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Abstract* 
Articulatory Phonology views speech as an ensemble of 
constricting events (e.g. narrowing lips, raising tongue tip), 
gestures, at distinct organs (lips, tongue tip, tongue body, 
velum, and glottis) along the vocal tract. This study shows 
that articulatory information in the form of gestures and their 
output trajectories (tract variable time functions or TVs) can 
help to improve the performance of automatic speech 
recognition systems. The lack of any natural speech database 
containing such articulatory information prompted us to use a 
synthetic speech dataset (obtained from Haskins Laboratories 
TAsk Dynamic model of speech production) that contains 
acoustic waveform for a given utterance and its corresponding 
gestures and TVs. First, we propose neural network based 
models to recognize the gestures and estimate the TVs from 
acoustic information. Second, the “synthetic-data trained” 
articulatory models were applied to the natural speech 
utterances in Aurora-2 corpus to estimate their gestures and 
TVs. Finally, we show that the estimated articulatory 
information helps to improve the noise robustness of a word 
recognition system when used along with the cepstral 
features. 
Index Terms: Noise Robust Speech Recognition, Articulatory 
Phonology, Speech gestures, Tract Variables, TADA Model 
Neural Networks, Speech Inversion. 

1. Introduction 

Speech inversion or acoustic-to-articulatory inversion of 
speech has been widely researched in the last three decades. 
Various factors have stimulated research in this area, the most 
prominent being the failure of the current state-of-the-art 
phone-based automatic speech recognition (ASR) to account 
for variability in speech, for example, coarticulation. There 
are several strong arguments for considering articulatory 
information in ASR systems. First, it may help to account for 
coarticulation and reduction in a more systematic way. 
Second, articulatory information has been shown [2] to be 
more robust to speaker variations and signal distortions. 
Finally, it has been demonstrated [2, 3, 4] that articulatory 
information can significantly improve the performance of an 
ASR system in noisy environments.  

The motivation for the current study is that an 
overlapping gesture-based architecture inspired by 
Articulatory Phonology (AP) [9, 10] can overcome the 
limitations of phone-based units in addressing coarticulation. 
AP defines speech as a constellation of articulatory gestures 
(known as gestural score) [9, 10], where the gestures are 
invariant action units that define the onset and the offset of 
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constriction actions by various constricting organs (lips, 
tongue tip, tongue body, velum, and glottis) and a set of 
dynamic parameters (e.g., target, stiffness etc.) [9]. In AP, the 
intra and inter-gestural temporal overlap accounts for acoustic 
variations in speech originating from coarticulation, 
reduction, rate variations etc. Gestures are defined by relative 
measures of the constriction degree and location at distinct 
constriction organs, that is, by one of tract variables in Table 
1. The gestures' dynamic realizations are the tract variable 
trajectories, named as TV here. Note TV does not stand for a 
tract variable itself but its time function output. Hence, the 
gestures and TVs are characterized to be less variant than x-y 
pellet information found in electro-magnetometer [6] and X-
ray Microbeam data [7], which have been widely used for 
articulatory-to-acoustic speech inversion research. Using such 
articulatory data may be problematic as they are often 
contaminated with measurement noise and may suffer from 
inconsistency in transducer placements across speakers during 
the measurement procedure. Furthermore, use of absolute 
flesh-point information can aggravate the non-uniqueness in 
the acoustic-to-articulatory mapping [8]. Haskins Laboratories 
TAsk Dynamic Application (TADA) model is a mathematical 
implementation of Articulatory Phonology, which generates 
TVs and acoustics signals from gestural input for a given 
utterance [1]. Using this model, we generated a set of 
synthetic data completely free from measurement noise and 
inconsistencies. 

While investigating the realizability of such articulatory 
gesture based ASR architecture, we observed that the 
estimated TVs can improve noise robustness of word 
recognition systems [3, 4]. In this study, we aim to investigate 
whether a word recognition system can be improved in 
various noise environments when estimated static gestural 
information are used (or combined with TVs). We first trained 
two inversion models to estimate gestures and TVs from 
acoustic signals using TADA-generated synthetic database. 
The “TV-estimator” is a feedforward (FF) artificial neural 
network (ANN) architecture, which estimates the TVs (shown 
in Table 1 and Figure 1) given acoustic features. The 
“Gesture-recognizer” is a cascade of (a) autoregressive (AR) 
ANN for gestural activation detection and (b) FF-ANN for 
gestural parameter detection. Second, we applied the 
"synthetic-data trained" TV-estimator and Gesture-recognizer 
to the natural speech in Aurora-2 corpus. Third, we evaluated 
the role of the articulatory information and its noise 
robustness in a Hidden Markov Model (HMM) based word 
recognition system. We expect various types of speech 
variability to be minimized by employing a novel set of 
articulatory information: TVs and gestures. We demonstrate 
that this novel set of articulatory information when estimated 
from the speech signal can improve the noise robustness of a 
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natural speech word recognizer when used in
with the standard cepstral features. 

