural coordina-

tion patterns exhibit both temporal overlap and sequential

dependence, and gestures can change their relative timing

and their magnitudes as a function of factors such as syllable

position, lexical stress, prosodic stress, and the strength of

prosodic phrasal boundaries (cf., Browman and Goldstein,

1995; Byrd, 1995; Byrd and Saltzman, 1998; Byrd et al.,
2009; Cho, 2005; de Jong, 1995; Fougeron and Keating,

1997; Kochetov, 2006; Krakow, 1999; Turk and Sawusch,

1997). Figure 2 shows an example gestural score for the

word “span.” All the TVs but LP have at least one active

gesture. The gestures are coordinated in time appropriately

to produce the word. The consonant /s/ involves a pair of TT

gestures for TTCL and TTCD, which are temporally

coupled. The target of TTCD is critically narrow (1 mm),

enough to produce turbulence. A GLO gesture co-occurs

with them to make the sound voiceless. The coda consonant

/n/ has the same TT gesture pair as /s/ but the target of

TTCD is �2 mm which produces a complete closure in TT

that is substantially overlapped with a VEL gesture. The

vowel /æ/ comprises a pair of TB gestures, TBCL and

TBCD, whose targets are specified by numerical values.

Studies have shown that articulatory gestures can be

used as an alternative to phones for ASR systems, providing

a set of basic units that can effectively model coarticulation

in speech (e.g., Sun and Deng, 2002; Zhuang et al., 2009;

Mitra et al., 2010b). Unfortunately, because no large natural

speech database currently exists that includes transcribed

FIG. 1. Vocal TVs at five distinct constriction organs.

FIG. 2. Gestural score for the word span. Constriction organs and vocal TVs

are denoted in the left-most two columns. The gray boxes to the right repre-

sent the corresponding gestural activation intervals and parameter values for

target and stiffness.

TABLE I. Constriction organs and their vocal TVs.

Constriction organs Vocal TVs

Lip LA

LP

TT TTCD

TTCL

TB TBCD

TBCL

VEL Velic opening degree (VEL)

GLO Glottal opening degree (GLO)
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gestural scores, previous studies have been largely limited to

using synthetic data for training, namely, that generated by

the Haskins Laboratories Task Dynamics and Application

model of speech production, also known as TADA (Nam

et al., 2004). TADA is a computational implementation of

articulatory phonology (Fig. 3) using task dynamics

(Saltzman and Munhall, 1989). For a given utterance, the

corresponding text (e.g., “bad”) or ARPABET string (e.g.,

BAED), which is a conventional phonetic transcription, is

first input to the linguistic gestural model, which determines

the gestural score for the utterance, via a segment-to-gesture

dictionary and a set of syllable-based inter-gestural coupling

(phasing) principles. Given a gestural score, the task-

dynamic model computes the TV and articulator kinematics,

a vocal tract model (CASY: The Haskins Configurable Artic-

ulatory Synthesizer; see Rubin et al., 1996) computes a

time-varying area function and formant frequencies.

Employing the TV and the formant frequencies, HLsyn, a

quasi-articulatory speech synthesizer (Hanson and Stevens,

2002), calculates the corresponding acoustic output. In par-

ticular, the constriction degrees near the front of the vocal

tract (LA and TTCD) are used for detailed spectra.

Using a synthetic speech corpus with TV and gestural

score annotation, we have shown that: (1) Gestures and TVs

can be reliably estimated from acoustics (Mitra et al., 2010a,b);

(2) estimated gestural scores from TV trajectories produce a

word recognition accuracy of around 91% (Hu et al., 2010);

and (3) gestures and TVs can potentially improve the noise

robustness of ASR systems (Mitra et al., 2010b).

