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Effects of Additive  Noise  on  Signal  Reconstruction 
from  Fourier  Transform Phase 

CAROL Y. ESPY, STUDENT MEMBER, IEEE, AND JAE s. LIM, SENIOR MEMBER, IEEE 

Abstract-The effects of  additive  noise in  the given phase on signal 
reconstruction  from  the  Fourier  transform phase  are  experimentally 
studied. Specifically, the  effects  on  the sequence reconstruction of 
different  methods  of sampling the degraded  phase  of the  number of 
nonzero  points  in  the sequence, and of the noise level, are examined. 
A sampling method  that significantly  reduces the  error  in the recon- 
structed sequence is obtained,  and  the  error is found to increase as 
the number  of  nonzero  points  in the sequence  increases and as the noise 
level increases. In  addition,  an averaging technique  is developed  which 
reduces the  effects of  noise  when the  continuous phase function is 
known. Finally, as  an illustration of  how  the results in  this  paper may 
be applied in practice, Fourier  transform signal coding is considered. 
Coding only  the  Fourier transform  phase and  reconstructing  the signal 
from  the  coded phase is found to be considerably less efficient (i.e., 
a  higher bit rate is required for  the same  mean-square error)  than re- 
constructing  from  both  the  coded phase and magnitude. 

I .  INTRODUCTION 

R ECONSTRUCTION of a  discrete time signal or  sequence 
from  its  Fourier  transform phase has a  variety of  po- 

tential applications. For  example, in  phase-only  holograms 
known as “kinoforms” [ l ]  , the  Fourier  transform  magnitude 
information is lost while the phase is  retained. If the magni- 
tude  information  and,  thus,  the signal could be recovered from 

Manuscript received October 26, 1981; revised April 15,  1982. This 
research was supported in part  by  the National Science Foundation 
under Grant ECS80-07102. 

The  authors are  with the Department of Electrical Engineering and 
Computer Science, Massachusetts Institute of Technology,  Cambridge, 
MA02139. ’ 

the phase information  alone,  the  quality of images recon- 
structed  from  kinoforms  could be  significantly  improved. 

Although  a  sequence is not,  in general,  recoverable from  the 
phase information  alone,  under  certain  conditions which are 
satisfied in  many practical cases of  interest, a  sequence can  be 
reconstructed  from  the phase information alone.  Specifically, 
Hayes,  Lim, and  Oppenheim [2] recently have shown  that a 
finite  duration  sequence, provided its  z-transform has no 
zeroes in reciprocal  pairs or  on  the  unit circle, is .uniquely 
specified to  within a scale factor  by  its Fourier transform 
phase. 

Even though  the  results  by Hayes,  Lim, and  Oppenheim [2] 
have important  theoretical significance, they are iimited  in 
practice since they are based on the  assumption  that  the  exact 
phase is available. In  many  potential  application problems, the 
available phase  may have been  degraded by  measurement noise, 
quantization noise, etc.  To  understand  the  effects of phase 
degradation on the  reconstructed  sequence, a series of experi- 
ments  has been performed. In this  paper, we present  the  ex- 
perimental results and  propose a technique  that reduces the 
phase degradation  effects when the  continuous phase function 
is available. 

The  organization of this  paper is as follows. In  Section 11, 
important  theoretical results  relevant to t h s  paper  are sum- 
marized. A discussion of  the phase-only signal reconstruction 
algorithm used in  the  experiments is also given. In Section 111, 
the series of  experiments is discussed and  the results  are  pre- 
sented.  In  Section IV, we illustrate  how  the results  in Section 
111 may be applied  in  practice.  In  Section V, a technique to 
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reduce the  effects  of phase degradation when  the  continuous 
phase function is available is discussed. Finally,  a summary  of 
the  major results of this paper is presented  in  Section VI. 

