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Use of Temporal Information: Detection of
Periodicity, Aperiodicity, and Pitch in Speech

Om Deshmukh, Carol Y. Espy-Wilson, Ariel Salomon, and Jawahar Singh

Abstract—In this paper, we present a time domain aperiodicity,
periodicity, and pitch (APP) detector that estimates 1) the propor-
tion of periodic and aperiodic energy in a speech signal and 2) the
pitch period of the periodic component. The APP system is partic-
ularly useful in situations where the speech signal contains simul-
taneous periodic and aperiodic energy, as in the case of breathy
vowels and some voiced obstruents. The performance of the APP
system was evaluated on synthetic speech-like signals corrupted
with noise at various levels of signal-to-noise ratio (SNR) and on
three different natural speech databases that consist of simultane-
ously recorded electroglottograph (EGG) and acoustic data. When
compared on a frame basis (at a frame rate of 2.5 ms) the results
show excellent agreement between the periodic/aperiodic decisions
made by the APP system and the estimates obtained from the EGG
data (94.43% for periodicity and 96.32% for aperiodicity). The re-
sults also support previous studies that show that voiced obstruents
are frequently manifested with either little or no aperiodic energy,
or with strong periodic and aperiodic components. The EGG data
were used as a reference for evaluating the pitch detection algo-
rithm. The ground truth was not manually checked to rectify or
exclude incorrect estimates. The overall gross error rate in pitch
prediction across the three speech databases was 5.67%. In the case
of synthetic speech-like data, the estimated SNR was found to be in
close proportion to the actual SNR, and the pitch was always accu-
rately found regardless of the presence of any shimmer or jitter.

Index Terms—Aperiodic and periodic energy, average magni-
tude difference function (AMDF), pitch detection, speech prepro-
cessing, voiced obstruents, voice quality.

I. INTRODUCTION

I N the production of speech, there are a number of sources
that generate acoustic energy in the vocal tract. Aperiodic

sources include aspiration, generated at the glottis; frication,
generated further forward in the vocal tract; and transient bursts
produced by the rapid release of complete constrictions. The pe-
riodic source in speech is created by vibration of the vocal folds
creating periodic energy at the glottis. These sources are filtered
by the vocal tract to generate an output signal, which will also
be periodic or aperiodic depending on the source(s). Identifying
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and quantifying these various sources has several applications
in speech coding, speech recognition and speaker recognition.

Most of the algorithms used to detect aperiodicity are passive,
i.e., aperiodicity is considered the inverse of periodicity in non-
silent regions. The amount of aperiodicity is estimated using in-
direct measures like zero crossing rate, high-frequency energy
and ratios of high-frequency energy to low-frequency energy.
These measures are prone to making errors in situations where
the signal has simultaneous strong periodic and aperiodic com-
ponents, as is the case with some of the voiced fricatives. Such
methods will also be only marginally useful in distinguishing
high-frequency periodic energy from high-frequency aperiodic
energy. In this paper, we present a time domain aperiodicity, pe-
riodicity, and pitch (APP) detector that estimates 1) the propor-
tion of periodic and aperiodic energy in a speech signal and 2)
the pitch period of the periodic component. The APP system
uses a time domain method and is based on the distribution
of the minima of the average magnitude difference function
(AMDF) of the speech signal. In the previous versions [1], [2],
the APP system made a binary decision about periodicity and
aperiodicity of each frequency channel. In contrast, the present
APP system estimates the proportion of periodic and aperiodic
components in each channel. The APP system also gives an es-
timate of the pitch period of the periodic component.

The structure of the periodicity/aperiodicity detection part of
the APP system is very similar to a pitch detection algorithm
and, hence, includes a block for the estimation of the pitch of the
periodic component of the signal. For the present work, pitch
is defined as the frequency of the vocal fold vibration. Many
methods have been proposed for reliable estimation of the pitch
frequency. A comprehensive review of such methods can be
found in [3]. From an auditory perspective, there are a number
of different types of pitch sensations as a function of the type of
sound source. For instance, a pure tone or a complex harmonic
stimulus with primarily low harmonics will generate a much
clearer pitch sensation than a complex harmonic stimulus with
primarily high-frequency harmonics, or a click train. A variety
of different models of pitch perception have been developed to
attempt to explain these perceptual phenomena. There are two
traditional types of models of human pitch perception: either
spectral pattern recognition models based on resolved frequen-
cies [4] or temporal models based on time-domain analysis [5];
see [6] for a review. Hybrid models based on peripheral auditory
processing [7], [8], that take into account both auditory filtering
and temporal processing may be able to account for most of the
abilities of human listeners.

Finally, note that the decomposition of signals into periodic
and aperiodic components is not a completely new idea. In the
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Fig. 1. Block diagram of APP system.

fields of auditory scene analysis [9], [10], some work has been
done on recognition of wide-band periodic (“weft,” as per [9])
and aperiodic (“click” and “noise cloud”) components in an
audio signal. In the context of speech processing and coding,
there has been considerable work that considers the problem of
splitting a speech signal into periodic and aperiodic components
for the purpose of manipulating the voice quality of synthetic
speech [11]–[13], studying turbulent sources in natural speech
[14], and sound hybridization on musical acoustics [15].

