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Abstract
We previously presented a single-channel speech enhancement
technique called the Modified Phase Opponency (MPO) model.
The MPO model is based on a neural model called the Phase Op-
ponency (PO) model. The efficacy of the MPO model was demon-
strated on speech signals corrupted by additive white noise. In the
present work, we extend the MPO model to perform efficiently on
speech signals corrupted by additive colored noise with time vary-
ing spectral characteristics and amplitude levels. The MPO en-
hancement scheme outperforms many of the statistical and signal-
theoretic speech enhancement techniques when evaluated using
three different objective quality measures on a subset of the Au-
rora database. The superiority of the MPO speech enhancement
scheme in enhancing speech signals when the amplitude level and
the spectral characteristics of the background noise are fluctuating
is also demonstrated.
Index Terms: speech enhancement, auditory modeling, phase op-
ponency.

1. Introduction
A tremendous amount of research has been and continues to be
done in the field of developing and implementing speech enhance-
ment algorithms. The algorithms presented vary from signal-
theoretic approaches like spectral subtraction [1] and its variations
[2], to statistical methods like the Minimum Mean Square-Error
Short-Time Spectral Amplitude estimator (MMSE-STSA) [3] and
its variations [4, 5]. We previously presented a speech enhance-
ment technique called the Modified Phase Opponency (MPO)
model [6, 7]. The MPO model is based on a neural model for de-
tection of tones-in-noise called the Phase Opponency (PO) model
[8]. Fig. 1 shows the PO model with Center Frequency (CF) of
900 Hz. The two gammatone filters model two nerve fibers tuned
to slightly different frequencies.

As shown in Fig. 1 when the input is a tone at 900 Hz, the out-
puts of the two filters will be out of phase and the cross-correlation
will lead to a negative output. The output will remain negative as
long as the input is a bandlimited signal centered at the CF ( 900
Hz in this case) and with Bandwidth (BW) within the out-of-phase
frequency region ( Fa − Fb in Fig. 1). We refer to the frequency
region Fa − Fb as the out-of-phase region and the rest of the fre-
quency region as the in-phase region. On the other hand when the
input is a wideband signal, the output of the two filters will exhibit
some degree of correlation and the cross-correlation output will be
positive or very slightly negative. Thus the PO model is able to
distinguish between narrowband signals and wideband noise. One
of the issues with the PO model shown in Fig. 1 is that the rela-
tive magnitude response and the relative phase response of the two

Figure 1: PO filter pair to detect a tone at 900 Hz. GTF: gamma-
tone filter.

Figure 2: MPO filter pair; BPF: Bandpass filter; APF: Allpass
filter

paths depend on the same set of parameters, making it difficult to
vary either of the two independent of the other.

The MPO model used in the present work is shown in Fig.
2. A significant difference between the PO and the MPO model
is that the latter allows for the control of the relative magnitude
response and the relative phase response of the two paths inde-
pendent of each other. The APF used in one of the paths facili-
tates the manipulation of the relative phase responses of the two
paths without affecting the magnitude responses of the two paths.
The dependence of the APF’s phase response on its pole charac-
teristics and the relation between the frequency location where the
phase response is −π (implying the outputs of the two paths are
out-of-phase) and the pole characteristics of the APF were pre-
sented in [6]. Fig. 3(d) shows the phase response of the APF for
a MPO structure designed to detect a narrowband signal with BW



Figure 3: Magnitude response of the symmetric (a), upward-
skewed (b) and downward-skewed (c) BPF that will be used in
the MPO structure with CF=1000 Hz. (d) Phase response of the
APF that will be used in the MPO structure with CF=1000 Hz. (e)
Spectral slice of a sonorant region in speech signal.

Figure 4: Schematic of speech enhancement using the MPO model

no more than 250 Hz and centered at 1000 Hz. The corresponding
BPF is chosen such that the passband of the BPF includes some
region around 1000 Hz and has a BW such that the MPO structure
results in a good separation of narrowband and wideband signals
even when the narrowband signal is corrupted by noise. One such
BPF is shown in Fig. 3(a). The magnitude response of this BPF
is symmetric about 1000 Hz (the CF) and is hence referred to as
the symmetric BPF. The threshold to discriminate the presence of
signal from the absence of signal was computed using the Max-
imum Likelihood (ML)-based Likelihood Ratio Test (LRT) with
white noise and narrowband signal forming the two classes.

Much of the speech signal is voiced so that it is composed of a
combination of narrow band signals (i.e. harmonics) with varying
relative amplitudes. The schematic of the MPO speech enhance-
ment scheme is shown in Fig. 4. Each MPOi in the figure is
a MPO structure with a different CF. The CFs are spaced every
50 Hz from 100 Hz to just below the maximum frequency. Only
those spectro-temporal regions where the MPO output is below
the threshold (indicating presence of signal) are used for recon-
struction. Such a structure performs well when the input speech

signal is corrupted by additive white noise which has a relatively
flat spectrum. But it passes a lot more noise when the corrupting
signal is colored noise with fluctuating levels. We now present the
improvements made to the MPO model to improve its performance
in the presence of colored noise.