2. The Data 

To train the TV-estimator and the Gesture-r
needed a speech database that consists of gro
trajectories and gestures; unfortunately no datab
annotations exists at present. For this reason, 
with HLsyn [11] (a parametric quasi-articulato
developed by Sensimetrics Inc.) is used in 
generate a database that contains synthetic spee
their articulatory specifications. We randomly 
utterances from the Aurora-2 training data.  
utterance, the digit sequence, mean pitch 
information were input to TADA. TADA then 
gestures at relevant tract variables (see Table 1)
vocal tract area function, and formant informat
the pitch, formant, and vocal tract constriction
were input to HLsyn which generated t
waveforms. Note that the TVs and gestures 
TADA are based upon the default speaker mod
TADA, and hence they are speaker-indep
sampling rate of the synthetic speech and 
functions are 8 kHz and 200 Hz respectively. W
dataset as AUR-SYN, where 70% of the files w
selected as the training-set, 10% as the develop
the rest as the testing-set. 
 

Table 1. Constriction organ, vocal tract va
Constriction organ Tract Variables

Lip 
Lip Aperture (LA) 
Lip Protrusion (LP) 

Tongue Tip 
 

Tongue tip constriction degree
Tongue tip constriction locatio

Tongue Body 
Tongue body constriction deg
Tongue body constriction loca

Velum Velum (VEL) 
Glottis Glottis (GLO) 

 

 

Figure 1. Constriction organs and associated trac
 

The other database used in our work is the A
dataset which consist of connected digits spoken
English talker. The TV-estimator and the Gestu
were trained with the synthetic dataset AUR-S
executed on the training and testing set of Auror
performed to observe if the estimated TVs and t
gestures for the natural utterances help in improv
robustness of the word recognition task of A
Speech data in Aurora-2 are sampled at 8 kH
binary raw format. There are three test sections i
B and C, where test-set A and B each have 
representing four different noise types, hence 
have eight different noise types. Section C inv
effects; and as our work focuses on noise-robust
have ignored test-set C. Training in clean and te
scenario is used in all the experiments reported h

For both the TV-estimator and the Gestu
the speech signal was parameterized as M
cepstral coefficients (MFCCs), where 13 cepstra

n conjunction 

ecognizer we 
oundtruth TV 

base with such 
TADA along 
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our work to 
ch along with 
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For a given 
and gender 

generated the 
), output TVs, 
tion.  Finally, 
n information 
the synthetic 
generated by 

del defined in 
pendent. The 
the TV time 

We named this 
were randomly 
pment set, and 

ariables 
s 

e (TTCD) 
on (TTCL) 

gree (TBCD) 
ation (TBCL) 

ct variables. 

Aurora-2 [12] 
n by American 
ure-recognizer 
SYN and then 
ra-2. This was 
he recognized 
ving the noise 

Aurora-2. The 
Hz and are in 
in Auroa-2, A, 
four subparts 
together they 
olves channel 
tness only, we 
esting in noisy 
here.  
ure-recognizer, 
Mel-frequency 
al coefficients 

were extracted at the rate of 200Hz with 
of 10ms. The MFCCs and the target artic
(TVs) were z-normalized and scaled be
such that their dynamic range is confine
The cepstral observations were contextu
sent to the TV-estimator and the Gest
feature contextualization is defined by t
parameter �, where the current frame (wit
13) is concatenated with � frames from 
current frame (with a frame shift of 2 or 
generating a concatenated feature vector
and covering a temporal context window
From our prior research [13], we notic
context window for the TV-estimator wa
optimal context windows for the Gesture
[14] ranged from 90 to 190ms for gestural
and 210 to 290ms for gestural parameter e

3. The TV estimato

Artificial Neural Networks (ANNs) have b
studies [15, 16] for speech inversion. 
architectures, ANNs are efficient both in
and execution speed [16]. We have use
feed-forward (FF) network, where the nu
the three layers was selected to be 150-10
observation in [13]. The dimension of 
MFCCs were (2×8+1)×13 = 221, (where 
be the optimal), requiring the ANN to ha
number of ANN outputs was equal to t
which is equal to 8 (as seen from Table
trained with a back-propagation algo
conjugate gradient as the optimization r
5000 epochs. A tan-sigmoid function 
excitation for all of the layers. The p
smoothed using a Kalman smoother to 
smoothness characteristics of the TVs [13]