Our particular interest in developing the APP system is
to study variability in the acoustic manifestations of speech
sounds, particularly the voiced obstruents, and to use the
measures developed and the knowledge gained to improve the
performance of our speech recognition system [16]. With this
goal in mind, the APP system focuses on estimating the relative
spectro-temporal proportion of periodicity and aperiodicity in
speech signals.

The APP system has several applications in speech coding,
speech recognition and speaker recognition. It can be used in
tasks such as segmentation of speech into voiced and unvoiced
regions; the recognition of regions where both periodic and ape-
riodic components exist, e.g., in a breathy vowel, or a voice
fricative; or as a component of a system for phonological seg-
mentation and recognition. The strength of aperiodicity can also
be an important cue in distinguishing the place and voicing of
fricatives.

In Section II, the various stages of signal analysis are ex-
plained. The different databases used to train and evaluate the
APP system are also discussed in this section. Section III de-
scribes the different experiments performed to evaluate the per-
formance of the APP system in pitch detection and in period-
icity/aperiodicity detection. The performance results and their
implications are discussed in Section IV. Some conclusions are
drawn in Section V.

II. METHOD

A. Database

Several databases that consist of simultaneously collected
acoustic and electroglottograph (EGG, also referred to as
laryngograph) data were used to test the APP system. Different
databases were used to demonstrate the robustness of the system

to various recording conditions and to facilitate comparisons
with other similar works [17], [18].

The MOCHA [19] database consists of 460 utterances, each
recorded by two speakers (one male and one female) in clean en-
vironment at a sampling rate of 16 kHz. The MOCHA database
is hand transcribed. A subset of 50 randomly selected sentences
(25 from each speaker) was used in the development of the APP
algorithm. The Bagshaw (DB2) database [20] consists of 50 ut-
terances recorded each by one male and one female in clean en-
vironment at a sampling rate of 20 kHz. The Keele (DB5) data-
base [21] consists of one long utterance recorded by five males
and five females in clean environment at a sampling rate of 20
kHz.

A final database used to evaluate the APP system consists
of synthetic speech-like signals [17]. The signals are the out-
puts from a 50-pole linear predictive coding (LPC) synthesis
filter when it is excited by a pulse train that is corrupted by
Gaussian white noise (GWN). The signal-to-noise ratio (SNR)
varied from to 5 dB. The pitch period and amplitude of this
pulse were perturbed by specified degrees of jitter (fluctuation
in the pitch period) and shimmer (fluctuation in the amplitude
of the signal).

B. Signal Analysis

Signal analysis consists of a series of stages per channel fol-
lowed by across-channel processing, as detailed in Fig. 1. The
signal processing performed by each of the blocks is explained
in the following subsections.

1) Auditory Filterbank: The analysis begins by splitting the
signal into a set of bandpass frequency channels. The analysis
filterbank was a 60-channel auditory gamma-tone filter bank
[22] with channel characteristic frequencies (CFs) based on the
equivalent rectangular bandwidth (ERB) (as defined in [23])
scale, and ranging from 100 Hz to just below half the sampling
rate. Notice that the upper limit on the channel CF is sampling
rate dependent and, thus, no assumption about the sampling rate
of the signal is made. An auditory filter bank was preferred for
spectral analysis in order to provide an accurate weighting of the
frequency components, most importantly in terms of the relative
perceptual strength of the periodic and aperiodic components in
speech.
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Fig. 2. (a) Bandlimited output of the channel with CF = 1935 Hz. (b) Corresponding envelope obtained using the Hilbert transform.

2) Envelope Extraction: To remove fine structure while
avoiding excessive smoothing in the time domain, the Hilbert
envelope was used [24]. The Hilbert transform was approxi-
mated using a Kaiser window of order 512. The envelopes
of the individual channels are obtained by the function

where is the input signal, and is the Hilbert
transform of the input signal. Given a real narrow-band signal
as input, the Hilbert transform produces a version of its input
signal that is precisely 90 out of phase, such that the ampli-
tude of the complex sum of these two signals is an estimate of
the low-frequency amplitude modulation applied to the signal.
Fig. 2 shows that this transform preserves the abrupt changes at
the maximum rate that can be captured by a particular channel
given its CF.

3) Silence Detection and AMDF Computation: A frame is
judged to be nonsilent if its total energy is no more than 35
dB below the maximum total energy computed across all of the
frames in the utterance. All the other frames and their channels
are judged to be silent. For any given nonsilent frame of the
utterance, a channel within that frame is considered nonsilent if
its energy is no more than 45 dB below the maximum channel
energy that has been computed up to that point, including the
channel energies in the present frame. All the other channels
are judged as silent. If the channel is classified as silent, then
no further processing is done. These very liberal thresholds for
silence detection were empirically found using the training data
and their use was driven by the computational complexity of the
APP system. For real-time processing, the silence detector can
be adjusted so that the look ahead is considerably less (around
300 ms or so to include a vowel), or an inverse strategy can be
implemented where the silence threshold is based on minimum
energy as opposed to maximum energy as the reference.

