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Abstract
The aim of this work was to propose Acoustic Parameters (APs)
for the automatic detection of vowel nasalization based on prior
knowledge of the acoustics of nasalized vowels. Nine automati-
cally extractable APs were proposed to capture the most impor-
tant acoustic correlates of vowel nasalization (extra pole-zero
pairs, F1 amplitude reduction, F1 bandwidth increase and spec-
tral flattening). The performance of these APs was tested on
several databases with different sampling rates and recording
conditions. Accuracies of 96.28%, 77.90% and 69.58% were
obtained by using these APs on StoryDB, TIMIT and WS96/97
databases, respectively, in a Support Vector Machine classifier
framework. To our knowledge these results are the best anyone
has achieved on this task.
Index Terms: nasal, nasalization, acoustic parameters, land-
mark, speech recognition.

1. Introduction
Nasalization in very simple terms is the nasal coloring of other
sounds. Nasalization occurs when the velum (a flap of tissue
connected to the posterior end of the hard palate) drops to allow
coupling between the oral and nasal cavities. When this hap-
pens, the oral cavity is still the major source of output but the
sound gets a distinctively nasal characteristic.

Coarticulatory nasalization of the vowel preceding a nasal
consonant is a regular phenomenon in all languages of the
world. The coarticulation can, however, be so large that the
nasal murmur (the sound produced with a complete closure at
a point in the oral cavity, and with an appreciable amount of
coupling of the nasal passages to the vocal tract) is completely
deleted and the cue for the nasal consonant is only present as
nasalization in the preceding vowel. This is especially true
for spontaneous speech. Thus, for example, nasalization of
the vowel might be the only feature distinguishing ”cat” from
”can’t”. Hence, the automatic detection of vowel nasalization is
an important problem. A vowel nasalization detector is also
essential for speech recognition in languages with phonemic
nasalization (i.e. there are minimal pairs of words in such lan-
guages which differ in meaning with just a change in the nasal-
ization in the vowel), and therefore, should be an important part
of a landmark-based speech recognition system (like [1]). Fur-
ther, it was suggested in [2] that detection of vowel nasalization
is important to give the pronunciation model the ability to learn
that a nasalized vowel is a high probability substitute for a nasal
consonant.

Therefore, the aim of this study was to develop Acoustic
Parameters (APs) for the automatic detection of vowel nasaliza-
tion based on prior knowledge about the acoustics of nasalized
vowels. The rest of the paper is organized as follows: Section 2
gives a brief description of the databases used. Section 3 gives

a description of the proposed APs, and section 4 describes the
methodology in detail. Section 5 presents results on the various
databases of American English described in Section 2. Sec-
tion 6 summarizes the most important points of this study and
presents future directions.

2. Databases
2.1. StoryDB

Acoustic recordings of carefully articulated isolated words with
seven vowels /aa, ae, ah, eh, ih, iy, uw/ in nasalized and non-
nasalized contexts were obtained for one American English
speaker. The sampling rate was 16 KHz. A total of 896 words
were recorded: 7 vowels x 8 words/vowel x 4 conditions (stand-
ing and supine, with and without the application of Afrin) x 4
repetitions. The database was divided equally into train and test
databases. All words were manually segmented to mark the
beginning and ending of the vowels in consideration. For the
purposes of testing the proposed APs it was assumed that every
vowel before a nasal consonant is nasalized. Thus, this database
was the simplest test case.

2.2. TIMIT

TIMIT [8] contains a total of 6300 sentences, 10 sentences spo-
ken by each of 630 speakers (438 males, 192 females) from
8 major dialect regions of the United States. The speech files
were sampled at 16 KHz and divided into training and testing
sets. While using this database, it was assumed that all vow-
els preceding nasal consonants are nasalized. The set of nasal
consonants included /m/, /n/, /ng/ and /nx/. Further, all syl-
labic nasals (/em/, /en/ and /eng/) were considered to be nasal-
ized vowels. Vowels were considered to be oral/non-nasalized
when they were not in the context of nasal consonants or syl-
labic nasals. This definition, would, however, classify vowels
in words like /film/ as oral vowels even though the vowel (be-
ing in the same syllable as the nasal consonant) would most
likely be nasalized due to anticipatory coarticulation with the
syllable-final nasal consonant /m/. Since, such cases may be
somewhat ambiguous, they were removed from consideration
by not considering vowels as oral when the second phoneme af-
ter the vowel was a nasal consonant. This condition is similar
to that imposed by [7]. In the case of vowels following nasal
consonants, nasalization might not be very strong. Hence, these
cases were also removed from consideration.