4. The Gesture Recog

The TADA model uses the discrete gestur
continuous time-varying constriction dis
trajectories which are known as the TVs
with other vocal tract related information
to generate the synthetic speech acoustics
speech is synthesized from the knowledg
configurations. TVs are output trajecto
gestural input for a given a speech sig
estimated TVs from the input speech mig
the corresponding gestural scores. We
approaches using the estimated TV info
gestural scores from speech as shown in F
TV estimation first and use the acoustic 
form of MFCCs) along with the estimate
the gestural scores, (2) Obtain gestural s
the acoustic observation, and (3) perform
and use only the estimated TVs for perfor
recognition. For all of the three approach
stage cascade model of ANNs (shown i
gestural activation (onset and offset) info
in the first stage using a non-linear AR
parameter estimation (gestures' targ
parameters) is performed in the second 
ANN. For a given tract variable (e.g. LA, 
cascaded model was trained for each of t
(shown in Figure 2), hence altogether 3 c
trained for each tract variable. 

an analysis window 
culatory information 
efore ANN training 
ed to [-0.95, +0.95]. 
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Figure 2. The three approaches for Gesture recognition. 

 

Figure 3. The 2-stage cascaded ANN architecture for the Gesture 
recognizer 

 

The gestural activation is discrete and quasi-stationary in 
nature, that is, the activation can have only two states with 
value = 1 when active, and = 0 when inactive. Once the 
gesture is active or inactive it stays in that state for a given 
interval of time (at least 50ms and at most 300ms), which 
means that the activation does not toggle between the states 
instantaneously. The quasi-stationary nature of the activations 
are better captured by the feedback loop in the AR-ANN, 
which prevents the ANN to make instantaneous switching 
between the states and helps to stay in a given state once it has 
switched. The nonlinear AR-ANN used is a recurrent network 
with feedback connection from the last layer of the network, 
and was trained using ‘dynamic back-propagation’. 

The second stage uses an FF-ANN to predict gestural 
dynamic parameters: constriction target and gestural stiffness 
[10, 17], during the gestural active intervals. We considered 
10 different tract variable types for the Gesture-recognizer 
model: LP, LA, TTCL, TTCD, TBCLC, TBCLV, TBCDC 
and TBCDV, VEL and GLO. Note that, since tongue body 
gestures are shared by velar consonants and vowels, TBCL 
and TBCD tract variables were split into consonant (TBCLC 
and TBCDC) and vowel sub-tract variables (TBCLV and 
TBCDV). The feature inputs to the 2-stage cascaded ANN 
architecture (Figure 3) in each of the three approaches are (1) 
estimated TVs + MFCCs, (2) MFCCs and (3) estimated TVs, 
respectively. The features were temporally contextualized (as 
specified in section 2) and the optimal context windows for 
each stage were found to vary for different tract variables.  

5. ASR experiments 

The TV-estimator and the Gesture-recognizer were trained 
with the synthetic speech from AUR-SYN and then used to 
predict the TVs and gestural scores for the natural speech of 
the Auroa-2 database. The estimated TVs and the recognized 
gestures were used along with the cepstral features MFCC and 
RASTA-PLP [18] to perform word recognition experiments 
on Aurora-2. This was done to ascertain if the articulatory 
information in the form of TVs and gestural scores helps to 
improve the noise robustness of the conventional word 
recognition systems. We used the HTK-based speech 
recognizer distributed with the Aurora-2 corpus [12] to 
perform the ASR experiments discussed in this paper. Test 
section A and B of Aurora-2 were used. The ASR experiment 
was based on training with clean and testing with noisy data. 
Note that the TV estimator uses the MFCCs obtained directly 

from acoustic signal, and hence has no explicit capability to 
deal with noisy speech. 

6. Results  

TV-estimator: We begin our experiments by evaluating the 
performance of the TV-estimator. We have used the Pearson 
product-moment correlation (PPMC) coefficient (equation 
(1)), to compare the estimated TVs with their groundtruths. 
The PPMC gives a measure of amplitude and dynamic 
similarity between the estimated and the groundtruth TVs. 