The temporal envelope in each nonsilent channel was ana-
lyzed for periodicity, aperiodicity and pitch. If the temporal en-
velope signals are either monotonically increasing or decreasing
due to the amplitude variations at the boundaries of adjacent
sounds, then they are flattened prior to analysis. This flattening
is done by subtracting a linear function (whose slope is equal
to the rate of rise/fall of the envelope) from the envelope signal.
The raw pitch estimates in each channel were produced using
the short-time AMDF. The AMDF was chosen over the more
common autocorrelation operator due to the ease of computing

a confidence metric. The autocorrelation operation consists of
multiplication followed by addition, which is computationally
more expensive than the AMDF operation that consists of sub-
traction followed by addition. The AMDF [25] is defined as

where is the input signal, in this case is a 20-ms rect-
angular window and is the lag value, which varies from 0 to the
sample value equivalent of 20 ms (e.g., if the sampling rate is 16
kHz, will take values over the range {0,320}). This function
looks roughly like an inverted autocorrelation function. For pe-
riodic sounds, the AMDF function usually attains local minima
(referred to as dips hereafter) at lags roughly equivalent to the
pitch period and its integer multiples. The value of these dips is
referred to as the strength of the dips. If the signal is aperiodic,
the AMDF waveform will not show such evenly spaced dips.
The decision regarding periodicity and aperiodicity is based on
the location and the strength of the dips occurring in the AMDF
waveform. The dip locations and their strengths are found by
computing the convex hull [26] of the AMDF. The strength of a
dip can at the most be 1. The strength of the dip is the confidence
of that dip location being the pitch period at that instance. The
AMDF is computed for each nonsilent channel over a 20-ms
window and at a rate of 5 ms. Fig. 3(a)–(3d) shows the AMDF
and the dips for two typical periodic and two typical aperiodic
channels, respectively.

4) Computation of Possible Pitch Period Estimates: This
stage computes the possible pitch period estimates for each
frame based on the distribution of the AMDF dips summed
across the channels which is referred to as the summary mea-
sure. For a strongly periodic frame, the summary measure of
the dip strengths will result in clusters at the pitch value and its
integer multiples. For a strongly aperiodic frame, the summary
measure will result in dips that are randomly scattered over the
range of the possible lag values with no prominent clusters.
Fig. 3(e) shows the summary measure for a periodic frame and
Fig. 3(f) shows the summary measure for an aperiodic frame.
Notice that the coherence of the dips for a periodic frame results
in a maximum summary value that is an order of magnitude
higher than that obtained for an aperiodic frame.

Computation of the summary measure for a particular frame
depends on all of the channel estimates that were computed
within 10 ms of that frame. Recall that channel estimates are
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Fig. 3. (a)–(b) AMDF and its dips for typical periodic channels (x axis shows the lag values). (c)–(d) AMDF and its dips for typical aperiodic channels. (e)
AMDF dips clustered across all the channels in a typical periodic frame ( the vertical lines on each side of the clusters indicate the tolerance boundaries). (f) AMDF
dips clustered across all the channels in a typical aperiodic frame ( the vertical lines show the tolerance boundaries propogated from the previous periodic frames).
Notice that the maximum value of the dip strength over the range of dip locations is 1.4 in the aperiodic frame whereas the maximum value is 22 in the case of the
periodic frame.

Fig. 4. Algorithm for the computation of summary confidence of a frame.

computed every 5 ms. A frame rate of 2.5 ms is used for anal-
ysis so that gradual changes in the relative amounts of period-
icity and aperiodicity can be tracked.

At the beginning of the utterance, the lag location corre-
sponding to the maximum of the summary measure is chosen
as the peak location of a cluster. Other clusters are then formed
by finding maxima near integer multiples of this location. As
the analysis progresses, cluster locations from the previous
frames are used to find clusters in the current frame. The
locations of the peaks of the clusters of a frame are the pitch
period estimates for that particular frame. Note that, at this
stage, a frame can have more than one possible pitch period
estimates.

5) Computation of the Summary Periodic Confidence: The
algorithm to compute the summary periodic confidence is il-
lustrated in Fig. 4. For each cluster of a frame, first a period-
icity confidence measure is computed by summing the strengths
of all the dips that lie within a certain tolerance region of the
cluster peak. Dips outside this tolerance region are considered
spurious. The tolerance region consists of samples within a 1-ms
window on each side of the cluster peak location. The locations
of the cluster peaks are the possible pitch period estimates of
that frame and the corresponding periodicity confidences are
the confidences of those pitch period estimates being the actual
pitch period. Thus, a frame can have more than one periodicity
confidence.
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Fig. 5. Comparison of AMDF dips clustered across all the channels in (a) an aperiodic frame and (b) a weakly periodic frame. (x axis shows the lag value).