2.3. WS96/97

WS96 and WS97 databases are parts of the switchboard cor-
pus [9] which were phonetically transcribed in workshops at
Johns Hopkins University in 1996 and 1997 respectively. These
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Table 1: A list of the acoustic correlates of vowel nasalization and the APs used to capture them.

Acoustic Correlate Proposed APs
Extra peaks at low
frequencies and the
relative amplitudes of
these peaks as com-
pared to the first for-
mant amplitude

• sgA1−P0, where A1 is the amplitude of the first formant, and P0 is the amplitude of an extra
peak below F1. The prefix sg implies that a combination of cepstrally smoothed spectra (s) and
group delay spectra (g) was used to find the exact location of the extra peaks. F1 was obtained
by using the ESPS formant tracker [3].

• sgA1 − P1, where P1 is the amplitude of an extra peak above F1. The APs, sgA1 − P0 and
sgA1 − P1 are automatically extractable versions of the APs proposed by [4].

• sgF1 − FP0, where FP0 is the frequency of the extra peak below F1.

• teF1, correlation between the teager energy profile [5] of speech passed through a narrowband
filter (bandwidth = 100 Hz) and a wideband filter (bandwidth = 1000 Hz) centered around F1.

Extra peaks across the
spectrum • nPeaks40dB counts the number of peaks within 40dB of the maximum dB amplitude in a

frame of the spectrum.

Reduction in F1 am-
plitude • a1 − h1max800 is the difference between A1 and the amplitude of the first harmonic (H1).

The value of A1 was estimated by using the maximum value in 0-800 Hz.

• a1 − h1fmt is the same as the previous AP except that A1 is now estimated by using the
amplitude of the peak closest to F1 obtained by using the ESPS formant tracker. The APs
a1 − h1max800 and a1 − h1fmt are automatically extractable versions of the A1 − H1
parameter proposed by [6].

Increase in F1 band-
width • F1BW is the bandwidth of F1.

Spectral flattening at
low frequencies • std0 − 1K is the standard deviation around the center of mass in 0-1000 Hz. This AP not

only captures the spectral flatness in 0-1KHz, but also captures the effects of the increase in F1
bandwidth and the reduction in F1 amplitude. This AP was proposed by [7].

databases consist of telephone bandwidth spontaneous speech
conversations recorded at a sampling rate of 8 KHz. Nasaliza-
tion was marked in these databases with a diacritic. A vowel
was marked as nasalized if the duration of nasalization during
the vowel region was appreciable, irrespective of the presence
of a nasal consonant adjacent to it. The combined WS96 and
WS97 database was divided into training and testing databases
by alternately assigning the files to train and test directories.
Thus, there were a total of 2553 conversations in the training
set, and 2547 conversations in the test set.

3. Acoustic Parameters
The most important acoustic correlates of nasalization that have
been cited in past literature include the introduction of pole-zero
pairs in the first formant (F1) region and across the spectrum
due to the asymmetry of the nasal passages and coupling to the
nasal cavity and the paranasal sinuses, reduction in F1 ampli-
tude because of proximity to zeros and because of an increase
in the bandwidths of formants due to losses in the nasal cav-
ity, and spectral flattening in the low frequency region because
of the introduction of several pole-zero pairs in the F1 region
(c.f. [10, 11, 12]). An earlier study by the authors presented a
detailed description of the acoustic characteristics of nasaliza-
tion and an analysis of the reasons behind the introduction of
those characteristics [13]. The APs proposed in this study are
based on the knowledge gained through the analysis presented

in [13]. The proposed APs try to capture all of the characteris-
tics of nasalization mentioned above.

