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ABSTRACT 
A phonetically  based  approach to speech  recognition  uses  speech 

specific  knowledge obtained from phonotactics, phonology and acous- 
tic  phonetics to capture relevant  phonetic  information.  Thus, a recog- 
nition  system  based on this approach  can  make  broad  classiflcations as 
well  as detailed  phonetic  distinctions.  This  paper  discusses a frame- 
work  for  developing a phonettcally  based  recognition  system.  The 
recognition  task is the class of sounds known as the semivowels.  The 
recognition  results  reported,  though  incomplete,  are  encouraging. 

INTRODUCTION 
The  spectrogram reading experiments  conducted by Zue and 

Cole in 1979 [I] showed that  the wealth of phonetic information 
contained in the speech signal can be extracted by applying ex- 
plicit rules. As a result of this research, a phonetically based 
approach to speech recognition is a viable alternative to tradi- 
tional pattern matching techniques. 

The development of a phonetically based recognition system 
requires three  major  steps. First, features needed for classifying 
the sounds of interest  must be identified and  translated  into 
acoustic properties which can  be quantified. Second, algorithms 
must be developed to reliably and automatically extract these 
acoustic properties from the speech signal. Finally, a  control 
strategy for integrating  these  properties which are present with 
various degrees of strength must be developed. 

In this  paper, we discuss the design of a phonetically based 
system for recognizing the class of sounds known as the semivow- 
els /w,l,r,y/. By recognition we mean both detection and clas- 
sification. We constrain the problem to  the recognition of non- 
syllabic voiced semivowels within polysyllabic words. 

The semivowels have some properties which make recogni- 
tion of them particularly challenging. First, of the consonants, 
the semivowels are acoustically most similar to the vowels. They 
are produced orally without complete closure of the vocal tract 
and without  any frication. The constriction required to articu- 
late them does not inhibit  spontaneous voicing and, therefore, 
they are  sonorant  consonants.  Furthermore, as is true for the 
vowels, the semivowels often have a steady  state. Second, due 
to phonotactic  constraints,  a semivowel must occur adjacent to 
a vowel except for the /rl/ cluster  in words like “snarl”. As 
a consequence of these two properties, acoustic boundaries be- 
tween the semivowels and vowels are usually not  apparent from 
a  spectrogram. In this  respect, recognition of the semivowels is 
more difficult than recognition of other consonants. This point is 
illustrated  in Figure 1 where a  spectrogram of the word “demor- 
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alize” is given. The acoustic properties change rather  abruptly 
between the  stop consonant /d/ and  the vowel /P/ and between 
the nasal consonant /m/ and  the surrounding vowels /P/ and 
/3/. On the  other  hand,  the changes are more gradual  between 
the semivowel /r/ and  the surrounding vowels /3/ and /a/, or 
between the semivowel /1/ and  the surrounding vowels /a/ and 
/av/, although there is a degree of abruptness at  the release of 
the /I/. 

DATA BASE 
The initial step in this research was the design of a data 

base for developing and  testing  the recognition algorithms. We 
chose 233 polysyllabic words from the 20,000 word Merriam 
Webster Pocket dictionary. These words contain the semivowels 
and  other similar sounds in a  variety of contexts. The semivow- 
els occur in clusters (with one another, nasals,  stops, fricatives 
and /s/-stops),  in word initial, word final and intervocalic po- 
sitions. They also occur adjacent to vowels which are stressed 
and  unstressed, high and low and front and back. 

Two repetitions of each word  were recorded by two males 
and two females. For acoustic analysis, one token of each word 
from each speaker was hand transcribed using Spire [2]. 

FEATURE EXTRACTION 
To recognize the semivowels, features are needed for sepa- 

rating  the semivowels as a class from other sounds and for dis- 

Figure 1: Acoustic  properties of the word  “demoralize” 
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Table I: Features which characterize  various  classes of consonants 

stop retroflex front back high nasal 
nasals + + + 
/w/ 

1.1 
- + - +  - - /Y/ 

+ + -  - - - 

- -  + 
light /l/ - - + - - - dark /1/ 

- - + 
Table 2: Features  for  separating  semivowels from nasals  and  for  dis- 
criminating between the semivowels 

tinguishing between the semivowels. Shown in Tables 1 and 2 
are  the features needed to make these classifications. A "+" 
means that  the speech sound(s)  indicated has  the designated 
feature and a y-" means the speech sound(s) does not  have the 
designated feature. If there is no entry, then  the feature is not 
specified or is not relevant. 

