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Abstract
In this work, we present a single-channel speech enhancement
technique called the Modified Phase Opponency (MPO) model as
a solution to the Speech Separation Challenge. The MPO model
is based on a neural model for detection of tones-in-noise called
the Phase Opponency (PO) model. Replacing the noisy speech
signals by the corresponding MPO-processed signals increases the
accuracy by 31% when the speech signals are corrupted by speech-
shaped noise at 0 dB Signal-to-Noise Ratio (SNR). It is worth men-
tioning that the MPO enhancement scheme was developed using
the noisy connected-digit Aurora database and was not tailored in
any way to fit the Grid database used in this challenge. One of the
salient features of the MPO-based speech enhancement scheme is
that it does not need to estimate the noise characteristics, nor does
it assume that the noise satisfies any statistical model.
Index Terms: speech separation, robust speech recognition.

1. Introduction
Various different approaches are being pursued to make Automatic
Speech Recognition (ASR) systems robust to noise. One of the ap-
proaches is to enhance the speech signal by suppressing the noise
as much as possible while leaving most of the actual speech con-
tent undistorted. Many of the speech enhancement techniques
were originally developed for speech quality improvement, but
they can also be used as a pre-processing block for ASR systems.

We previously presented a speech enhancement technique
called the Modified Phase Opponency (MPO) model [1, 2]. The
MPO model is based on a neural model for detection of tones-in-
noise called the Phase Opponency (PO) model [3]. Fig. 1 shows
the PO model with Center Frequency (CF) of 900 Hz. The two
gammatone filters model two nerve fibers tuned to slightly differ-
ent frequencies.

As shown in Fig. 1, when the input is a tone at 900 Hz, the out-
puts of the two filters will be out of phase and the cross-correlation
will lead to a negative output. The output will remain negative as
long as the input is a bandlimited signal centered at the CF (900
Hz in this case) and with Bandwidth (BW) within the out-of-phase
frequency region (Fa − Fb in Fig. 1). We refer to the frequency
region Fa − Fb as the out-of-phase region and the rest of the fre-
quency region as the in-phase region. On the other hand when the
input is a wideband signal, the output of the two filters will exhibit
some degree of correlation and the cross-correlation output will be
positive or very slightly negative. Thus the PO model is able to
distinguish between narrowband signals and wideband noise. One
of the issues with the PO model shown in Fig. 1 is that the rela-
tive magnitude response and the relative phase response of the two
paths depend on the same set of parameters, making it difficult to

Figure 1: PO filter pair to detect a tone at 900 Hz. GTF: gamma-
tone filter.

Figure 2: MPO filter pair; BPF: Bandpass filter; APF: Allpass
filter

vary either of the two independent of the other.
The MPO model used in the present work is shown in Fig.

2. A significant difference between the PO and the MPO model
is that the latter allows for the control of the relative magnitude
response and the relative phase response of the two paths indepen-
dent of each other. The All Pass Filter (APF) used in one of the
paths facilitates the manipulation of the relative phase responses
of the two paths without affecting the magnitude responses of the
two paths. The dependence of the APF’s phase response on its
pole characteristics and the relation between the frequency loca-
tion where the phase response is −π (implying the outputs of the
two paths will be out-of-phase) and the pole characteristics of the
APF were presented in [1]. Fig. 3(d) shows the phase response
of the APF for a MPO structure designed to detect a narrowband
signal with bandwidth no more than 250 Hz and centered at CF



Figure 3: Magnitude response of the symmetric (a), upward-
skewed (b) and downward-skewed (c) BPF that will be used in
the MPO structure with CF=1000 Hz. (d) Phase response of the
APF that will be used in the MPO structure with CF=1000 Hz. (e)
Spectral slice of a sonorant region in speech signal.

= 1000 Hz. The corresponding BPF is chosen such that the pass-
band of the BPF includes some region around the CF and has a
BW such that the MPO structure results in a good separation of
narrowband and wideband signals even when the narrowband sig-
nal is corrupted by noise.