Annotating a large natural speech database with gestural

score specifications would have benefits not just for speech

technology but also in such related fields as phonological

theory, phonetic science, speech pathology, etc. Several

efforts have been made to obtain gestural information from

the speech signal. A temporal decomposition method was

proposed by Atal (1983) for estimating functions similar to

gestural activations from the acoustic signal but that method

was limited to gestural activation functions, not the associ-

ated dynamic parameters. Jung et al. (1996) also used tem-

poral decomposition, with which they were able to

successfully retrieve gestural parameters such as constriction

targets, assuming prior knowledge of articulator records (the

time functions of flesh-point pellets). Sun et al. (2000) pro-

posed a semi-automatic annotation model of gestural scores

that required manual annotation of gestures to train the

model; in practice because of the difficulties discussed

below, researchers since 2000 have focused on methods that

avoid the need for manual gestural annotation of large data-

sets. Zhuang et al. (2009) and Mitra et al. (2010b) showed

that gestural activation intervals and dynamic parameters

such as target and stiffness could be estimated from TVs

using a TADA-generated synthetic database. Tepperman

et al. (2009) used an hidden Markov model (HMM)–based

iterative bootstrapping method to estimate gestural scores

from acoustics for a small dataset. Despite these efforts,

there is as yet no gesturally-labeled speech database suffi-

ciently large for adequate training of a speech recognizer

(e.g., nothing comparable in size to the TIMIT phonetically-

labeled corpus).

The experiments in this paper demonstrate that it is pos-

sible to refine a candidate gestural score by defining a corre-

spondence between consonant closure or consonant release

gestures, on the one hand, and the acoustic landmarks of

consonant closure or consonant release, on the other hand.

According to Shannon and Bode (1950), the information

content of a signal (measured in bits per sample) can be

quantified in terms of its innovation, defined to be the differ-

ence between the observed value of the signal and its opti-

mal prediction. During quasi-static intervals, the power

spectrum of a speech signal is predictable; the bit rate

required to encode speech information increases primarily at

the consonant release and consonant closure landmarks. It

has been shown that human listeners derive more informa-

tion per unit time from transition regions (consonant-vowel

boundaries) than from steady-state regions (Furui, 1986),

and early versions of the theory of landmark-based speech

recognition focused on the role of acoustic boundaries in

speech perception (Stevens, 1985). Although transitions

have the highest information density, they are not as percep-

tually salient or developmentally fundamental as syllable

nuclei (Mehler et al., 1988; Jusczyk, 1993); therefore mod-

ern theories of landmark-based speech recognition (Stevens

et al., 1992) and implemented landmark-based speech recog-

nition systems (Juneja and Espy-Wilson, 2008) generally

comprise four types of landmarks: Consonant release land-

marks, consonant closure landmarks, vowel landmarks, and

FIG. 3. (Color online) Flow diagram of TADA.
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inter-syllabic glide landmarks. This paper focuses only on

consonant release and consonant closure landmarks because

vowel landmarks, though perceptually salient, are difficult to

localize precisely in time, e.g., there are contexts in which

neither the energy peak nor the first formant peak is a reli-

able marker of the vowel gesture time alignment (Mermel-

stein, 1975; Howitt, 2000). It is possible that the results

presented in this paper could be improved by the use of a

high-accuracy algorithm for detection and alignment of

vowel landmarks.

II. DATABASE

Our proposed architecture assumes only that the natural

speech database upon which it will be implemented has the

phones delimited in advance; using HMM forced alignment

(Yuan and Liberman, 2008) it is possible to perform this

acoustic segmentation on any speech database. For our

study, we chose the University of Wisconsin x-ray

microbeam (XRMB) database (Westbury, 1994). In addition

to the acoustics, the XRMB database includes the time func-

tions of flesh-point pellets tracked during speech production

which allows us to cross-validate our approach by verifying

the articulatory as well as the acoustic information synthe-

sized in our analysis-by-synthesis (ABS) loop. The XRMB

database includes speech utterances recorded from 47 differ-

ent American English speakers, 25 of whom are females and

22 who are males. Each speaker produced up to 56 short

speech reading examples (“tasks”) including a series of dig-

its, sentences from the TIMIT corpus, and entire paragraphs.

The sampling rate for the acoustic signals is 21.74 kHz.

III. ARCHITECTURE: GESTURAL ANNOTATION

For our study, the acoustic data for the XRMB utteran-

ces were word- and phone-delimited by using the Penn Pho-

netics Lab Forced Aligner (Yuan and Liberman, 2008).