        1 1 1
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2 2

1 1 1 1
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        (1) 

where e and t represent the estimated and the groundtruth TV 
vectors respectively, having N data points. Table 2 shows the 
PPMC obtained for the 8 TV estimates and Figure 4 shows 
the estimated and the groundtruth TVs for utterance ‘ground’. 
 

Table 2. PPMC for the estimated TVs                  
GLO VEL LA LP TBCL TBCD TTCL TTCD 

0.988 0.990 0.973 0.984 0.997 0.991 0.983 0.991 
 

 
Figure 4. Groundtruth and estimated TVs from the TV-estimator 

 

Gesture-recognizer: The three different Gesture-recognition 
approaches described in Section 4, Figure 2, was constructed 
for each of the 10 gestures. The network configurations (i.e., 
input contextual information, number of neurons) for the AR-
ANN and the FF-ANN in the cascaded architecture were 
optimized using the development set of AUR-SYN. The 
gesture-recognition accuracy is obtained using equation (1) 

  Re . . 100
M S

c Acc
M

−
= ×                 (2) 

where, M is the total number of frames and S is the number of 
frames having at least one of the gestural parameter (amongst 
gestural activation, target and stiffness) wrongly recognized. 
Table 3 presents the overall gesture recognition accuracy 
(averaged across the 10 different gestures) obtained from the 
three approaches. It can be observed from Table 3 that 
approach-1 gave the best accuracy and hence the Gesture –
recognizer based on approach-1 will be used in the ASR 
experiments presented in this paper. Approach-1 has the 
added advantage of using multiple context windows and 
multiple streams of information (i.e., the MFCCs and the 
TVs). Typically a larger context window is necessary for 
gestural parameter estimation while a smaller context window 
is necessary for TV estimation and gesture activation 
detection. The multi-resolution and multi-stream information 
may be the reason behind approach-1’s superior performance. 
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Noise-robust word recognition: The estimated TVs and the 
recognized gestures were concatenated with the (a) 39 
dimensional MFCCs and (b) 39 dimensional RASTA-PLP for  

Table 3. Overall Gesture Recognition accuracy 
 Approach-1 Approach-2 Approach-3 

Rec. Acc. 93.66 89.62 90.20 
 

performing the clean-train word recognition task of the 
Aurora-2 database. The backend uses eleven whole word 
HMMs (‘zero’ to ‘nine’ and ‘oh’) and two silence/pause 
models ‘sil’ and ‘sp’, each with 16 states and the number of 
Gaussian mixtures were optimized for each input feature set. 
Table 4 shows the word recognition results for MFCC and 
RASTA-PLP with and without the TVs and the gestures. 
Table 4 and Figure 5 show that the estimated TVs and the 
recognized gestures helped to improve the noise robustness of 
the word recognition system. Table 4 shows that the estimated 
TVs and the gestures by themselves were not sufficient for 
word recognition, which indicate that the acoustic features 
(MFCC/RASTA-PLP) and the articulatory information (TVs 
& Gestures) are providing complementary information, hence 
neither of them alone is offering better result than when they 
are used together.  
 

Table 4. Overall Gesture Recognition accuracy 
 Clean 0-20dB -5dB    

MFCC 99.00    51.04 6.35 
MFCC+TV 98.82 70.37 10.82 

MFCC+TV+Gestures 98.56 73.49 16.36 
RASTA-PLP 99.01 63.03 10.21 

RASTA-PLP+TV 98.96 68.21 12.56 
RASTA-PLP+TV+Gestures 98.66 75.47 19.88 

TV 72.47 42.07 10.06 
TV+Gestures 82.80 47.50 9.48 

 
Figure 5. Overall word recognition accuracy using MFCC and 

RASTA-PLP with and without the TVs and Gestures. 

7. Conclusion and Discussion 

The major challenge of the TV-estimator and Gesture-
recognizer was that they have been trained with clean 
synthetic speech and then executed on clean and noisy natural 
speech from different speakers, which probably introduce 
severe acoustic mismatch to the estimator and recognizer. 
They also suffer from limited training data as the AUR-SYN 
only consists of 960 utterances, which is roughly 11% of the 
entire 8440 utterances in Aurora-2 training corpus. Training 
the models with the whole Aurora-2 training corpus may 
significantly improve the accuracy of the TV-estimator and 
gesture-recognizer which may result in showing further 
improvement in the recognition accuracies. Unfortunately 
Aurora-2 does not come with groundtruth TV specification. 

Presently we are working on realizing a natural speech 
database with TV and gestural information [19], which in turn 
would help us to build a more robust TV-estimator and 
gesture-recognizer for natural speech.  
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