Fig. 3(a-c) show three possible BPFs. The magnitude re-
sponse of the BPF in Fig. 3(a) is symmetric about the CF and
is referred to as the symmetric BPF. The magnitude response of
the BPFs in Fig. 3(b),(c) are skewed upward and downward in
frequency with respect to the CF and are hence referred to as
the upward-skewed and downward-skewed BPF, respectively. The
MPO structures using the upward-skewed BPFs are more reliable
in detecting speech information as they take advantage of the spec-
tral tilt present in sonorant speech regions. For example, the F2 in-
formation (around 1000 Hz) in the spectral slice shown in Fig. 3(e)
can be detected only using the upward-skewed MPO structures.

Downward-skewed MPO structures are useful in detecting the
low frequency harmonics corresponding to lower formants when
two formants are of comparable amplitudes and are close in fre-
quency. The threshold to discriminate the presence of signal from
the absence of signal was computed using the Maximum Likeli-
hood (ML)-based Likelihood Ratio Test (LRT) with white noise
and narrowband signal forming the two classes.

2. MPO based speech enhancement scheme
Much of the speech signal is voiced so that it is composed of a
combination of narrow band signals (i.e. harmonics) with vary-
ing relative amplitudes. The schematic of the MPO-based speech
enhancement scheme is shown in Fig. 4. The CFs are spaced ev-
ery 50 Hz from 100 Hz to just below the maximum frequency.
Each MPOi in Fig. 4 consists of five upward-skewed and five
downward-skewed MPO structures, all tuned to the same CF, but
with slightly different out-of-phase regions. Noise can be wrongly
seen as speech by one or more of the five upward/downward-

Figure 4: Schematic of speech enhancement using the MPO model

skewed MPO structures, but it is rarely seen as speech by all the
five upward/downward-skewed structures. Similarly, speech is al-
most always seen as speech by all of the five structures.

The speech enhancement scheme can be described as a two-
step process. In the first step, the temporal regions where speech
is present are computed. For a temporal region to be voted as
speech present it has to satisfy two conditions: (a) at least one fre-
quency channel from all the five different upward-skewed or all
the five different downward-skewed MPO structures should be at
least four times more negative than the threshold for that particular
channel, indicating a strong presence of speech signal and (b) the
temporal region should be at least 50 ms long. The second step
detects the frequency channels within the speech-present temporal
regions where speech information is present by finding the chan-
nels where the output from all the five upward-skewed or all the
five downward-skewed MPO structures is below the threshold.

The output of the MPO enhancement scheme can be inter-
preted as a binary mask [5] with a value of one in the spectro-
temporal channels where speech is thought to be more dominant
than the noise and a value of zero where noise is thought to be more
dominant than the speech signal. We refer to such a binary mask as
the MPO profile. Fig. 5 show the spectrogram of the clean speech
and the MPO-processed clean speech respectively. Fig. 5(b,d-g)
show the spectrograms of the utterance ’bin white at S 1 soon’ in
clean as well as the noisy versions at 6, 0, -6 and -12 dB SNR,
respectively, overlaid with the corresponding MPO profiles. The
blue/dark regions are the spectro-temporal channels where speech
signal is thought to be present. Note that the MPO profile of the
clean utterance has a value of one in almost all the high energy
sonorant regions thus indicating that very little information is lost
by MPO processing when the input signal is clean. This is also
confirmed by the ASR results as is discussed in the next session.
The MPO profile at 6 dB and 0 dB SNR (Fig. 5(d),(e)) show that
a lot of the speech information is retained and that as the SNR
reduces the low energy speech information is gradually lost. It
can also be deduced that the MPO processing is very conservative
in what gets called as speech (i.e. MPO processing makes more
false-rejection errors).

