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Abstract- An algorithm for optimal estimation of pitch 
frequency using a maximum likelihood formulation is presented. 
The speech waveform is modeled using sinusoidal basis functious 
that are harmonically tied together to explicitly capture the 
periodic structure of voiced speech. The problem of pitch 
estimation is casted as a model selection problem and the Akaike 
Information Criterion is used to estimate the pitch. 
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I. INTRODUCTION 

The fundamental frequency of voiced speech is an 
important cue for almost all speech analysis- synthesis systems. 
Accurate and robust pitch estimation is necessary for several 
applications like speech coding, speaker recognition, speech 
recognition etc. Several pitch detection algorithms (PDA) have 
been proposed and a comparative study highlighting the 
problems and performance of these pitch detectors is presented 
in [1, 2]. 

Typically, pitch determination requires a search of different 
possible candidate frequencies over an analysis window. A cost 
function is defined for every pitch candidate and the estimated 
frequency is chosen to be the one that gives an optimum cost. 
For example, the autocorrelation based pitch detector can be 
formally viewed as minimizing, over possible pitch periods the 
mean squared error between the signal and its delayed version. 
It is essentially a measure of self-similarity [5] and we expect 
to observe peaks near the actual period. The maximum 
likelihood formulation of this problem was discussed in [3] 
which is related to the work by Steiglitz [4] who discussed the 
problem of pitch estimation by trigonometric curve fitting. In 
both these cases, an explicit model about the signal periodicity 
is imposed where the former takes place in the time domain 
with a similarity measure and the latter in the frequency 
domain with signal model. 

In this paper, we present a statistical method for pitch 
tracking by using a generalization of the discrete Fourier 
transform representation. It can also be viewed as a special case 
of sinusoidal speech model where all the sinusoidal 
components are assumed to be harmonically related i.e. the 
integer multiples of the fundamental frequency. The system 
outputs a pitch estimate for every frame that is detected to be 
voiced. We follow a metric that estimates the local signal to 
noise ratio (SNR) and decide on the voicing probability [5]. 
The voice activity detection is an integral part of the algorithm 

which is measured by the goodness of the model fit to the 
observation. The statistical method for pitch tracking presented 
in this paper follows the maximum likelihood estimation of the 
parameters. We follow a regression framework and decide on 
the pitch frequency using the Akaike Information Criteria 
(AIC). A related work to the problem formulation is given in 
[6] where maximum a posteriori (MAP) estimation is used in 
pitch tracking. 

The two sources of errors in the performance of a pitch 
detector originate from voice activity detection (V AD) and 
pitch estimation. The pitch insertion and deletion errors are 
used to measure the performance of the V AD and the pitch 
substitution errors account for the gross error in the pitch 
estimates [2]. Different kinds of post processing schemes like 
median filtering and dynamic programming are often used to 
remove discontinuities in the pitch tracks. The discontinuities 
arise from pitch doubling or halving errors or any of the above 
mentioned errors. Paul Bagshaw's database [13] was used for 
evaluation. The results are reported for both raw pitch 
estimates and the post-processed pitch values using median 
filtering. An extensive comparison of the performance with 
several algorithms which were evaluated on the same database 
is presented. 

We consider three principal parts of the mathematical 
model presented in this paper i.e. the conceptual, analytic and 
computational aspects in sections II, III and IV. The voicing 
decision block is outlined in section V and the experimental 
results and discussion are presented in section VI. Finally, 
section VII concludes the paper with our future work. 

A. Motivation 

II. SIGNAL MODEL 

For a stationary speech signal, pitch can be defined as the 
perception of a fundamental frequency of a pure harmonic 
template which optimally fits successive harmonic component 
pattern of the speech signal [7]. We follow a signal model that 
explicitly captures the periodic structure of the speech signal. 
This approach towards estimating pitch is referred as Harmonic 
Structure Matching Pitch Estimation (HSMPE) [8]. In our 
work, we explicitly model the time domain signal using 
sinusoidal basis functions that are harmonically tied together. 