11. SUMMARY OF PREVIOUS THEORETICAL RESULTS 
Let x(n) and y(n) be two  finite  length sequences  whose z- 

transforms have no  zeros  in reciprocal  pairs or  on  the  unit 
circle. Let 0,(0)  and 0,(o) denote  the  Fourier  transform 
phases of x(n)  and y(n), respectively.  It  can  be shown [2] 
that if Ox(w) = O,(w) for all w, then x(n)  = Cy@) for  some 
positive constant C. Moreover, if tan 0,(w) = tan 0,(w) for 
all 0, then x(n) = Cy(n) for  some real constant C. 

The above  result can be extended to  the case when the 
phase function is known  at a finite  set  of frequencies. Specifi- 
cally, if x(n) and y(n)  satisfy the  conditions  stated above and 
are zero  outside  the interval 0 G n < N  - 1, it can be shown 
[2] that if O,(w) = O,(w) at ( N -  1) distinct  frequencies be- 
tween  zero  and n, then x(n)  = Cy(n) for some positive con- 
stant C. In  addition, if tan Ox(w) = tan O,(w) at ( N -  1) dis- 
tinct  frequencies  between  zero  and n, then x(n)  = Cy(n)  for 
some  real constant C. 

To reconstruct  the  sequence  that satisfies the above condi- 
tions  from  its  Fourier  transform phase or phase  samples, two 
numerical algorithms have been  developed. The  first is an 
iterative algorithm which improves  the  estimate  in  each  itera- 
tion.  The  second is a noniterative  algorithm which reconstructs 
the sequence by solving a set of linear equations.  In  this  paper, 
the  noniterative  algorithm  has been used exclusively since it 
leads to the desired solution  without  any  iterations  and is very 
flexible  in  choosing the frequencies at which the phase func- 
tion is sampled. 

The  noniterative  algorithm  can  be derived [23 from  the defi- 
nition  of  the  Fourier  transform phase. Specifically, by expres- 
sing tan Ox(o) as the imaginary part  of  the  Fourier  transform 
divided by  the real part and by  some algebraic manipvlations, 
it  can be shown [ 2 ]  that 

N -  1 
x(n) sin [Ox(w) + no] = -x(O) sin 0,(0).  (1 1 

By sampling O,(o) at (N - 1) frequencies between  zero  and n, 
(1) can  be  expressed  in matrix  form as 

n =  1 

sr = -x(O)B (2 ) 

where x is a column vector containing  the values of x(n)  for 
1 < n G N -  1 and x(0) is the  unknown scaling factor.  The 
matrix S in (2) can  be shown  to have an inverse and  the vector 
x can be  determined  from 

x = -x(O) S--'b. (3)  

For a given x(O), the vector x obtained  by (3) is the  unique 
desired solution. 

From (3) ,  the major computation involved in the  nonitera- 
tive algorithm is the inversion of  an ( N -  1 )  X ( N -  1) matrix 
which, as N gets large, becomes more difficult and  may give 
rise to severe roundoff-errors  resulting in numerical instability. 
This potential  problem  has been  avoided  by  limiting the ex- 
periments to relatively small values of N a n d  by  detecting [3] 
the  occurrence  of numerical instability  in each reconstructed 
sequence. 

The above  results have also been extended [4] to  two- 
dimensional signals. 

111. EXPERIMENTS 
When the  Fourier  transform phase is degraded by  additive 

noise, (1) can be written as 

N - 1  
x̂ @) sin [e&) + w (a) + n . o J 

= -x(O) - sin [6Jx(o) t w (w)] (4) 

where w(w) represents  the additive noise in the phase and 
$(n) is the  sequence  reconstructed  from  the degraded  phase. 
For  nonzero additive  noise w(w),  $(n) in (4) is different  from 
x(n), and  the objective of  this  paper is to  study  the  effect of 
w(w) on the  error  between x(n) and x^(n). Initially, we con- 
sidered doing a theoretical  study  of  the  error  between x(n) 
and x^@). Since the noise w(w)  is in the  argument  of  the sine 
function  and,  thus,  the  coefficients in the  matrices S and B 
in (3) are  degraded in a  highly nonlinear  manner, a  simple yet 
meaningful theoretical analysis was difficult. As a result,  we 
have made  an empirical study  of  the  effect  of  additive noise 
in phase on signal reconstruction  by  performing a  series of 
experiments. In this section, we discuss these experiments  and 
their results. 