Frames belonging to strong periodic regions (e.g., the
middle of a vowel) have very high periodicity confidence
values. Frames corresponding to weakly periodic regions (e.g.,
voiced/unvoiced boundary regions or low-amplitude periodic
sounds such as a /w/) tend to have low periodicity confidence
values either because the dips near the pitch estimates are not
strong or because many of the channels are considered silent.
This leads to a considerable amount of overlap in the periodicity
confidences of weakly periodic and aperiodic frames. On the
training data, a threshold value of Sampling Rate/1000 1

was found to give maximum separation between strongly
periodic frames and weakly periodic or aperiodic frames. The
phonetic transcription provided with the training data was used
to label the frames as strongly periodic, weakly periodic and
aperiodic. It now remains to distinguish weakly periodic frames
from aperiodic frames.

Fig. 5 compares the summary measure for a frame in an ape-
riodic region [Fig. 5(a)] with that for a frame in a weakly peri-
odic region [Fig. 5(b)]; both frames have comparable periodicity
confidences. Notice that the aperiodic frame looks noisier than
the weakly periodic frame, i.e., the number of lags with nonzero
dips is more in the aperiodic frame than it is in the weakly pe-
riodic frame. Comparison of many such frames in the training
data showed that this difference is generally true. Hence, the
ratio of the number of lags with nonzero dips to the total number
of lags was used as a parameter to distinguish weakly periodic
frames from aperiodic frames. A value of 0.55 for this param-
eter was found to give maximum separation between weakly
periodic frames and aperiodic frames on the training data.

The performance of the algorithm on the training data
showed no considerable variation as these two thresholds were
varied over a certain range near the previously mentioned

1Note that the threshold is sampling rate dependent, making it robust for
databases with different sampling rates.

optimal values. This implies that these thresholds do not need
fine-tuning.

6) Pitch Estimation: For a given frame, all the clusters with
negative summary periodicity confidence are dissolved. If no
cluster survives this test, the frame is likely to be aperiodic and
the frame is not assigned a pitch value. For all of the other
frames, the peak of the first cluster is the pitch estimate of the
frame and the corresponding summary periodicity confidence is
the pitch confidence of the frame.

Note that the summary periodicity confidence is used only
to decide the frames to which pitch value is to be assigned and
plays no role in the computation of proportion of periodicity and
aperiodicity in channels.

The APP algorithm contains special checks to rectify pitch
halving and pitch doubling errors. To allow the flexibility to
change a pitch value, a cluster is formed near the half multiple of
the mean of previous pitch estimates if the summary periodicity
confidence of the cluster closest to the half multiple is greater
than that of the cluster near the previous pitch estimates. The
pitch value is then set to the peak of the cluster closest to the
half multiple. This allows the system to rectify its pitch halving
errors. A similar test, where the half multiple is replaced by an
integer multiple, is incorporated to rectify the pitch doubling
errors.

At the same time, these criteria were chosen in such a manner
that the algorithm could track the pitch correctly even when it is
actually halved. Fig. 6 shows one such example where the APP
system was able to detect the pitch halving. Notice that APP
system starts tracking the pitch halving after a delay of about
five frames since it was designed to need pitch estimates from
at least five previous frames (about 12.5 ms) to capture the pitch
halving before it will reflect pitch halving.

7) Proportion of Periodicity/Aperiodicity in Each
Channel: The distribution and the strengths of the dips in
the channels relative to the locations of the cluster peaks are
used to compute the proportion of periodicity and aperiodicity
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Fig. 6. (a) Time waveform for most of the word “this.” (b) EGG data. (c)
Comparison of F0 computed from the EGG data and the APP system (dashed
line marked with “�”). Notice that the pitch detector of the APP system is able
to track the pitch halving.

in each channel. The aim is to distinguish 1) strongly periodic
channels [e.g., Fig. 3(a)] from weakly periodic channels [e.g.,
Fig. 3(b)] and 2) strongly aperiodic channels [e.g., Fig. 3(c)]
from weakly aperiodic channels [e.g., Fig. 3(d)]. For each
channel, the strength of the AMDF dips closer to the cluster
peaks is used to estimate the periodicity strength. The ran-
domness in the distribution of the dips is quantified to capture
the degree of aperiodicity. If the sum of the periodicity and
aperiodicity measure is greater than one, they are scaled down
proportionally so that the sum equals one.

Periodicity measurement: Since speech is quasi-periodic, dips
with strengths closer to one should contribute one toward peri-
odicity, whereas dips with moderate strengths should contribute
their original value. To achieve this, the dip strengths are nor-
malized using a logarithmic function that is roughly linear for
smaller values and flattens for higher values. These normalized
dips are then weighted such that dips closer to the cluster peaks
contribute more toward periodicity. This contribution decreases
rapidly with increasing distance from the cluster peaks. Conse-
quently, we found that exponentially decaying weights perform
better than linearly decaying weights.