The noisy speech signal from the channels where the MPO
profile is one is used ’as-is’ to construct the enhanced speech sig-
nal. The contribution of the rest of the channels is decided by a
weighing scheme based on the transfer function associated with a
conjugate pair of poles corresponding to the centroid of the fre-
quencies of the contiguous speech-present channels. The transfer



Figure 5: Spectrograms of (a) clean speech (b) clean speech over-
laid with the MPO profile. (c) MPO-processed clean speech. (d)-
(g) show the spectrograms of noisy speech at 6, 0, -6, -12 dB SNR
respectively overlaid with the corresponding MPO profile. X-axis
is time in seconds. Y-axis is frequency in Hz.

Figure 6: Spectral weighing scheme.

function is similar to the general form of the vocal tract transfer
function derived in [4]:

Tn(s) =
sns∗n

(s− sn)(s− s∗n)
(1)

where s = j2πf, sn is the complex frequency of the pole, and
sn = σn + j2πFn. The value of σn is chosen such that the band-
width of the pole is 100 Hz. Such an attenuation scheme reduces
the perceptual artifacts introduced by the enhancement technique.
The weighing scheme corresponding to the frame centered at 100
ms of the clean utterance shown in Fig. 5(b) is displayed in Fig. 6.
The Fn values for this frame are: 400, 1800, 2600 and 3650 Hz.

3. Evaluations
The performance of the MPO speech enhancement scheme is eval-
uated by conducting robust speech recognition experiments on
the Grid database [6]. The database consists of sentences of the
form: “<command:4> <color:4> <preposition:4> <letter:25>
<digit:10> <adverb:4>”, where the number indicates the num-
ber of choices at each point. The training subset consists of 17000
sentences (500 each from 34 talkers) recorded in clean environ-
ment at a sampling rate of 25 kHz. The speech signals in the test
subset are corrupted either by speech-shaped noise at∞ dB, 6 dB,
0 dB, -6 dB or -12 dB SNR or by a different sentence at∞ dB, 6

dB, 3 dB, 0 dB, -3 dB, -6 dB or -12 dB Target-to-Masker Ratios
(TMRs). The test data consists of 900 utterances in each condition,
300 of which form the development test set. The same talkers are
used for training, development and test sets but no training utter-
ance occurs in either the development or the test set. Finally, as per
the rules of the challenge, the recognition results on only the color,
letter and digit keywords are used to compute the final recognition
accuracy.

It is worth mentioning that the MPO enhancement scheme was
developed using the noisy connected-digits Aurora database [7]
and was not tailored in any way to fit the Grid database. One of the
salient features of the MPO-based speech enhancement scheme is
that it does not need to estimate the noise characteristics nor does
it assume that the noise satisfies any statistical model.

The aurora database is sampled at 8 kHz and hence the MPO
profile ranges from 0–4 kHz. The MPO profile computed on 0–4
kHz can be applied to the 25 kHz-sampled Grid database in one
of the following three ways: (a) downsample the Grid database
to 8 kHz and apply the MPO profile as-is, (b) apply the MPO
profile from 0–4 kHz and pass the high frequency information
as-is (i.e. set the MPO profile to one for all spectro-temporal
channels with CF > 4 kHz) or (c) apply the MPO profile from
0–4 kHz and suppress the high frequency information (i.e. set
the MPO profile to zero for all spectro-temporal channels with
CF > 4 kHz). These three different methods are referred to as
MPO4k, MPOhon and MPOhoff respectively and results are pre-
sented for each of these methods as well as for the ’no-processing’
case where the noise test data is used without any processing. For
each of the three methods, the recognizer was trained using the
same parameters and topology as the default recognizer had but
the training utterances were processed using the respective method
to obtain matched conditions for training and testing. For exam-
ple, the training utterances used to train the MPOhon recognizer
were MPO-processed with the corresponding MPO profile applied
from 0–4 kHz and the high frequency information passed as-is.