The  reconstruction process used in the  experiments is sche- 
matically illustrated in Fig. 1. In this  figure, x(n)  denotes  an 
N point sequence  which  satisfies the  conditions  in  Section 11. 
Each point in x(.) is statistically independent  of all other 
points,  and is obtained  from a zero-mean Gaussian density 
function. Thus, x(n) is a segment of a  sample of a  zero-mean 
white Gaussian random process. The sequence x(n)  is then 
Fourier  transformed  to evaluate its phase function O,(w). The 
function 0,(w) is then sampled at N -  1 distinct  frequencies 
between 0 and n. Digitally generated  white noise is then 
added  directly  to  the undegraded  phase to  obtain  the degraded 
phase. Each noise  sample is statistically  independent  of all 
other noise samples, and is obtained  from a uniform  prob- 
ability  density  function given by 

1 

n = l  

pw(wo)={T - w l < w o  < W l  (5) 

otherwise 

where wl denotes  the noise level. The noise levels of  interest 
lie in the range n X IO-' < wl < n  X IO-' since,  for  most se- 
quences,  noise  below n X had negligible effects  upon 
the  reconstructed  sequence, whereas  noise  above n X lo-' 
had severe effects.  The degraded phase is then used to  recon- 
struct  the sequence x^(n) in (4) using the  noniterative  recon- 
struction  algorithm discussed in Section I1 and x^(n) is com- 
pared to x(n)  to  study  the  reconstruction  error.  To  quantify 
the  reconstruction  error,  the normalized  mean-square error 
(NMSE) is computed  from 

N -  1 
(x@) - kx^(n>)2 

x 2 ( n )  

n =O 
NMSE=- N - ,  

n=O 

- (6 1 
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Fig. 1. Experiments performed to study  the  effect of noise on signal reconstruction  from Fourier  transform phase. 

Since  a  sequence can be reconstructed  only within  a scaling 
factor  from  its  Fourier  transform phase, the  constant "k" in 
(6)  is arbitrary,  and we have chosen "k" to minimize the 
NMSE in  the  equation. 

To  study  the  effects of a  particular experimental  parameter 
on  the  reconstruction  error,  the  reconstruction  of Fig. 1 is im- 
plemented  for  1000 sequences. From  the resulting recon- 
structed sequences, the  mean  of  the NMSE  is computed.  The 
mean  of  the log of the NMSE (LOGNMSE) is also computed 
to detect  those cases in  which the average NMSE computed is 
primarily due to very large errors in  a small fraction of the 
1000 sequences. 

The  effects of phase degradation  are  examined first as a 
function  of  the sampling method. If the  exact phase is avail- 
able,  the NMSE is  zero  independent  of  the frequencies at 
which  the N -  1 phase samples are  obtained. When the phase 
is degraded,  however, the NMSE depends  on  the specific  sam- 
pling method.  To  determine a  sampling method  that  leads  to 
a small average NMSE, a number of different sampling strate- 
gies [ 3 ]  have been considered. These include  both  uniform 
and  nonuniform spacing between consecutive  frequencies. 
Among  these different  methods, choosing N -  1  frequencies 
(wi for 1 < i  < N -  1)  such  that w1 = n/2(N- 1)  and Aw = 
w i  - wiWl = n/(N- 1) for 2 d i < N  - 1 has  been  observed to  
lead to  the smallest average NMSE. This choice  of  frequencies 
minimizes the  maximum  separation  between  two consecutive 
frequencies under  the  interpretation  that w = 0 and w = n are 
connected. In addition,  the frequencies chosen are symmetric 
with respect to w = n/2. Examples of  this choice of N - 1 fre- 
quencies are  shown in Fig. 2 for N = 5 and 8. 