B. Mathematical Formulation 

We start with the basic Fourier series representation of a 
stationary periodic signal. The windowed speech waveform is 
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represented by a sum of sinusoidal functions with fixed 
amplitudes, frequencies and phases [9]. This approach can be 
viewed as a generalization of the discrete Fourier transform i.e. 
the period of the signal is arbitrary and not necessarily equal to 
the length of the signal. This framework was used in [10] in the 
name of regressive discrete Fourier series and it is well known 
in the statistical literature as least squares spectral analysis. 
Under this condition, the windowed speech signal s[n] is 
represented as, 

(1) 

where 1 ::;; n ::;; N, ak, qJk and /0 represent the amplitude, phase 
and fundamental frequency and ern] represents the residual 
error from the model. Equation 1 can be compactly written in 
matrix form as, 

s = A (fo) * y + £ 
eli2wO ••• 

eni2wo ••• 

eNi2wo ••• 

(2) 

where the matrix A contains complex exponentials at the 
multiples of Wo = 2n foand is of size NxM(fo). The harmonic 
amplitude and phase information is captured in 1. The residual 
error is assumed to be additive white Gaussian noise with zero 
mean and covariance matrix R = a2 I. Hence the unknown 
parameters in the model are /0, 1 and if' which we wish to 
estimate from the observed signal. 

C. Maximum Likelihood Estimation 

The likelihood of observing the data given the parameters is, 

and the log-likelihood function L(O) with 8 = [a2,Y,f01 
containing all the unknown parameters is given by, 

The maximum likelihood parameter estimate is found by 
maximizing (4), 

iJ = argmaxeEeL(8) (5) 

The log-likelihood function is non-linear info and the usual 
optimization methods will yield local maxima. However, the 
parameter space for /0 is restricted to the possible pitch 
frequency for humans and therefore we do a global brute force 
approach for estimating/o. To do so, we fix/o= /0' and observe 
that the optimization problem is quadratic in 1 and the solution 
is given by Moore-Penrose pseudo inverse of A (fo') denoted 
as A+(f�) = ( A (fo')T * A (fo'))-1 * A (fo'). The well known 
optimal estimates is noted below for 1 and ci, 

(6) 

(7) 

The estimated signal s is given by the projection of the 
observation on the space spanned by the columns of A (fo'), 

5 = PACt;.) * S (8) 

PACt;.) = A(ATAr1Alfo (9) 

The maximized value of the log-likelihood function ignoring 
the additive constants is then given by, 

(�) N 1 L 8 = -In (:;"2) 
2 a (10) 

The problem formulation is reduced to minimizing the 

residual sum of squares. The column space of A (�) is a 

superset of A (fo) and therefore the residual error variance will 

follow a2 fo/2 ::;; a210 . It can be seen that choosing /0 that 
maximizes L(e) in (10) will result in pitch halving error almost 

always when � is in the parameter space. This should come as 

no surprise as we are simply doing a regression on the data 
using different models indexed by /0. Therefore we need a 
tradeoff on the number of parameters used to describe the 
model i.e. the complexity of the model and the goodness of fit 
from the model. This is achieved using the Ale described in 
the next section. 

III. MODEL SELECTION 

The Ale model selection stems from the Kullback- Leibler (K­
L) information loss [11, 12]. It follows an information theoretic 
approach to choose the best model from a set of candidates. In 
our case, the different models are indexed by the fundamental 
frequency. The tradeoff between the model complexity and the 
goodness of fit as given by Ale is, 

AIC(model) = 

2 (Max. value of the likelihood / + 2 - * /model) * 

number of parameters in the model 

AIC(fo) = Nln (a2(fo)) + 2 * M(fo) 
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Figure I. Illustration of pitch halving error (top) Likelihood score and (bottom) 
AIC score 
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We have the maximized log-likelihood value using the 
templates of projection matrices indexed by 10. The number of 
parameters in the model is equal to the number of regressors 
used i.e. the dimension of the harmonic coefficients M(fo). We 
choose the 10 that gives the lowest AIC score. A scenario 
illustrating the pitch halving error through ML model selection 
which is corrected using AIC information criteria is show in 
Fig.l. The algorithm provides high resolution in estimating the 
pitch frequency as we are not restricted to work with integer 
periods with resolution dictated by the sampling interval. The 
effect of pitch resolution in computational complexity is 
analyzed in the following section. 

IV. COMPUTATIONAL COMPLEXITY 

It should be noted that other minimum mean squared error 
methods based on similarity measures like the autocorrelation, 
cross correlation [17, 19] and the Average Magnitude 
Difference Function (AMDF) [20] require O(N) computations 
for every candidate pitch period (brute force approach) and 
therefore a total of OCT * N) computational load. For methods 
that transform the time domain signal to the frequency domain 
like cepstrum [14], harmonic product spectrum [16] and sub­
harmonic to harmonic ratio [21] require O(N * 109N) 
computations. 