Table 1: Recognition accuracy for speech-shaped-noise condition

Type clean 6 dB 0 dB -6 dB -12 dB
no proc 98.56 56.67 18.94 11.78 11.67

MPOhon 97.89 73.67 40.67 19.11 13.28
MPOhoff 96.44 71.06 41.94 18.72 14.50
MPO4k 96.00 73.83 50.06 26.00 14.33

Table 1 shows the recognition accuracy on the test set when the
speech signals are corrupted by speech shaped noise at various
SNRs. The row corresponding to ’no-processing’ shows the base-
line results obtained using the noisy test utterances. These results
are also plotted in Fig. 7. It is evident from the figure that all of
the three ways in which the MPO profile is applied to the test set
result in an improvement in accuracy. The results obtained in the
clean condition with either of the three methods are very similar
to the ones obtained in ’no-processing’ condition implying that the
MPO-processing retains most of the speech information when the
input is clean speech. The slight drop in accuracy ( from 98.56%
to about 97%) could be because of the fact that MPO-processing
removes most of the obstruent information since it consists of tur-
bulent noise. The MPO4k processing leads to an increase in the
accuracy of about 31% at 0 dB SNR. Similar results were obtained
for the development set. This proves that the MPO enhancement
scheme is effective in improving the performance of robust auto-



Figure 7: Recognition accuracy for speech corrupted by the
speech-shaped-noise. blue solid curve with o : no processing,
green dotted curve with * : MPOhon, red dash-dotted curve with
4 : MPOhoff , black dashed curve with � : MPO4k

Figure 8: Recognition accuracy for speech corrupted by the two-
talker scenario. blue solid curve with o : no processing, green
dotted curve with * : MPOhon, red dash-dotted curve with 4 :
MPOhoff , black dashed curve with � : MPO4k

matic speech recognition when the speech signals are corrupted by
speech shaped noise.

Table 2: Recognition accuracy for two-talker condition

Type 6 dB 3 dB 0 dB -3 dB -6 dB -12 dB
no proc 63.58 45.75 31.92 19.42 11.75 6.75

MPOhon 56.17 41.42 29.42 18.58 12.83 8.25
MPOhoff 53.08 42.33 33.17 24.58 18.67 13.58
MPO4k 53.75 44.42 34.25 26.00 18.58 12.75

Table 2 shows the recognition accuracy on the test set when
the speech signals are corrupted by other competing utterances at
various TMRs. The row corresponding to ’no-processing’ shows
the baseline results obtained using the noisy test utterances. These
results are also plotted in Fig. 8. The figure shows that MPO-
processing leads to a slight drop in the accuracy at positive SNRs
and a slight increase in the accuracy at negative SNRs. These re-
sults are not surprising as the corrupting noise in this case is a
competing speech signal which is also narrowband. In this case the
MPO-processing will retain both the target speech signal as well as
the masking signal. The results for the clean two-talker condition
are very similar to the results for the clean speech shaped noise
condition. The results for the two-talker case can be categorized
further based on whether the talker and the masker are the same,

have the same gender or have different genders. These results are
tabulated for the MPO4k case in table 3. MPO-processing does not
favor any one category over the others as the interfering noise in
all the categories is still narrowband.

Table 3: Categorized recognition results for two-talker condition

SNR same talker same gender diff gender average
6dB 52.94 55.59 53.00 53.75
3dB 44.34 45.81 43.25 44.42
0dB 30.54 35.75 37.00 34.25
-3dB 24.43 27.37 26.50 26.00
-6dB 16.29 20.11 19.75 18.58
-9dB 11.31 14.53 12.75 12.75

MPO-processing has to be combined with other speech sepa-
ration methods (e.g. computational auditory scene analysis based
methods) to improve the overall performance when the corrupting
noise is narrow-band. Work is in progress to study and propose
different methods than can help retain the obstruent information
and to evaluate the performance of the MPO-processed speech on
robust speech recognition using the Aurora database.

In a companion paper [8] we demonstrate that the MPO en-
hancement scheme outperforms many of the statistical and signal-
theoretic speech enhancement techniques when evaluated using
three different objective quality measures on a subset of the Au-
rora database.
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