Based on the features in Table 1, we note  that  the class 
of segments of interest in this study is identified by a "+' for 
each of the  three features.  Furthermore, the nasals, which are 

also sonorant  consonants, are  the only other sounds so defined. 
Thus, based on these  features, the voiced sonorant consonants 
should be discriminated from other speech sounds. The fea- 
tures in Table 2 are needed to  separate  the semivowels from the 
nasals and  to identify the individual semivowels. The  feature 
high is defined slightly differently from the conventional way, 
but  its acoustic correlate is a low first formant frequency. Two 
allophones of /1/ are specified, light /1/ and dark 111. Dark /1/ 
occurs in syllable hal position whereas a light /1/ occurs in 
other syllable positions. 

Considerable research (e.g. [3]) has been done studying the 
perceptual and acoustic properties of the semivowels. This re- 
search has  indicated the  pattern of formant frequencies that dis- 
tinguish between the semivowels. This  can  be seen in  Figure 2 
where the frequency difference between F2 and  F1  and between 
F3 and F1 are shown for the intervocalic semivowels spoken by 
one of the female talkers. The formant  tracks were automati- 
cally extracted  and  the formant frequencies were measured in 
the middle of the transcribed semivowels. The frequency dif- 
ference between F3  and  F1, which is one of the acoustic prop- 
erties used to detect retroflexion, separates /r/ from the other 
semivowels. In addition, the frequency difference between F2 
and  F1, which is used to  extract  the features  front and back, 
clearly separates /y/ from the  other semivowels and partially 
separates /w/ from 111. 

Table 3 contains the present  mapping of the features  listed 
in Tables 1 and 2 into measurable acoustic properties. Based 
on our present knowledge of acoustic phonetics, some features 
can  be  extracted more reliably than others. For example, the 
feature  sonorant  can be reliably extracted using energy based 
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Figure 2: DifTerence  in Formant Frequency Values for Intervocdic 
Semivowels 

parameters while the feature  high is not as easy to  extract since 
reliable computation of formant  tracks can  be difficult. 

As indicated  in Table 3, no absolute thresholds are used to 
quantify the acoustic properties.  Instead, we used relative mea- 
sures which tend to make the properties independent of speaker, 
recording level, and recording environment. These measures are 
based on anchor  points within the specific utterance being ana- 
lyzed. Each measure examines an attribute in one speech frame 
in relation to another  frame, or, within  a given frame, examines 
one part of the spectrum in relation to another.  Thus, for ex- 
ample, in the extraction of the feature voiced, which is based 
on the bandlimited energy 200 Hz to 700 Hz, the classification 
of each speech frame  within the utterance was based on the 
energy in that frame with respect to  the maximum energy mea- 
sured within the entire  utterance. On the other hand, in the 
extraction of the feature  sonorant, the energies in the frequency 
bands 0 Hz to 300 Hz and 3700 Hz to 7000 Hz were compared 
on a frame by frame basis. 

The framework provided by fuzzy set theory [6]  is used to 
quantify each property into  the range [0,1]. A value of 1 means 
we are confident that  the  property is present. Conversely, a 
value of 0 means we are confident that  the acoustic property is 
absent. Values in between these  two extremes represent a fuzzy 
area with the value indicating our level of certainty that  the 
property is presentlabsent. 

As an example of how this framework is applied, consider 
the quantification of the acoustic property used to extract the 
feature nonsyllabic. The acoustic correlate of this feature is sig- 
nificantly less energy in the consonant regions than in the vowel 

Feature /Parameter j Property 
Voiced  IEnergy 200-700 Hz /High  (Relative) 

I '  Sonorant Energy Ratio (0-300)/(3700-7000) 
Nonsyllabic Energy 640-2800 Hz  Low (Relative) ' 1  

Energy 2000-3000 Hz 

1st Difference  of F1 
stop 1st Difference of Total Energy 

Nasal Nasal Formant 
High F 1 -  FO 
Back 

F3 - FB Retroflex 
F2 - F1 Front 
F2 - F1 

Low (Relative) 
High 
High 
Present 
Low 
Low 
High 
Low 

Table 3: Parameters and Properties for Feature Extraction 
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Figure 3: Energy Dip in Intervocalic Semivowels 

regions. In an attempt  to define this property of “less energy” 
more precisely, we selected the bandlimited energies 640 Hz to 
2800 Hz and 2000 Hz to 3000 Hz and examined their effective- 
ness in identifying the presence of intervocalic semivowels. For 
each of these parameters,  the differences between the minimum 
energy within the semivowels and  the maximum energy within 
the adjacent vowels was measured. The smaller of these  two dif- 
ferences indicates the significance of the energy dip. A scatter 
plot of the range of values of this energy dip for the two  ban- 
dlimited energies is shown in Figure 3. We also looked at  the 
range of values of energy dips within the vowel regions. Less 
than 1% of the vowels contained an energy dip.  Furthermore, 
these energy dips  tended to  be less than 2 dB. 