In the problem of pitch estimation we are essentially 
solving a system of linear equations through projection 
templates. The storage complexity of these templates requires a 
memory space of the order (Big- 0 notation) OCT * N2) where 
T denotes the cardinality of the 10 parameter search space. The 
number of computations done per candidate model is O(N2) 
and therefore for T models we have a total of OCT * N2). The 
algorithm can be easily scaled to meet the computational 
requirements with a tradeoff on the accuracy of the pitch 
estimates. By computing the pitch frequency in the first voiced 
frame, gradient search techniques can be used to estimate the 
fundamental frequency in the successive frames. There can be 
various strategies to efficiently search the pitch grid starting 
from a coarse resolution and then tuning it to a finer resolution 
according to the required level of accuracy. Fig.2 illustrates the 
computational time required to process a signal of length 1.35s 
sampled at 8 kHz at lOms frame rate in 3GHz Intel processor. 
The computational time further scales with the sampling 
frequency of the signal. If we down sample the signal by a 
factor of L, the computational complexity scales by a factor of 

L2 i.e. the load for T models is a (T * G)2) . 
V. VOICING DETECTION 

Voice activity detection is an integral part of the algorithm 
which is measured by the goodness of the model fit to the 
observation. The estimated speech signal s and the residual € 
can be used to arrive at a measure of local SNR as follows, 

E = S-S (13) 

SNR = 1010910 e;: ) (14) 

The voicing decision can be based on the SNR level and 
one approach indicated in [12] is, 
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Figure 2. Computational time analysis { 1,SNR> 10dB } 
Pv = � (SNR - 4),4dB :s; SNR :s; 10dB 

O,SNR < 4dB 

10 

(15) 

Hence we can see that the algorithm can provide an optimal 
speech enhancement by using the reconstructed speech signal. 
This can be further refined by introducing time-frequency gain 
manipulation in the reconstruction process to improve the SNR 
of the recovered signal. 

VI. EXPERIMENTAL RESULTS 

A. CSTR Database 

Performance evaluation is done on the publicly available 
database provided by the Center for Speech Technology 
Research at University of Edinburgh, Scotland, UK. The 
database includes 50 sentences each from a male and female 
speaker. The database was biased towards utterances 
containing voiced fricatives, nasals, liquids and glides, since 
PDAs generally find these difficult to analyze [13]. The 
analysis window length was fixed at 25ms at 20 kHz sampling 
frequency and a frame rate of 6.4ms was followed. The pitch 
range analyzed was between 80-400Hz for both male and 
female speakers. There was no pre-processing stage to filter 
the speech signal. 

B. Performance Comparison 

The to value from the laryngeal frequency contour was 
used as the reference. Every to value in the reference file had a 
time label which was used to align the estimated pitch value 
(Pest) with the reference pitch (Pre!)' A nearest neighbor 

interpolation was used to compare the two pitch values at the 
time label where the algorithm estimated the pitch. The error 
measures computed for performance evaluation are the same 
as specified in [13]. When the estimated and reference pitch 
represent voiced speech, we have two error measures namely, 
gross errors and fine errors. The gross error high (GEH) is 
counted if Pest> 1.2 * Pre! and gross error low (GEL) is 

counted if Pest < 0.8 * Pre! for the duration when both 

represent voiced speech. Net gross error (GE) is the sum of 
GEL and GEH. Fine errors in pitch estimation are defined on 

the frames where Ipest - Pre! I :s; 0.2 * Pre!' The duration of 

unvoiced or silent regions incorrectly classified as voiced by 
the PDA is noted as unvoiced in error. This result is 
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accumulated over all the utterances for a speaker and noted as 
a percentage of total unvoiced (or silent) duration. Similarly, 
we have voiced in error for the duration of voiced speech that 
are erroneously classified as unvoiced. The statistics of the 
absolute deviation in the fine pitch errors are reported in mean 
and population standard deviation (p.s.d). Table I shows the 
results for the seven PDAs in Bagshaw's experiment I , 
modified AMDF with probabilistic error correction and sub­
harmonic to harmonic ratio approaches. The list of PDAs used 
in the comparison is, 

• Cepstrum pitch determination (CPD)[14] 
• Feature-based pitch tracker (FBPT)[15] 
• Harmonic product spectrum (HPS)[l6] 
• Integrated pitch tracking algorithm (lPT A)[ 17] 
• Parallel processing method (PP)[18] 
• Super resolution pitch determinator (SRPD)[19] 
• Enhanced version of SRPD (eSRPD)[13] 
• Modified AMDF-based PDA with probabilistic error 

correction (mAMDFp) [20] 
• Pitch determination algorithm based on sub-harmonic 

to harmonic ratio (SHR) [21] 
• Maximum likelihood pitch detection (ML-AIC) 

• Raw pitch results (raw) 
• Post-processed by median filter (filtered) 

The results for the first 7 PDAs are taken from [13] where 
eSRPD was shown to perform superior to the rest. The raw 
pitch estimates from the ML-AIC algorithm were post­
processed with a 5 point median filter. The results from Table 
I indicate that the performance of the algorithm is comparable 
to or better than most of the PDAs listed. 