Table 1 summarizes the acoustic correlates and the APs pro-
posed to capture each of those correlates. All of these APs are
extracted automatically from speech. This set of 9 APs will,
henceforth, be referred to as the tf9 set. A more detailed descrip-
tion of these APs and the procedure to extract them is available
in [14]. Box and whisker plots of the proposed APs, shown
in Figure 1, highlight the discrimination capability of each of
these APs. These plots are based on oral and nasalized vowel
segments extracted from the TIMIT training database. The nor-
malized F-ratios for each AP, obtained through ANOVA, are
also shown on top of each figure. The normalization of the F-
ratios was done by dividing F by the total degrees of freedom
(= number of samples + 1). The normalized F-ratios give a
measure of the relative discriminating capability of the APs. A
comparison of the box plots and the F-ratios for the proposed
APs reveals that std0 − 1K is the most discriminative AP, and
sgF1 − Fp0 is the least discriminative AP for this task.

4. Method
In this experiment, the transcription provided along with the
databases was used to isolate the vowel regions and the APs
were calculated only in these vowel regions. The APs were
normalized to have zero mean and unit variance, and were used
to train a common Support Vector Machine (SVM) classifier
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(a) sgA1 − P0 (b) sgA1 − P1 (c) sgF1 − FP0 (d) teF1 (e) nPeaks40dB

(f) a1 − h1max800 (g) a1 − h1fmt (h) F1BW (i) std0 − 1K

Figure 1: Box and whisker plots for the proposed APs (based on TIMIT training database).

Table 2: Classification Results for oral vs nasalized vowels using the gs6 set.

Tr: TIMIT, Te: TIMIT Tr: WS96/97, Te: WS96/97

Linear (%) RBF (%) Tokens Linear (%) RBF (%) Tokens

Oral Vowels 65.38 68.71 14136 56.45 57.12 12373

Nasalized Vowels 77.84 76.24 4062 62.82 64.16 1119

Chance Norm. Acc. 71.61 72.48 18198 59.63 60.64 13492

for all vowels to distinguish between oral and nasalized vowels.
The experiments were carried out using the SVMlight toolkit
[15] with both Linear and Radial Basis Function (RBF) kernels.

The training data was collected by considering every oral
and nasalized vowel in succession (ground truth for each
database decided by the procedure described in Section 2), and
selecting only the middle 1/3rd of the frames for oral vowels
and the last 1/3rd of the frames for nasalized vowels. This
1/3rd selection rule minimizes the possibility of the inclusion of
ambiguous oral or nasalized vowel frames in the training data.
Once the pool of data had been collected, an equal number of
oral and nasalized vowel frames were randomly selected from
this set to ensure that frames from all different vowels were in-
cluded in the training set. It must be noted, that frames extracted
from syllabic nasals were not included in the training set, but
they were tested in the performance evaluation.

Once the SVM outputs were obtained for the training sam-
ples, the outputs were mapped to pseudo-posteriors with a his-
togram. If N(g, d = +1) is the number of training examples
belonging to the positive class for which the SVM discriminant
had a value of g, the histogram posterior estimate is given by:

P (d = +1/g) =
N(g, d = +1)

N(g, d = +1) + N(g, d = −1)
(1)

Histogram counts were always obtained by using the same
number of samples for the positive and negative classes, so that
the pseudo-posterior P (d/g) is proportional to the true likeli-
hood P (g/d). Given that the pseudo-posteriors are proportional
to the true likelihoods, and assuming frame independence, the
probability for a segment to belong to the positive class can be
obtained by multiplying the pseudo-posteriors for each frame in
the segment. Thus, a vowel segment was declared as nasalized
if

i=framenY

i=frame1

Pnasal(i) >

i=framenY

i=frame1

Poral(i) (2)

where, Pnasal(i) = Probability that the ith frame is nasalized.
and, Poral(i) = Probability that the ith frame is non-nasalized.