Based on these data,  this  property was quantified into  the 
regions shown in  Figure 4. An energy dip of 2 dB  or more defi- 
nitely  indicates  a nonsyllabic segment. If an energy dip between 
1 dB  and 2 dB is measured, we are uncertain as to whether  a 
nonsyllabic segment is present or  not. Finally, energy dips of 
less than 1 dB are not indicative of a nonsyllabic segment. 

Examples of the quantified properties for the word “demor- 
alize’ are shown in Figure 1. The energy based  properties  are 
shown on the left and  the formant  based  properties are shown on 
the right. The automatically extracted formant tracks are over- 
laid on the second spectrogram. Note that  the feature stop was 
quantified into  the properties “very abrupt change”, “abrupt 
change” “gradual change” and “small change”. 

Some properties,  such as the voiced property, define a re- 
gion(s) within the speech signal whereas others,  such as the 
energy dip  property,  mark instants of time. The amplitude of 
each property  indicates our level of certainty  that  the property 
is present. Some of the properties  are extracted independently 
of one another. However, the knowledge gained from some of 
the properties is used in the extraction of other properties. For 
example, the  formants are only tracked  within the region spec- 

syllabic maybe nonsyllabic nonsyllabic ” 
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Figure 4: Quantifleation of Energy Dip Property 

ified by the voiced property. 

CONTROL STRATEGY 
To classify the semivowels, rules were written  integrating  the 

extracted acoustic properties. At  the writing of this  paper,  the 
formant tracker developed for this recognition system was be- 
ing refined. Therefore, some of the more detailed  phonetic dis- 
tinctions could not  be made. However, using the energy based 
properties, a rule was written for the detection of sonorant con- 
sonants. Having detected  these segments, another rule, which 
is also incomplete without  formant  information, was written to 
separate the semivowels from other sonorant  consonants or im- 
posters. In general, the imposters include the nasals only, d- 
though  other voiced consonants are sometimes sonorant when 
in intervocalic position. To  compensate somewhat for missing 
formant information, the properties  ‘murmur”,  “maybe mur- 
mur” and ‘no murmur” were used to help separate nasals from 
semivowels. These properties were based on the  ratio of the 
bandlimited energy 0 Hz to 400 Hz to  the bandlimited energy 
400 Hz to 1000 Hz. 

The rules written  to recognize the semivowels are: 

SONORANT CONSONANT = (NONSYLLABIC)(VOICED) 
(SONORANT) 

SEMIVOWEL = (SONORANT  CONSONANT) 
{[(NO MURMUR) + (MAYBE MURMUR)] 
(NOT  STOP LIKE) + 
(NO MURMUR)(STOP LIKE)} 

IMPOSTERS = (SONORANT CONSONANT) 
{(MURMUR) + (VERY STOP LIKE) + 
(MAYBE MURMUR)(STOP  LIKE)) 

where ”very stop like”, “stop l i e ”  and “not stop like” are also 
rules which are  based on the spectral change properties dis- 
played in  Figure 1. 

From the sonorant  consonant rule, the energy dips  detected 
must occur within  a voiced and sonorant region. Having de- 
tected  such an energy dip, the spectral change properties  are 
extracted from the region surrounding the energy dip. In the 
case of intervocalic semivowels, this region is defined by  the en- 
ergy peaks that are  adjacent to  the energy dip. These energy 
peaks are required to  be in a voiced and sonorant region as well. 
That is, they  should  occur  within the adjacent vowels. For pre- 
vocalic and postvocalic semivowels, this region is defined by the 
adjacent energy peak and  the beginning or  end of the voiced 
sonorant region, respectively. 

In the recognition rules, the addition or “+” operation of 
properties is analogous to a logical “or”.  The result of this op- 
eration is the maximum value of the properties  being  operated 
on. The  multiplication of properties is analogous to a logical 
“and”.  The result of this  operation is the minimum value of 
the properties  being  operated on. Thus, since the value of each 
property  must be in the range [0,1], the scores obtained by a p  
plying these rules must also be in the range [0,1]. 