Consider a natural speech utterance represented by a set of

time-indexed acoustic feature vectors, S ¼ ½~s1;…;~sT �, and

transcribed as a sequence of phones U ¼ ½/1;…;/L� whose

phone boundary times w ¼ ½w1;…;wL�1� are labeled, such

that phone /l is the label that extends from frame wl-1þ 1 to

frame wl, with utterance start and end times given by w0 � 0

and w0 � T. A gestural pattern vector (GPV), ~gm, is a list of

simultaneously active gestures, specifying target constriction

location (CL), constriction degree (CD), and stiffness of one

or more TVs. A gestural score can be written as a sequence

of abutting GPVs, G ¼ ½~g1;…;~gM�, and a set of correspond-

ing boundary times B ¼ ½b1;…; bM�1�, such that ~gm lists all

of the gestures active from frame number bm-1þ 1 through

frame number bm. Figure 4 illustrates how a GPV is defined

in the gestural score for the word span.

The TADA synthesizer is used to produce a synthesized

speech signal Ŝ using the sequence of steps shown in Fig. 3.

First, the ARPABET transcription of a phone structure

{A, w} for each word is explicitly parsed into syllables by

means of a syllabification algorithm based on the English

phonotactics principle of the maximization of syllable onsets

(Goldwater and Johnson, 2005). Then, from the syllabified

ARPABET transcription, the linguistic gestural model

generates a synthesized gestural score, fĜ; B̂g, specifying

the CL and CD targets and stiffnesses for each TV, and the

times during which those targets are in force. Central to this

model is a gestural dictionary that specifies the ensemble of

gestures corresponding to a syllable’s phones, and a set of

temporal coupling principles (Goldstein et al., 2006; Nam,

2007; Saltzman et al., 2008) that couple the syllable’s ges-

tures to one another in time. Gestures at the margins of

neighboring syllables and words are also coupled to each

other to coordinate the syllables in time.

Second, fĜ; B̂g is input to a task dynamic model (Saltz-

man and Munhall, 1989). The model implements the ges-

tures as a set of second-order critically damped systems

governing the dynamics of the TVs and generates TV time

functions V̂ ¼ ½t̂1;…; t̂T �, where ~tt is an eight-dimensional

vector specifying the values, at time t, of the eight variables

listed in Table I, and coordinated motion patterns for the

system’s model articulators (e.g., jaw, upper lip, and lower

lip, etc.). The vocal tract model (CASY) and HLsyn then

convert the synthesized TVs, V̂ , into a synthesized acoustic

signal, Ŝ.

One of the core hypotheses of articulatory phonology is

that each word corresponds to a set of gestures that is invari-

ant within the language community (except for large-scale

sociolect and dialect shift phenomena), and that the routine

pronunciation variability of spontaneous speech is caused

not by changes in gestural composition but by variation in

gestural timing (Browman and Goldstein, 1992) that can

result in changes in the amount of temporal overlap between

pairs of gestures and in spatial reduction due to reduced acti-

vation times. The algorithm developed here makes the strong

assumption that the dynamical parameters (target and stiff-

ness) of gestures do not change from instance to instance,

only the durations and relative timings of gesture activation

FIG. 4. The definition of a GPV in a gestural score. A GPV is defined by the

list of gestures that are continuously active over a given sequence of time-

frames of the gestural score. Using the gestural score for the word span from

Fig. 2, a GPV is shown as the semi-transparent rectangular box spanning the

interval during which gestures are simultaneously active in the LIPS, TT,

TB, and GLO; the set of TVs and target and stiffness values associated with

the GPV is indicated to the right of the box.
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are allowed to vary. In that sense, the procedure developed

here is best thought of as analogous to forced alignment of a

phonetic transcription, in which the parameters of the units

do not change, only their temporal boundaries. However,

because of the nature of the mapping from gestural dynami-

cal parameters to articulatory movement to sound, changing

these durations will have complex effects on the acoustics,

as discussed further below. The hypothesis that gestural pa-

rameters do not change is, of course, overly strong. There is

good evidence (for example, Byrd and Saltzman, 2003; Cho,

2006) that dynamical parameters of gestures may be effec-

tively influenced by prosody. However, the goal of the pres-

ent work is not to develop a complete, optimal gestural

model of an utterance but rather a transcription indicating

the temporal intervals during which the phonological gesture

units are likely to be active. The ability to transcribe a large

database in this way constitutes a new source of knowledge

about the temporal regularities of gestural structure, and

could also lead to an automated investigation of dynamical

parameter variation that is not itself being addressed here.