5. Results
Tables 2, 3 and 4 compare the results obtained by using the gs6
set (author’s implementation of the 6 APs proposed in [7]), the
mf39 (set of 39 standard Mel-Frequency Cepstral Coefficients,
MFCCs) and the tf9 set, respectively, in the current experimen-
tal framework. The results for the gs6 set and the mf39 set form
the baseline results. These tables show the results for StoryDB,
TIMIT and WS96/97 with Linear and RBF SVM classifiers. Ta-
ble 2 does not show the results for StoryDB because the gs6 set
was a set of segment based APs (that is, one set of 6 APs for the
whole segment), and not enough vowel segments were avail-
able in StoryDB for accurate training of the SVM classifiers.
The mf39 and tf9 sets were frame based APs (that is, one set of
39/9 APs for each frame). The bottom row of the tables gives
the chance normalized accuracy which is obtained by averaging
the accuracies of the classifier for the two classes of oral and
nasalized vowels.

A comparison of the results suggests that:

1. The performance of the tf9 set is the best in all but one
cases. The mf39 set outperforms the tf9 set for TIMIT
with RBF SVMs.

2. The performance of the gs6 set is the worst in all cases
where it was tested except when Linear SVM classifiers
were used for TIMIT where it outperformed the mf39 set.

3. The performance of all the sets of APs falls as the
complexity of the database increases from StoryDB to
WS96/97.

4. The performance of the mf39 set improves significantly
with RBF SVM classifiers. However, even with the RBF
SVM classifiers, the performance of this set is not very
good for the spontaneous speech database WS96/97.

5. The performance of the tf9 set is very balanced across the
oral and nasalized vowel classes, especially so for linear
classifiers. On the other hand, the performance of the gs6
and mf39 sets differs widely across the oral and nasal-
ized vowel classes. For example, for the gs6 set there is
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Table 3: Classification Results for oral vs nasalized vowels using the mf39 set.

Tr: StoryDB, Te: StoryDB Tr: TIMIT, Te: TIMIT Tr: WS96/97, Te: WS96/97

Linear (%) RBF (%) Tokens Linear (%) RBF (%) Tokens Linear (%) RBF (%) Tokens

Oral Vowels 62.50 97.32 112 76.87 90.32 14136 77.26 80.13 12373

Nasalized Vowels 68.75 94.35 336 43.55 69.50 4062 44.68 48.61 1119

Chance Norm. Acc. 65.62 95.83 448 60.21 79.91 18198 60.97 64.37 13492

Table 4: Classification Results for oral vs nasalized vowels using the tf9 set.

Tr: StoryDB, Te: StoryDB Tr: TIMIT, Te: TIMIT Tr: WS96/97, Te: WS96/97

Linear (%) RBF (%) Tokens Linear (%) RBF (%) Tokens Linear (%) RBF (%) Tokens

Oral Vowels 83.93 95.54 112 75.75 81.18 14136 68.27 73.56 12373

Nasalized Vowels 96.13 97.02 336 71.42 74.62 4062 66.85 65.59 1119

Chance Norm. Acc. 90.03 96.28 448 73.58 77.90 18198 67.56 69.58 13492

a difference of about 12% in the accuracies for oral and
nasalized vowels for the TIMIT database with a linear
SVM classifier. The differences are much more signifi-
cant for the mf39 set. In fact, the accuracy of the mf39 set
for nasalized vowels is even below the chance accuracy
of 50% for three cases (for TIMIT and WS96/97 with
linear classifiers, and for WS96/97 with RBF classifier).

6. Summary and Future Work
In this paper, nine knowledge-based APs were proposed for
the task of classifying vowel segments into oral and nasal cate-
gories automatically. These APs were tested in an SVM classi-
fier framework on three different databases with different sam-
pling rates, recording conditions and a large number of male and
female speakers. Accuracies of 96.28%, 77.90% and 69.58%
were obtained by using these APs on StoryDB, TIMIT and
WS96/97 respectively with an RBF kernel SVM. These results
were compared with baseline results obtained by using two
other sets of APs for this task in the current experimental frame-
work. Comparison with the baseline results showed that the
proposed APs not only formed the most compact set (9 APs as
opposed to 39 MFCCs), but also gave the best performance on
this task. In future, we plan to incorporate this nasalization de-
tector into the landmark-based speech recognition system pro-
posed in [1]. This would enable the landmark-based system to
classify vowels into oral and nasalized classes, hence, moving
it one step closer to a complete system.
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