With the ( N -  1) samples of &(w) obtained  at  frequencies 
wi with w 1  = n/2(N- 1)  and Aw = n/ (N-  I), the  effects  of 
the sequence length N and noise level w l  on  the  reconstructed 
sequence were considered.  The values of N and w I  used are 
N =  4, 8, 16, 32, and  64,  and W I  = n X lo - ' ,  rr X rr X 
l o w 3 ,  n X and nX The average NMSE and 
LOGNMSE for these values of N and w l  are  shown  in Fig. 3 .  
In Fig. 3 ,  the noise levels wl and  the average NMSE are plotted 
on a logarithmic scale,  while the average LOGNMSE is plotted 
on a  linear scale. The results in Fig. 3 show  that  the average 
NMSE and LOGNMSE increase  as the noise level increases 
and  the sequence length increases. The deviation from this 
conclusion at  two  points in Fig. 3(a) is due to  the small frac- 
tion of the  reconstructed sequences, for which the  reconstruc- 
tion  error was large enough  to have a  significant effect  on  the 
average when  the NMSE  is linearly averaged. This is evidenced 
by the  fact  that  the deviation  disappears  in Fig. 3(b)  where the 
NMSE  is logarithmically averaged. In  this case, a small frac- 
tion of reconstructed sequences with large reconstruction er- 
rors will not have a  significant effect  on  the average. 

I 4 "  
0 v/ 2 7 I  

a )  N = 5  

I .  - ; ~ . - / w  
0 W P  TT 

b) N = 8  

Fig. 2. Examples  of N - 1 frequencies  chosen  with  Aw = n/(N - 1) and 
~1 = n/2(N - 1). 
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Fig. 3. (a) Normalized mean-square error  as  a function  of  data length  N 
and noise level w l ;  Aw = n/(N - l), w1 = n/2(N - 1 ). (b) Log nor- 
malized mean-square error as a function of data length N a n d  noise 
level w z ;  AW = n/(N - 1), w1 = n/2(N - 1). 
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Fig. 4. Experiments  performed to study  the  effect of averaging more  than  one  reconstructed sequence. 

IV. APPLICATIONS 
The results in Section 111 may be useful in  some practical 

situations in which  phase-only signal reconstruction is con- 
sidered. In this  section, we illustrate  one  such  example. 

In Fourier  transform image coding, both  the phase and 
magnitude are  coded  and  an image is reconstructed  from  the 
coded phase and  magnitude.  For  monochrome images, the 
magnitude  and phase may be coded  at  bit rates of 1 .O-1.5 bits/ 
pixel with mean-square error  distortion less than 0.5 percent 
[5]. Since an image can  be reconstructed  from  its  Fourier 
transform phase alone, we may consider coding  only  the phase 
and  then using the phase-only signal reconstruction algorithm 
to  reconstruct  the signal from  the  coded phase. Assuming that 
the phase is quantized  by a uniform  quantizer,  the bit rate 
required to achieve the  quantization noise level wl is given 
by [31 

B = log, (n/wJ (7) 
where B represents the  number of bits  in each  codeword. 
From Fig. 3, to achieve the average NMSE of 1 percent  for 
N =  64 (this corresponds  to a subimage size of 8 X 8 pixels), 
the noise level w l  should be less than 'IT X and  therefore, 
from (7), requires more  than 10 bits/pixel. Even though  the 
NMSE is not  exactly  the same as the mean-square error used 
in image coding  literature,  the  quantization noise has  different 
characteristics  from  the additive  noise used in  this  paper,  and 
the  data  that we used for analysis are  not  typical image data, 
the above  results suggest that  both a low  distortion  rate  and 
a low  bit  rate  cannot be achieved by  attempting  to  code  only 
the  Fourier  transform phase and  then  reconstructing  the image 
from  the  coded phase using the phase-only signal reconstruc- 
tion  algorithm. 

In addition  to  the  Fourier  transform image coding  problem, 
the results  in Section I11 may be useful to  other  applications, 
such as in speech  enhancement, where one  may consider first 
estimating  the phase more  accurately  from  the degraded 
speech, and  then  attempting  to  reconstruct  the signal from 
the  estimated phase information. 