For example, the gestural transcription of the microbeam

database will allow automatic analysis of the articulatory ki-

nematics of a particular gesture type as a function of various

contextual variables.

In order to make automatic gestural annotation compu-

tationally tractable, we introduced a further constraint,

namely, any gestures that overlap at all in the canonical pro-

nunciation remain overlapped in every reduced pronuncia-

tion, and vice versa. The result is that the sequence of

distinct GPVs, G ¼ Ĝ, is invariant, and all pronunciation

variability must be explained by variation in the gestural

boundary times, B̂. As the boundary times vary, the amount

of times two gestures overlap can vary; however, any

changes of boundary times associated with the estimation

process are not allowed to remove (or introduce) interges-

tural overlap intervals that are present (or absent) in the pro-

totype gestural scores.1 Additionally, gestural activation

durations are allowed to vary with the estimation process;

significant decreases in activation duration can result in

undershoot, even to the point of apparently deleting phones

or syllables. The goal of ABS gestural annotation, therefore,

is to find the boundary times B̂ such that the resulting syn-

thesized speech signal Ŝ matches the observed signal S with

minimum error. We propose to solve this problem by using

the linguistic gestural model of TADA to generate an initial

set of prototype gestural boundary times, B̂ð0Þ for the corre-

sponding TVs, V̂
ð0Þ

, and acoustic signal Ŝ
ð0Þ

. The initial

boundary times are then iteratively refined, producing syn-

thesized outputs, fB̂ðiÞ; V̂ ðiÞ; ŜðiÞg with successively reduced

distances DðS; ŜðiÞÞ.
A reasonable baseline may be generated by dynamic

time warping (DTW) of Ŝ
ð0Þ ¼ ½ŝð0Þ1 ;…�, the acoustic signal

synthesized by TADA based on B̂
ð0Þ ¼ ½b̂ð0Þ1 ;…�. DTW com-

putes a warping function w(t) such that the warped signal

ŝ
ðDTWÞ
wðtÞ ¼ ŝ

ð0Þ
t minimizes the target distance metric

DðS; ŜðDTWÞÞ (Sakoe and Chiba, 1978). The final gestural

score computed by DTW is then given by the canonical ges-

tural score, Ĝ ¼ G, with its boundary times re-aligned as

b̂
ðDTWÞ
m ¼ w

�
b̂
ð0Þ
m

�
: (1)

DTW is limited by two important sources of mismatch

between the synthesized signal and the natural speech signal.

First, the synthesized signal is generated based on a standard

male vocal tract model, regardless of the gender or other

characteristics of the speaker who produced the natural

speech utterance. Second, the signal Ŝ
ð0Þ

is, by default, a

careful production with considerably less phoneme reduction

than one would expect in a natural utterance. DTW of the

speech signal does not produce phoneme reduction. If Ŝ
ð0Þ

contains a carefully pronounced stop consonant or fricative

that is completely missing in the natural speech utterance,

DTW has no way to implement this undershoot (or deletion)

process. Therefore, it must find a time alignment that in

some way forces an approximate match despite the differ-

ence in apparent phonemic content of the two signals.

We used an ABS procedure that eliminates mismatch

caused by phoneme undershoot (Fig. 5). Specifically, we

adapted a two-stage process in which (a) the first stage pro-

vided a coarse-grained warping to put the synthesized acous-

tics, Ŝ
ð1Þ

, into the same temporal ball park as the target

acoustics, S, and (b) the second stage created a series of itera-

tively refined boundary time vectors, B̂
ðiÞ

, for i 2 f1; 2;…g.
Each set of boundary times, B̂

ðiÞ
is used by TADA to generate

a new set of TVs, V̂
ðiÞ

, and from them, a new synthesized

speech signal Ŝ
ðiÞ

. The mapping from B̂
ðiÞ

to B̂
ðiþ1Þ

is per-

formed in a manner that guarantees DðS; Ŝðiþ1ÞÞ � DðS; ŜðiÞÞ.
The first stage of the process, generating B̂

ð1Þ
from B̂

ð0Þ
,

could be performed using DTW between Ŝ
ð0Þ

and S, and

then the resulting time-warping function to transform B̂
ð0Þ

to

B̂
ð1Þ

. However, experiments indicate that greater accuracy

can be achieved by taking advantage of the relationships

between the natural utterance’s phone transcription, {A, w}

and the gestural score. Although there is no one-to-one map-

ping between the gestural boundary times B̂
ðiÞ

and any corre-

sponding phone boundary times, in many cases approximate

synthetic phone boundary times, ŵ, can be estimated from B̂
using a set of simple heuristics that follow from the assump-

tion that the gestural time constants are assumed to remain

fixed. For example, the acoustic onset of consonantal phones

(or word-initial vocalic phones) is taken to be approximately

60 msec after the onset of the corresponding gesture.