If a signal is periodic, it is expected that equally spaced dips
of similar strengths will be present in the AMDF. To account
for this, we consider regions around each pitch multiple sepa-
rately. That is, if the detected pitch of the frame is such that it
can accommodate N pitch multiples in the lags, then each of the
regions from for
is analyzed separately for periodicity. Each region is called a
channel cluster and its corresponding periodicity the cluster pe-
riodicity. The following equation shows the calculation of the
cluster periodicity for the th cluster

where is the strength of the dip closest to the peak of the
cluster, is the strength of dip locations away from the peak
and is the value of the exponential weighted function at lo-
cation .

The cluster periodicity can at most equal one; if multiple dips
are present in the cluster, the most significant dip closest to the
pitch period location contributes its normalized and weighted
strength and the other dips contribute at most one minus this
value. The average across the periodic clusters is taken as the
periodicity measure of the channel.

Aperiodicity measurement: The AMDF dips in channels that
are predominantly aperiodic are 1) located far from the pitch
period and its multiples, 2) are small in amplitude, and 3) are
generally numerous. The measurement of aperiodicity also uti-
lizes weighted strengths of AMDF dips with two important con-
siderations. First, dips far from the cluster peaks should con-
tribute close to their full value toward aperiodicity and this con-
tribution should gradually decrease for dips closer to the cluster
peaks. Thus, logarithmically increasing weights, with the max-
imum corresponding to the lag farthest from the cluster peaks,
are used. Second, the strength of aperiodicity should be directly
related to the number of spurious dips. Hence, the aperiodicity
measure is defined as the sum of these weighted dips instead of
the mean across the clusters.

The periodicity and aperiodicity measures for the channels
shown in Fig. 3 are, respectively, (a) 0.74, 0 (b) 0.49, 0 (c) 0.03,
0.79 (d) 0.09, 0.26. These values are in line with our expecta-
tions.

8) Proportion of Periodic and Aperiodic Energies: The
periodicity and aperiodicity measures discussed previously are
multiplied by the corresponding channel energies and summed
across the channels to get the overall periodic and aperiodic en-
ergies for the frame. The ratio of overall periodic energy to the
total energy in the frame is the proportion of periodic energy.
The proportion of aperiodic energy is calculated similarly.

It is worth mentioning that the thresholds used by this algo-
rithm do not need to be retrained for different databases with dif-
ferent sampling rates. This claim is substantiated in the results
section where the APP system is tested on different databases
with different sampling rates.

C. Computation of Pitch From EGG Data

The EGG data captures the laryngeal behavior by measuring
the change in electrical impedance across the throat during
speaking [27]. The EGG waveform exhibits strong periodic
fluctuations during vocalized sounds with the period equal to
the pitch period of the speaker. To estimate the pitch value from
the EGG data, the EGG waveforms were bandpass filtered
with cutoff frequencies of 50 and 750 Hz. To highlight rapid
fluctuations in the signal and to remove peaks due to extraneous
noise, a first-order difference operation was performed on the
filtered signal. This new signal exhibits prominent positive
peaks at regular intervals in periodic regions. The gap between
two consecutive peaks is the instantaneous pitch period. A
peak-picking algorithm is then implemented to find the loca-
tions of these peaks. The average value of the gaps between
consecutive peaks over a period of 10 ms is the pitch estimate
at that location. The pitch estimates were computed every 2.5
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TABLE I
GROSS ERRORS IN PITCH DETECTION. REFERENCE PITCH VALUES FOR MOCHA

AND DB2 WERE CALCULATED WITH ALGORITHM IN SECTION II-B-7.
REFERENCE PITCH VALUES FOR DB5 WERE TAKEN FROM [21]

TABLE II
GROSS ERRORS IN PITCH PREDICTION ON DB2 BY YIN AND APP SYSTEM

WHEN REFERENCE PITCH VALUES WERE TAKEN FROM [18]

ms. The aperiodic regions are marked by the absence of any
such regularly spaced peaks.

III. RESULTS

A. Pitch Detection

The pitch estimates from the APP system were compared
with the EGG-derived pitch values on a frame basis. Using the
standard established in previous studies [18], [20], the pitch
value was said to be in agreement if the difference between the
estimated pitch and the reference pitch was less than 20% of
the reference pitch value. Otherwise, the pitch estimates were
treated as a gross error.

The gross errors were split into two different categories. The
halving errors are defined as the instances where the estimated
pitch was more than 20% below the pitch value given by the
EGG data. The doubling errors are the instances where the es-
timated pitch was more than 20% above the pitch value derived
from the EGG data. Table I gives the details of the gross er-
rors for the three databases. The results are given separately for
males and females.