Note that a rule was also written  to classify imposters. This 
rule and  the semivowel rule are applied to each  detected sono- 
rant consonant. Thus,  an imposter which classifies as asemivowel 
will hopefully classify as an imposter  with  a higher score. To 
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semivowels nasals other imposters 
total 445 84 a7 

detected 411 83 60 
Table 4: The  number of possible intervocalic  sonorant  consonants 
containing  an  energy  dip. 

classify as a semivowel or  an imposter, the scores obtained from 
these rules must be greater than 0.5. 

This section  contains preliminary results for the detection 
and classification of intervocalic sonorant consonants. The con- 
vex hull algorithm developed by Mermelstein(41 was used to 
detect  these intervocalic energy dips within the energy bands 
mentioned in Table 3. 

DQteCtiOln Qf b t C T V O e l a k  ~ ~ T l . Q ~ ~ t  COTl.SOnESls$ 
To qualify as occurring within an intervocalic sonorant con- 

sonant, the detected energy dip must be surrounded by energy 
peaks which also occur  in voiced and sonorant regions. As men- 
tioned earlier, such energy peaks should occur within the adja- 
cent vowels. Table 4 summarizes the results  obtained with this 
strategy.  The row labeled “total” is the  number of such inter- 
vocalic consonants tramscribed in the  data base. As mentioned 
earlier, the  other imposters includes other voiced consonants 
which are sometimes sonorant when in intervocalic position. In 
this  study, we defined the “other imposters” to  be /h/, I f / ,  /u/ 
and /a/ when, according to  the transcription of the words in 
the  data base, they occurred in intervocalic position. 

All the nasals and  other imposters were  classified as nonsyl- 
labic. That is, an energy dip was always contained within their 
transcribed region. The 17 undetected  imposters, unlike the 
semivowels and nasals, were also classified as either unvoiced, 
nonsonorant or  both. One misclassification of the nasal /m/ 
(in the word “demoralize”) occurred because it was preceded 
by a  short /?/ (15 msec) such that  the preceding energy peak 
occurred at  the release of the /d/ burst, an unvoiced region. 

Of the 34 undetected semivowels, 94% were not classified as 
nonsyllabic. That is, these semivowels  were not found through 
energy dip detection. Of those not classified as nonsyllabic, 91% 
occurred after  a  stressed vowel and before an unstressed vowel, 
such as the /r/ in “chlorination”.  The remaining semivowels 
not found through energy dip detection occurred before and 
after unstressed vowels, such as the /I/ in “musculature”. Thus, 
these semivowels do  not have the nonsyllabic property. In the 
6nal design of the recognition system,  redundancy will be built 
in such that  other features,  such 89 retroflex, can be used to 
identify semivowels independently of the nonsyllabic property. 

In addition to  the consonants  listed in Table 4, a few other 
voiced consonants which are sometimes sonorant when in inter- 
vocalic position and a few  vowels also contained energy dips. 
However, we will not discuss these  segments here. 

Classification of htelwoealic 8 e  
Table 5 summarizes the results obtained by applying the clas- 

sification rules to  the detected intervocalic segments. Given that 
no formant  information was used, the results are encouraging. 
Only 7% of the semivowels were  classified as imposters. Of these 
semivowels, 54% were/l/’s which are  often stop-like due  to  the 
release of the tongue from the roof of the  mouth in  their produc- 

classification I identification 
/semivowels imposters ! semivowel 1 :; :t 1 

Table 5: Classillcation of Intervocalic  Segments 

imposter 
not class. 

tion before a vowel. With  formant information, particularly the 
frequency of FB, we expect to do considerably better. Shown 
in Figwe 5 is a  multi-histogram of the frequency of FB of the 
intervocalic semivowels and nasals. As was true in Figure 2, 
these data were automatically  extracted from the words spo- 
ken by one of the female talkers. There is little overlap in the 
distribution of the F1 frequency sdues of the nasals and  the 
distribution of the PB frequency values of the /l/’s. 

Of the imposters classified as semivowels, 53% were nasals. 

The energy change between these nasals and *adjacent vow- 
eis was too gradual for the nasals to be considered stop-lie. 
Furthermore, the  murmur  property  did not distinguish these 
nasals even though  many of them  can  be distinguished from the 
semivowels on the basis of the frequency of FB. 

Bn this paper, we develop a framework for a phonetically 
based approach to speaker  independent speech recognition. First, 
we identify features for classifyiig the speech sounds of inter- 
est. Second, we develop algorithms to automatically  extract 
the acoustic correlates of these features. Finally, the extracted 
properties  are  integrated in a set of recognition rules. Given 
that all of the necessary acoustic properties  are not used, the 
recognition results  obtained ~ p e  encouraging. 
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