FIG. 5. (Color online) Block diagram of the overall iterative ABS warping

architecture for gesture specification.
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This lag captures the (gesture-independent) time required

for an articulatory movement (which begins slowly) to

have a measurable effect on the acoustics. For example,

Mooshammer et al. (2012) found that in [@-(C)V] sequences,

the onset of the formant transitions between the schwa and

the following segment (regardless of the manner class of the

segment–stop, fricative, liquid, vowel) coincided approxi-

mately with the peak velocity of the constriction gesture

associated with the segment, which in turn occurred regu-

larly 60 to 70 msec after the gesture onset. Of course, the

onset of formant transitions is not the standard acoustic land-

mark associated with segments in a forced alignment, and

the time of those standard landmarks is expected to be de-

pendent on consonant manner. But 60 msec is the minimum

lag, and further manner-related differences are expected to

emerge in the course of the iterative procedure. Similarly,

the onset of vocalic phones is approximated as 40 msec after

the onset of the release gesture for the preceding consonant.

Utterance offsets are approximated as 60 msec after the off-

sets of final gestures. Taking advantage of this approximate

meta-information, the approximated phone boundary times

ŵð0Þ of the synthetic utterance are warped so that ŵð1Þ ¼ w.

The same time-warping function is then applied to B̂
ð0Þ

to

generate B̂
ð1Þ

.

Due to possible errors in estimating phone boundaries,

the boundary times B̂
ð1Þ

may not be optimal, and therefore it

is useful to iteratively refine them in the second stage of our

procedure. The phone boundaries for ŵð1Þ are individually

changed in one of 5 ways [no change, 610 msec, 620 msec]

to find an optimal warping scale. All of the 5L � 1 possible

piece-wise warpings of ŵð1Þ are tested (where L is the num-

ber of phones), and the one whose corresponding synthe-

sized speech signal minimizes DðS; ŜÞ is retained as ŵð2Þ.
This procedure (piecewise phone boundary modulation and

distance measure) is performed iteratively until DðS; ŜðiÞÞ is

minimized. At each iteration, the algorithm is allowed to

shift each phone boundary by at most 20 msec; in effect, this

constraint avoids over-fitting, in much the same way that

slope constraints avoid over-fitting in DTW.

Figure 6 compares the XRMB (top panel), prototype

TADA (middle panel), and time-warped TADA (bottom

panel) utterances for the word “seven” from task003 of

XRMB speaker 11, in which each panel shows the corre-

sponding waveform and spectrogram. Figure 6 (middle and

bottom panels) also displays the gestural scores for the pro-

totype and time-warped TADA utterances, with lips, TT,

and TB gestures as gray blocks overlaid on the spectrogram

showing how gestural timing is modulated by the proposed

time-warping procedure.

Each iteration of the ABS procedure requires synthesiz-

ing and testing 5L þ 1 speech waveforms, where L is the

number of phones in the utterance. Large values of L are not

practical. In order to control complexity, all experiments in

this paper perform time warping on a word-by-word basis.

After the last iteration, for the purpose of evaluation to be

described in Sec. IV, the obtained word-level gestural scores

are concatenated to yield the utterance-level gestural score

such that the final phone offset time of one word (as pre-

dicted by the estimated phone boundary sequence ŵðiÞ) is

equal to the initial phone onset time of the following word.

Since gesture onsets and offsets extend beyond the corre-

sponding phone boundaries, such cross-word phone bound-

ary concatenation will typically result in gestural overlap at

the boundaries. Further, since the activation duration of ges-

tures on either side of the boundary will vary (for example,

due to prosodic factors), the overall percentage overlap of

gestures across the boundary will also vary. However, the

cross-word overlap is not directly optimized, and should be

in future work. TADA is finally executed again on the

utterance-level gestural scores to generate the final synthe-

sized TVs and synthesized speech signal.