Table II compares the performance of the pitch prediction
module of the APP system with the YIN pitch estimator pro-
posed in [18]. In this case, the EGG-derived pitch values in [18]
were used for both pitch detectors. There are several differences
in the derivation of the results for DB2 in Table I and the results
in Table II. First, the reference pitch values were derived using
different algorithms. The results for DB2 in Table I used refer-
ence pitch values that were derived according to the algorithm
described in Section II-B.7. The reference pitch values used for
the results in Table II were derived using the YIN pitch detector
and the reference values were hand corrected. Second, the re-
sults reported for the YIN pitch detector used a temporal toler-
ance where the reference estimates were time shifted over a cer-
tain range to give the minimum error rate. No such shifting was
used to score the output of the APP pitch detector. Note that the
performance of the APP pitch detector as reported in Table II is
better than most of the pitch detectors evaluated on DB2 in [18].
Further, note that the error for the APP pitch detector in Table II
is considerably lower than the results in Table I. We conclude
that the results for the other databases in Table I would benefit
favorably from hand correction of the reference values.

TABLE III
GROSS ERRORS IN PITCH PREDICTION ON DB2 DATABASE

Fig. 7. Comparison of actual SNR (solid line). SNR computed by the APP
system for 131 Hz pulse (dashed line with filled circles). SNR computed by the
APP system for 120 Hz pulse (dotted line with o). Notice that the SNR predicted
by the APP system closely follows the actual SNR.

A final evaluation of our system is the detection of pitch in
speech where the fundamental harmonic is missing. The signal
content below 300 Hz was set to zero in the DB2 database.
Table III compares the performance of the pitch tracker on this
database before and after high-pass filtering. The consistency in
performance of the pitch detector even when the low-frequency
data was removed makes it a promising candidate for pitch de-
tection in telephone speech scenarios or for pitch detection in
missing harmonic data.

B. Periodicity and Aperiodicity Detection

1) Evaluation on Synthetic Data: To evaluate the perfor-
mance of our periodic and aperiodic measures, we compared
the SNR based on these measures with the known SNR of the
synthetic signal. We define the SNR based on our measures as

SNR

where is the periodic energy and is the aperiodic energy
calculated by the APP system in the th frame. Fig. 7 shows
the actual SNR versus the computed SNR for pulses with fre-
quencies 131 and 120 Hz and no jitter or shimmer. Notice that
the difference between the actual SNR and the computed SNR
is small. The harmonics-to-noise ratio (HNR) measured by the
pitch-scaled harmonic filter (PSHF) system in [17] is about 3 dB
higher than the actual SNR whereas the SNR measured by the
APP system presented in this paper remains within 5 dB of the
actual SNR. The effect of different degrees of jitter and shimmer
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TABLE IV
PERFORMANCE OF THE APP SYSTEM FOR VARIOUS DEGREES OF

JITTER AND SHIMMER AND AT VARIOUS SNRS

TABLE V
PERFORMANCE OF PERIODICITY AND APERIODICITY MEASURES

at various SNRs on the performance of the APP system is tab-
ulated in Table IV. In the absence of any noise (i.e., at dB
SNR) increasing jitter or shimmer reduces the estimated SNR.
But as the SNR reduces the effect of jitter and shimmer is less
pronounced. These results are qualitatively very similar to those
reported in [17].

2) Evaluation on the Natural Speech Databases: The peri-
odic and aperiodic measures were also evaluated using the three
natural speech databases. All the comparisons were made on a
frame basis at a frame rate of 2.5 ms. We define the periodicity
accuracy as the ratio of the number of nonsilent frames that have
both the proportion of periodic energy no less than 0.25 and the
corresponding EGG output is nonzero, to the total number of
frames that have a nonzero EGG output. The aperiodicity accu-
racy is defined as the ratio of the number of nonsilent frames
that have the proportion of aperiodic energy no less than 0.35
and the corresponding EGG output is zero, to the total number
of nonsilent frame that have zero EGG output. These thresholds
were derived from statistical analysis of the training data. The
results for the periodicity and aperiodicity accuracies are shown
in Table V. An example of the outputs from these measures is
shown in Fig. 8. Note from part (d) of Fig. 8 that the propor-
tion of periodic and aperiodic energies do not always sum to
one since some nonsilent channels are not judged to be periodic
or aperiodic (this situation occurs when there are no dips in the
AMDF waveform).

One cause of the less than perfect periodicity and aperiod-
icity accuracy is due to the boundary problem. It was found that
many of the frames that are considered to be in error according
to the EGG are in the transition region between adjacent sounds
that differ in their voicing. In such regions, the frame where the
switch between periodicity and aperiodicity occurs based on our
algorithm may be offset from the frame where the switch occurs
based on the EGG output. More often, the EGG turns off before

Fig. 8. Plots for the utterance “The wine tastes.” (a) Time waveform.
(b) Spectrogram. (c) Periodicity (dark) and aperiodicity (light) profile. (d)
Proportion of the periodic energy and aperiodic (dashed with �) energy
(horizontal dotted line indicates the periodic/aperiodic threshold). (e) Pitch
estimate based on the EGG data ( dashed with �) and pitch detected by the APP
system (periodic and aperiodic regions based on the EGG data are demarcated
by the vertical lines).