The GEL values for ML-AIC are quite high as compared to 
GEH. The explanation for such bias in error is due to model 
over fitting. Detailed analyses on these errors on ML-AIC 
(raw) reveal that 75.86% of the GEL for male and 76.74% of 
the GEL for female occur due to pitch halving or sub multiple 

error i.e. lz * Pest - Pret l ::; 0.2 * Pret• z E {2.3.4}. Most of 

the deletion errors (voiced in error) occur in the first few 
frames or last few frames of a voiced segment. When three 
frames in boundary of a voiced segment were excluded from 
the analysis, the deletion errors dropped to 3.51 % for male and 
4.99% for female. Overall the results for the raw pitch 
estimates indicate that the performance of the algorithm is 
comparable to (eSRPD) or better than most of the methods in 
gross errors and fine pitch errors. Median filtering reduced the 
insertion and deletion errors to some extent. The tradeoff for 
reduction in V AD errors is reflected in fine error measures. 
The mean absolute deviation and p.s.d show an increase in 
their values after smoothing. Figures 3 and 4 compare the 
reference pitch with the estimated pitch contour for a male and 
a female speaker respectively. The reference pitch values were 
linearly interpolated in the voiced segments at the frame rate 
followed in the algorithm. The post processed pitch estimates 
are shown in blue. 

I The authors would like to thank Dr.Bagshaw for providing the database and 
evaluation results . http://www.cstr.ed.ac.ukiresearchiprojects/fdal 

PDA Unvoiced Voiced Gross Errors Net Absolute 
in error in (%) GE deviation 
(%) error (%) (Hz) 

(%) 
High I Low Mean I p.s.d 

Male 
CPD 18.11 19.89 4.09 0.64 4.73 2.94 3.60 
FBPT 3.73 13.9 1.27 0.64 1.91 1.86 2.89 
HPS 14.11 7.07 5.34 28.15 33.49 3.25 3.21 
IPTA 9.78 17.45 1.40 0.83 2.23 2.67 3.37 
PP 7.69 15.82 0.22 1.74 1.96 2.64 3.01 
SRPD 4.05 15.78 0.62 2.01 2.63 1.78 2.46 
eSRPD 4.63 12.07 0.90 0.56 1.46 1.40 1.74 
mAMDFp - - 1.94 2.33 4.27 - -
SHR - - 1.29 0.78 2.07 - -

ML-AIC 8.69 7.59 0.21 0.44 0.65 1.60 1.92 
(raw) 
ML-AIC 5.68 6.48 0.18 0.86 1.04 1.77 2.33 
(filtered) 
Female 
CPD 31.53 22.22 0.61 3.97 4.58 6.39 7.61 
FBPT 3.61 12.16 0.60 3.55 4.15 5.40 7.03 
HPS 19.10 21.06 0.46 1.61 2.07 4.59 5.31 
IPTA 5.70 15.93 0.53 3.12 3.65 4.38 5.35 
PP 6.15 13.01 0.26 3.20 3.46 6.11 6.45 
SRPD 2.35 12.16 0.39 5.56 5.95 4.14 5.51 
eSRPD 2.73 9.13 0.43 0.23 0.66 4.17 5.13 
mAMDFp - - 0.63 2.93 3.56 - -
SHR - - 0.75 1.69 2.44 - -

ML-AIC 4.26 14.4 0.06 2.02 2.08 3.96 4.37 
(raw) 
ML-AIC 2.05 13.91 0.04 1.86 1.90 4.02 4.5 
(filtered) 

Table 1: PDA evaluation for male speech (top) and female speech (bottom) 

VII. CONCLUSION 

The results indicate the superior performance of the 
algorithm in comparison with several existing PDAs. Raw 
pitch estimates indicate high level of accuracy. We observe 
that there is a great potential to reduce the computational time 
through intelligent search techniques. The use of AIC for 
regularization mitigates some of the pitch halving error 
problems but there still remains significant contribution of 
these errors. This suggests the use of prior information to 
enforce continuity on the tracks as well as other post 
processing schemes which can be done by allowing suitable 
latency. Our future work will be directed towards, 

• Testing the robustness of the algorithm in the 
presence of noise. 

• Exploring regularization methods to reduce the pitch 
halving errors. 

• Improving the computational performance. 
In summary we have presented a statistically optimal 
framework for high resolution pitch estimation and signal 
enhancement. 
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