The proposed approach is independent of any articula-

tory information from XRMB. It is also independent of dif-

ferences among talkers. Based on word and phone

transcriptions, the architecture generates gestural scores and

TV trajectories using the default speaker characteristics pre-

defined in TADA. It is possible to imagine a similar proce-

dure that would iteratively refine the talker characteristics of

TADA in order to improve the match between S and Ŝ, but

as noted above, the goal is not to produce an optimized ges-

tural model of the utterances but rather an indication of the

temporal span of gesture activations. And it is not clear that

the map from gesture activation times to the time that conse-

quences are observable will vary due to talker’s morphology

and/or voice characteristics. Of course, the overall spectral

match will be better for some speakers than others. However,

as we will see in Sec. IV, gestural scores generated by the

proposed algorithm without the need for talker adaptation

are validated by the microbeam pellet data.

FIG. 6. Waveform and spectrogram of XRMB, prototype TADA, and time-

warped TADA speech for “seven.” For simplicity’s sake, CL, VEL, and

GLO gestures are not presented in this figure. CRIT denotes 1 mm constric-

tion degree for the fricatives (/s/ and /v/) and CLO denotes 0 mm constric-

tion degree for the stop /n/.
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IV. EVALUATION OF THE GESTURAL ANNOTATION
PROCEDURE

We have implemented the proposed landmark-based

ABS time-warping architecture for gestural score annotation

across all 56 speech tasks from the 47 speakers of the

XRMB database (however, some speakers performed only a

subset of the 56 tasks). We performed two tests to evaluate

our methodology.

First, we compared the proposed time-warping strategy

to that of the standard acoustic DTW (Sakoe and Chiba,

1978). We used an acoustic distance measure between the

XRMB natural speech, Starget and the TADA speech after:

(1) DTW only and (2) our iterative landmark-based ABS

time-warping method. We tested three types of distance met-

rics: The standard log-spectral distance (DLSD), the log-

spectral distance using linear prediction spectra (DLSD-LP),

and the Itakura distance (DITD). DLSD is defined in Eq. (2),

DLSDðS; ŜÞ ¼
XT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN�1

k¼0

10 log
10

st½k�
ŝt½k�

� �2

vuut ; (2)

where st½k� and ŝt½k� are defined to be the kth frequency bins

of the magnitude short-time Fourier transforms computed at

time t from the natural and synthesized speech signals,

respectively. T is the number of frames for a given utterance.

DLSD-LP is identical to DLSD except that the feature vectors

are linear prediction spectra rather than short-time Fourier

spectra. DITD can be defined in terms of the linear prediction

spectrum, st½k� as in Eq. (3)

DITDðS; ŜÞ ¼
XT

t¼1

ln
1

N

XN�1

k¼0

st½k�
ŝt½k�

" #
� 1

N

XN�1

k¼0

ln
st½k�
ŝt½k�

� � !
:

(3)

DTW can only manipulate the temporal alignment of Starget

and the TADA speech, while manipulation of gestural acti-

vation durations will produce changes in the spectral content,

as a function of changes in overlap and undershoot of ges-

tures. If these changes in gestural score are capturing real in-

formation about the temporal patterning of gestures in these

utterances, the resulting spectral changes should produce an

improved match of the TADA model to Starget over what can

be achieved by purely temporal modulation of the spectral

pattern.