TABLE VI
PERFORMANCE OF THE PERIODICITY AND APERIODICITY MEASURES WHEN

THE ERRORS IN THE BOUNDARY REGIONS WERE EXCLUDED

our algorithm stops detecting periodicity, or starts a few frames
after our algorithm starts detecting periodicity. This is probably
due to weak voicing (i.e., a large drop in the peaks calculated
from the EGG data). This situation will result in lower aperi-
odicity accuracy for our algorithm since we will detect period-
icity when the EGG is off. This scenario is manifested in Fig. 8
around 480 ms where our periodicity detector remains on (i.e.,
the proportion of periodic energy is greater than 0.25) for 7.5 ms
longer than the offset of the EGG waveform [shown with a ver-
tical line around 480 ms in Fig. 8(d)]. The time waveform does
indicate the trailing, weak periodic signal in this region. We have
observed situations where the reverse is true, i.e., our algorithm
stops detecting periodicity before the EGG turns off. Generally,
periodicity is detected in these transition regions. However, the
proportion of periodic energy is less than 0.25. An example of
this situation can be seen in Fig. 8 around 650 ms, where the
EGG is on for about 5 frames longer than our periodicity esti-
mate that is just below 0.25. Such situations lower the period-
icity accuracy. Table VI shows the periodicity and aperiodicity
accuracies when the misclassifications at the boundaries were
excluded. Notice that the overall periodicity accuracy across all
the three databases increases from 94.43% to 98.60% and the
aperiodicity accuracy increases from 96.32% to 99.14% when
the misclassifications at the boundaries are excluded. It has been
noted in [27] that several EGG pulses near voicing onset or
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TABLE VII
PERCENTAGE OF FRAMES IN DIFFERENT BROAD CLASSES (ACCORDING TO

HAND TRANSCRIPTION) DETECTED AS PERIODIC AND APERIODIC AND

USING EGG-DATA AS THE GROUND TRUTH. NUMBERS IN PARENTHESIS

SHOW THE PERCENTAGE OF THE TOTAL FRAMES THAT FALL

IN THE RESPECTIVE CATEGORY

TABLE VIII
PERCENTAGE OF FRAMES IN DIFFERENT BROAD CLASSES OF THE MOCHA

DATABASE WHERE ONLY STRONG PERIODICITY WAS DETECTED, STRONG

APERIODICITY WAS DETECTED AND BOTH STRONG PERIODICITY AND

APERIODICITY WERE DETECTED. NUMBERS IN PARENTHESIS SHOW THE

TOTAL NUMBER OF FRAMES IN EACH CATEGORY

offset can be distorted and the pitch estimates from the EGG
data in these regions can be unreliable.

Table VII provides more details about the performance of
the aperiodic and periodic measures for different types of
sounds. More specifically, the hand transcriptions provided
with the MOCHA database were used to pull out the results for
sonorant sounds (vowels, semivowels and nasals) that should
be primarily periodic, voiced obstruent sounds that may have
been produced with both strong periodic and aperiodic sources
and unvoiced obstruent sounds that should be strictly aperiodic.
Using this division of the speech signal, the results in Table VII
for periodic sounds are only for those frames where the EGG
was also on. Similarly, the results for the aperiodic sounds are
based only on those frames where the EGG was off.

Table VIII shows the results for the MOCHA database for the
percentage of frames in the different broad classes that showed
only strong periodicity, strong aperiodicity, or both strong peri-
odicity and aperiodicity. For these results, the EGG signal is not
used as a reference. As expected, a much larger percentage of
the sounds exhibiting both strong periodic and aperiodic com-
ponents are voiced obstruents. Further, about 30% of the voiced
obstruents show only strong periodicity. This finding is in agree-
ment with previous studies that show that voiced obstruents
can be lenited so that they are realized as sonorant consonants
[28]. The small percentage of aperiodic sounds that show strong
periodic energy and the small percentage of periodic sounds
showing strong aperiodicity are probably due to boundary place-
ment between sonorants and obstruents. It is often difficult to
know where to place the boundary between a sonorant and a
strident fricative. The transition region may show several pe-
riods resembling those in the vowel region, but with a simulta-
neous aperiodic component riding on top of the lower frequency

TABLE IX
APERIODICITY STRENGTH FOR THE FRICATIVES

waveform. Thus, it is not clear if the coarticulated region should
be included in the vowel region or in the obstruent region. The
fact that there is 94.69% agreement between the EGG data and
our periodicity detector suggests that many of these coarticu-
lated regions were included within labels of the sonorant re-
gions, leading to 8.76% of the frames showing strong aperiod-
icity.

The strength of aperiodicity defined as the average number of
spurious dips across all the channels, can be used to distinguish
strident fricatives from nonstrident and voiced ones from their
unvoiced counterparts. This strength of aperiodicity is tabulated
in Table IX.