V. SIGNAL  RECONSTRUCTION FROM MORE THAN 
N -  1 PHASE SAMPLES 

If more  than N -  1 phase  samples are available for signal 
reconstruction,  then  the  additional  information  may be  used 

- NO AVERAGES 
o----o 9 AVERAGES a 

z NOISE LEVEL 

A 
1 

! -f - AVERAGES, 

NOISE LEVEL 

U - 9 AVERAGES z e x 10-3 

Fig. 5. (a) Performance improvement in NMSE by averaging. N = 
16, Aw = n/(N - 1). Values of w1 used are: w1 = 4n/16(N - l), 
5~/16(N- I), . . , 12n/16[N- 1). (b) Performance improvement in 
LOGNMSE by averaging. N = 16, Am = n/(N - 1). Values of m1 
used are: w1 = 4n/16(N - l), 5n/16(N- 11, . , 12n/16(N- 1). 

to  reduce  the signal reconstruction  error. One approach we 
have considered to  exploit  the  additional  information is to 
average several reconstructed sequences obtained  from differ- 
ent  sets  of N -  1 phase samples. That is, if g l ( n )  is obtained 
from  one set of N -  1 phase samples and x^2(n) is obtained 
from a  different  set of N -  1 phase samples, then x̂ @) = 
(gl (n) t x^,(n))/2 may give a better  estimate  of x(n)  than 
either x̂ , (n) or g2(n).  

To test if averaging the  reconstructed sequences  reduces the 
error,  experiments were performed using the averaging process 
depicted in Fig. 4. In  the figure, FT represents  the  Fourier 
transform  operation, w ( o )  represents white noise generated 
from  the  uniform  probability density of (5), and &(a) repre- 
sents  the degraded  phase function.  The  function 8''(o) is sam- 
pled at M sets of N - 1 frequencies with A o  = r / (N - 1)  and 
the  jth  frequency  of  the  ith  set is denoted  by e^y'(oj). A se- 
quence is then  reconstructed  from  the degraded  phase function 
sampled at N - 1 frequencies in  each set, using the  nonitera- 
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tive  algorithm  [the  closed  form  algorithm (CFA)] discussed 
in  Section 11. The M sequences  reconstructed  in  this  manner 
are averaged to  form  a  new  sequence x^(n), which is then  com- 
pared to  the original  sequence x(n)  to  compute  the NMSE. 

As is shown  in Fig. 5, the  errors in the  reconstructed se- 
quences  are  smaller  relative to  the case when no averaging is 
performed.  Furthermore,  additional  experiments  showed  that 
as the  number  of  reconstructed  sequences  used  in  the aver- 
aging increases,  the average NMSE decreases,  but  at  a  lower 
rate. 

VI. CONCLUSION 
In  this  paper, we have studied  the  effect  of  phase  degrada- 

tion  on  the signal reconstruction  error, using the  noniterative 
signal reconstruction  algorithm. A number  of  different  sam- 
pling methods have been  considered  and  the  sampling  method 
that  appears  to  minimize  the average NMSE has  been  deter- 
mined.  Using  this sampling method,  the average NMSE and 
average LOGNMSE were computed as a  function of the se- 
quence  length  and  the noise level. 

The  usefulness  of  phase-only  reconstruction  in  Fourier  trans- 
form image  coding was, then,  considered as an  example  that 
illustrates how  the results  of this  paper  may be used  in  prac- 
tice.  Our  analysis suggests that  reconstructing  an  image  from 
the  coded phase using the  phase-only signal reconstruction 
algorithm is considerably less efficient  in  the bit  rate than  re- 
constructing  the image from  the  coded  phase  and  magnitude. 

Finally, to reduce  the  effects of  phase  degradation,  an aver- 
aging technique was developed  which  reconstructs  the signal 
from  more  than ( N -  1) phase  samples.  This  technique  can 
significantly  reduce the  error  and  may be  used  in  those  appli- 
cations  in  which  continuous  phase is available. 
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