Twelve different speech tasks (available from all speak-

ers) were selected randomly from the XRMB database to

obtain the distance measured between the natural and

synthetic speech. The distances between DTW and the itera-

tive time-warping approach were compared over entire utter-

ances, and the results are presented in Table II. The results

confirm the hypothesis that the spectral changes induced by

changes in the patterning of gestural activation is capturing

significant information about the natural utterance’s tempo-

ral structure. Because the spectral changes due to overlap

and undershoot might be hypothesized to influence

unstressed syllables more than stressed ones, and vowels

more than consonants, the distance metrics were calculated

separately for vowel and consonant regions under primary

stress, secondary stress, and unstressed conditions. Results

are presented in Tables III and IV. Consideration of the spec-

tral distance measures (DLSD and DLSD-LP) reveals a substan-

tial improvement using the iterative warping method over

DTW. For obstruent intervals, improvement is quite robust,

roughly a factor of 2; more in some stress contexts, less in

others. This is not too surprising since the clear acoustic

landmarks provided by obstruent closures and releases are

directly employed by the iterative warping algorithm. Per-

haps more revealing is the large improvement (also approxi-

mately 2:1) shown by the stressed vowel intervals. Since

vowel gesture onsets and offsets do not directly produce

acoustic landmarks, this suggests that the TADA model is

capturing some vowel-consonant gesture coordination regu-

larities in a useful way. This is further supported by the

weaker improvement shown for secondary-stressed and par-

ticularly reduced vowel intervals. The coordination general-

izations captured by the TaDA model are those for stressed

syllables, and it would be expected that the unstressed sylla-

bles show considerable variability in that coordination. Less

improvement is found during sonorant consonant intervals

but this appears to be because of how well DTW does during

these intervals, rather than poor performance of iterative

warping. DTW may do well because of the smooth change

from vowel to consonant exhibited by sonorants.

Secondly, we evaluated how similar the TV trajectories

generated from our proposed approach are compared to

those derived from the recorded flesh-point (pellet) measure-

ments available in the XRMB database. The TVs were esti-

mated from the pellet information as follows. LA can be

TABLE II. Distance measures between the warped signal and the XRMB

signal from using (1) DTW and (2) proposed landmark-based iterative ABS

time-warping strategy.

DLSD DLSD-LP DITD

DTW 3.112 2.797 4.213

Iterative warping 2.281 2.003 3.834

TABLE III. Distance measures between the warped signal and the XRMB signal from using (1) DTW and (2) proposed landmark-based iterative ABS time-

warping strategy at vowel regions.

Primary stress vowels Secondary stress vowels Unstressed vowels

DLSD DLSD-LP DITD DLSD DLSD-LP DITD DLSD DLSD-LP DITD

DTW 2.86 2.53 4.11 2.67 2.39 3.98 2.29 1.97 3.95

Iterative warping 1.54 1.28 4.01 1.90 1.69 3.99 2.24 1.93 3.58
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readily estimated as a Euclidean distance between the upper

and lower lip pellets in the XRMB data. However, the

tongue-associated TVs (TBCL, TBCD, TTCL, and TTCD)

involve more complex procedures for estimation from pel-

lets. We derive TV trajectories based on a polar coordinate

system with reference to the origin labeled F in Fig. 1.

TTCL is an angular measure of T1 with respect to the coor-

dinate origin of the polar grid reference system, F, and

TTCD is the minimal distance from T1 to the palate outline,

which was traced for every talker in the database. For TBCL

and TBCD, a circle was estimated for the TB such that it

passed through T3 and T4 with a fixed radius.2 TBCL was

estimated as the angle of a line connecting the TB circle’s

center (C in Fig. 1) and the coordinate origin. To measure

TBCD, it was necessary to estimate the dorsal vocal tract

outline—the palate trace and the pharyngeal wall are avail-

able in the XRMB but there is a gap between the two. The

palate trace was extended rearwards by obtaining the convex

hull of all tongue pellet data for that subject; the remaining

gap to the pharyngeal wall was then linearly interpolated.

TBCD was estimated as the shortest distance from the TB

circle to the dorsal outline. Note that GLO and VEL were

excluded from the evaluation because XRMB does not con-

tain any corresponding flesh-point data for these TVs.

Once the TV trajectories were derived from the XRMB

recordings, their correlation with the TVs TADA-generated

from the final estimated gestural scores was computed. We

have used the Pearson product moment correlation (PPMC)

which indicates the strength of a linear relationship between

the TADA-generated and the XRMB-derived TV trajectories

and is defined as

rPPMC¼
N
XN

i¼1

ŝisi�
�XN

i¼1

ŝi
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si

�
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(4)