IV. DISCUSSION

The APP system presented here incorporates a relatively
simple algorithm to extract the proportions and frequency range
of periodic and aperiodic energies in speech signals. The system
is robust in the sense that its efficiency does not depend on the
accuracy of some inherently difficult tasks, like the detection of
F0 [17], [29]. The performance of the algorithm implemented
in the APP system does not depend on the sampling rate
of the database. The performance across different databases
with different sampling rates is comparable (Tables I and V).
Informal evaluation of the APP system on telephone speech
(sampling rate 8 kHz) was also encouraging. The thresholds
trained on MOCHA database were not retrained to test the
other databases. This shows that the system parameters do not
need database specific fine-tuning.

Unlike many popular pitch detection algorithms, the algo-
rithm presented in this paper does not involve any low-pass
filtering nor is there an upper limit set by the algorithm on
the pitch frequency at which it can distinguish periodic sounds
from the aperiodic sounds. The lower limit depends on the anal-
ysis window size. However, as the pitch frequency increases,
the consecutive clusters (mentioned in Section II-B.4) will get
closer so that it will be progressively more difficult to demar-
cate the cluster boundaries, thus, affecting the periodicity/ape-
riodicity decision. (Making it more biased toward periodic de-
cisions). Fig. 8(e) shows the pitch contour estimated by the
APP system overlaid with the reference pitch values obtained
from the EGG data. Notice that the APP system does not start
detecting pitch until about 175 ms (when the periodicity con-
fidence rises above per_thresh) whereas the EGG data starts
showing pitch estimates from about 150 ms.

Table IX shows that, for a particular place, the degree of ran-
domness in the distribution of the AMDF dips differs consider-
ably for the voiced versus unvoiced obstruents. Further, as ex-
pected, the degree of randomness is more for strident fricatives
and considerably less for the nonstrident fricatives. Finally we
have also observed that the frequency range of the aperiodic
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Fig. 9. Plots for the utterance “z.” Top panel: time waveform. Second panel:
spectrogram. Third panel: periodicity (dark) and aperiodicity (light) profile.
Bottom panel: the proportion of the periodic energy and aperiodic energy
(dashed with �).

noise may help to distinguish frication from aspiration. Con-
sider the aspirated /t/ in the word ‘tastes’ shown in Fig. 8 (be-
tween 500 ms and 550 ms). The /t/ burst is followed by frica-
tion noise and then aspiration noise as the alveolar constriction
is released further and the articulators move toward the position
needed for the following vowel. Thus, the frication noise gen-
erated by the narrow constriction at the alveolar ridge is mani-
fest in the high-frequency channels whereas the aspiration noise
generated at the glottis is manifest in lower frequency channels.

One of the goals of the present work was to detect period-
icity and aperiodicity in voiced obstruents that were manifest
with strong periodicity like the /z/ in the alphabet ‘z’ shown in
Fig. 9. Whereas most simple measures such as zero crossing rate
would be able to detect the turbulence seen at high frequencies
for a canonical /z/, when there is strong voicing, the aperiodicity
“rides” on top of the low-frequency signal so that this measure
fails for the /z/ shown in Fig. 9. High-pass filtering the signal and
then computing the zero crossing rate is one possible solution
to this problem. However, now the very strong high-frequency
energy that sometimes occurs in vowels like /iy/ (where F2, F3,
and F4 may be close together in a high-frequency region) will
also exhibit a high zero crossing rate. Thus, the issue is to distin-
guish that in one case, the strong high-frequency energy is pe-
riodic, whereas in the other case, the high-frequency energy is
aperiodic. The algorithm presented in this paper is able to make
that distinction.

One of the applications of the periodicity/aperiodicity mea-
sures and pitch will be in our speech recognition algorithms
[16], [30]. These parameters also form a part of a landmark
detection system [31] where the main emphasis is broad clas-
sification of speech signals using primarily temporal cues. Fi-
nally, the present algorithm can also be used to detect breathy
voice quality. The efficiency of the APP system in different
speech-in-noise conditions will be evaluated in future.

The current implementation of the APP system is mostly in
MATLAB and is several times real-time. We have identified
several avenues where the amount of computation can be re-
duced and this will be addressed in near future. On a Pentium M

processor with 1.7-MHz clock speed and 1-GB RAM the APP
system is about 110 times real-time.

V. CONCLUSION

We have presented a novel, simple yet efficient method to cal-
culate direct measures of periodic and aperiodic energies in a
speech signal that can distinguish high-frequency periodic en-
ergy from high-frequency aperiodic energy. The system also
outputs a pitch estimate in regions that are judged to be peri-
odic. The system was tested on three natural speech databases,
which also had EGG data recorded simultaneously, and on syn-
thetic speech like data. The robustness of the system to predict
pitch in missing harmonic cases was also exhibited. The system
is also successful in detecting simultaneous high periodicity and
high aperiodicity when they are both present in voiced obstruent
regions. The amount of aperiodicity in predominantly voiced
regions can potentially be used to evaluate the voice quality.
The amount of aperiodicity in obstruent regions can be a useful
cue to distinguish the voicing and place of the fricatives. This
system has vast applications since it improves on the typical bi-
nary voiced/unvoiced decision made in most speech recognition
and speech coding systems.
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