where s and ŝ represent the TADA-generated and XRMB-

derived TV vector, respectively, and N represents their

length. Each phone is associated with a set of gestures con-

trolling the corresponding TVs. The correlation measure was

performed during the activation interval of each phone’s pri-

mary gesture(s); e.g., TT gesture for /t/ and /s/, lip gesture

for /p/ and /f/, etc. Before the correlation is computed, the

XRMB-derived TVs (145.6452 Hz sampling rate) were

up-sampled to the sampling rate (200 Hz) of the TADA-

generated TVs by linear interpolation. The final overall

PPMC for a phone was calculated by averaging all the indi-

vidual PPMCs for that given phone. Table V shows the cor-

relations3 obtained between the TADA-generated TVs and

those derived from XRMB flesh-point data. The correlation

analysis for vowel phones was only performed for TBCL

and TBCD for unrounded vowels, as they are produced in

the model with no active lip control, and also for LA for

rounded vowels. The PPMC for the constriction location var-

iables (TTCL and TBCL) were lower than the degree varia-

bles (TTCD, TBCD, and LA) because the location variables

capture more speaker specific information (e.g., the tongue

ball radius, the hard palate contour, etc.). However, the TVs

recovered from acoustics by our TADA-based method were

speaker invariant, whereas the TVs approximated from

XRMB movement data were speaker specific; hence, the

correlation results for location were not as high as those

obtained for the speaker independent constriction degree

variables. This is particularly an issue for the TBCL for vow-

els, which has the lowest correlation overall. The CL for low

back vowels is in the pharynx but the tongue pellets are only

on the front part of the tongue. So determining the appropri-

ate CL using the procedure adopted here would depend on

having the correct radius for the tongue ball, and this radius

is not being adjusted at all. Future work in this area could

remedy this by optimizing the radius for a given speaker sep-

arately on each optimization cycle. TTCL is also poor, pre-

sumably because of differences in the overall size of the

talkers’ heads, which caused the center of the grid system to

be effectively misplaced.

TABLE IV. Distance measures between the warped signal and the XRMB signal from using (1) DTW and (2) proposed landmark-based iterative ABS time-

warping strategy at consonant regions.

Primary stress sonorants Secondary stress sonorants Unstressed sonorants

DLSD DLSD-LP DITD DLSD DLSD-LP DITD DLSD DLSD-LP DITD

DTW 1.82 1.49 3.53 1.66 1.29 3.69 1.74 1.47 3.33

Iterative warping 1.42 1.15 3.45 1.54 1.27 3.70 1.33 1.04 3.11

Primary stress obstruents Secondary stress obstruents Unstressed obstruents

DTW 3.80 3.59 4.25 3.53 3.32 4.10 3.21 3.01 3.70

Iterative warping 1.37 1.21 4.01 2.22 2.05 3.71 1.27 1.08 3.57

TABLE V. Correlation between the annotated TVs and the TVs derived

from the measured flesh- point information of XRMB database.

Correlation (r)

TVs Consonants Vowels

LA 0.715 0.686

TTCL 0.291 —

TTCD 0.596 —

TBCL 0.510 0.391

TBCD 0.579 0.587

Avg 0.538 0.555
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An alternative approach could leverage methods devel-

oped by Carreira-Perpi~n�an and colleagues for estimating the

complete tongue contour from limited landmarks like those

available in the XRMB (Qin and Carreira-Perpi~n�an, 2010).

This method is particularly effective when a complete con-

tour is available as training data, such as might be obtained

from the x-ray raster scans available for some XRMB speak-

ers that were used to locate the initial positions of the pellets.

Even without such training data the estimations resulting

from this machine-learning technique have been shown to

outperform spline interpolants, particularly when extrapolat-

ing beyond the pellets to the tongue root or tip locations. By

deriving TBCL from an improved estimate of the mid-

sagittal tongue surface obtained by this method (particularly

extrapolated pharyngeal tongue position) we could expect an

improvement in the speaker-specific correlation results.

V. CONCLUSION AND FUTURE DIRECTIONS

We have proposed a landmark based iterative ABS

time-warping architecture that can potentially provide an

articulatory gesture annotation for any speech database con-

taining time-aligned word and phone transcriptions. The pro-

posed method is robust to speaker and contextual variability,

and generates a summary of the acoustic signal that is more

useful for ASR applications than a phone-based transcrip-

tion. We are currently in the process of generating a set of

gestural annotations for a large vocabulary speech database

and aim to extend our automated gestural annotation

approach to other speech recognition databases as well.
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