2. Improvements to the MPO model
There are two main reasons that warrant deviating from the sym-
metric BPFs used in the previous versions of the MPO model.
Consider the spectral slice shown in Fig. 3(e). The symmetric
MPO structure used to detect the F2(around 1000 Hz) consists of
the BPF and the APF as showin in Fig. 3(a),(d) respectively. The
harmonics close to F2 fall in the out-of-phase frequency region of
the MPO structure whereas the harmonics close to F1 (around 600
Hz) fall in the in-phase frequency region of the MPO structure but
also in the passband of the symmetric BPF. The amplitude of F1
(and hence that of the harmonics closer to F1) is greater than that
of F2 due to the known spectral tilt in sonorant regions of speech
signals. As a result, although there is a narrowband signal at the
CF of the MPO, the output of the MPO structure will be posi-
tive, thus missing the F2 information. The refined MPO model
overcomes this problem by skewing the passband of the filter up-
wards in frequency with respect to the CF of the MPO as shown
in Fig. 3(b). The high amplitude harmonics close to F1 will now
be greatly attenuated as they fall in the stopband of the upward-
skewed filter. Most of the speech information is correctly detected
by the upward-skewed MPO structures as they take advantage of
the spectral tilt.

Consider the case where two formants have comparable am-
plitudes and are close in frequency. The harmonics near these
formants also have comparable amplitudes. In such cases, the
upward-skewed MPO structures fail to detect the lower frequency
harmonics. Downward-skewed MPO structures centered on the
lower frequency harmonics, like the ones shown in Fig. 3(c), are
able to successfully detect such instances because their in-phase
region extends on the lower frequency side. In the refined MPO
model, each CF is analyzed using an upward MPO structure as
well as a downward MPO structure.

As mentioned earlier, the MPO configuration shown in Fig.
2 and Fig. 3(a,d) passes a lot of noise when the noise is colored
and/or with fluctuating levels. To overcome this problem, the re-
fined MPO model uses five different MPO structures at each CF.
Each of the five MPO structures has a slightly different out-of-
phase region. Noise can be wrongly seen as speech by one or
more of the five different MPO structures, but it is rarely seen as
speech by all of the five structures. Similarly, speech signals are
almost always seen as speech by all of the five structures.

The speech enhancement scheme can now be described as a
two-step process. In the first step, the temporal regions where
speech is present are computed. For a temporal region to be voted
as speech present it has to satisfy two conditions: (a) at least one
frequency channel from all the five different upward skewed or all
the five different downward skewed MPO structures should be at
least four times more negative than the threshold for that particu-
lar channel, indicating a strong presence of speech (b) the tempo-
ral region should be at least 50 ms long. The second step detects
the frequency channels within the speech-present temporal regions
where speech information is present by finding the channels where
the output from all the five upward skewed or all the five downward
skewed MPO structures is below the threshold.



Figure 5: Spectrogram of: (a) clean speech (b) speech corrupted
by subway noise at 10 dB SNR (c) MMSE-STSA-enhanced speech
(d) GSS-enhanced speech (e) noisy speech overlaid with the MPO
profile. (f) MPO-enhanced speech. X-axis is time in seconds.

The output of the MPO enhancement scheme can be inter-
preted as a binary mask [10] with a value of one in the spectro-
temporal channels where speech is thought to be more dominant
than the noise and a value of zero where the reverse is true. We re-
fer to such a binary mask as the MPO profile. Fig. 5(e) shows the
spectrogram of the digit sequence ’five three seven six eight six’
corrupted by subway noise at 10 dB SNR overlaid with the MPO
profile. The blue/dark regions are the spectro-temporal channels
where the MPO profile is one. The noisy speech signal from these
channels is used ’as-is’ to construct the enhanced speech signal. In
the previous versions of the MPO enhancement scheme, the noisy
speech signal from the rest of the channels was attenuated by 20
dB before using it for reconstruction. Such a scheme leads to sharp
spectral discontinuities by increasing the depth of the spectral val-
leys, especially at higher SNRs. In the present MPO enhancement
technique, the weighing scheme is based on the transfer function
associated with a conjugate pair of poles corresponding to the cen-
troid of the frequencies of the contiguous speech-present channels.
The transfer function is similar to the general form of the vocal
tract transfer function derived in [9]:

Tn(s) =
sns∗n

(s− sn)(s− s∗n)
(1)

where s = j2πf, sn is the complex frequency of the pole, and
sn = σn + j2πFn. The value of σn is chosen such that the BW
of the pole is 100 Hz. The weighing scheme corresponding to
the frame centered at 825 ms of the utterance shown in Fig. 5 is
displayed in Fig. 6. The Fn values for this frame are: 550, 1500
and 2750 Hz. The signal in the speech absent frames is uniformly
attenuated by 20 dB.

3. Results
The salient features of the MPO-based speech enhancement are
that (1) it makes minimal assumptions about the noise character-
istics (the only assumption is that noise is broader than the har-
monics of the speech signal) and (2) the noise estimates from the

Figure 6: Spectral weighing scheme. X-axis is frequency in Hz.

previous frames do not play any role in the noise removal tech-
niques in the later frames.

The performance of the MPO enhancement scheme was eval-
uated on a subset of the Aurora database [11] and compared with
some of the other enhancement schemes like: the MMSE STSA
[3] and two of its variations [4, 5], and the Generalized Spectral
Subtraction (GSS) [2] method. Fig. 5 shows the spectrograms of
a connected digits utterance ’five three seven six eight six’ (a) in
clean, (b) corrupted by subway noise at 10 dB SNR, (c) MMSE-
STSA-enhanced (d) GSS-enhanced and (f) MPO-enhanced speech
signal. It is evident from the figure that the MPO scheme strikes
a better balance between the amount of noise removed and the
amount of speech information retained compared to the other
methods. For example, the MPO scheme is able to retain the
(weak) F3 information at the end of the vowel near 0.6 sec, near
1.55 sec and again near 2 sec, while passing very little noise.

The performance of the different enhancement schemes was
also compared using the Linear Predictive (LP) coefficients based
objective quality measures like (1) the Itakura-Saito distortion
measure (IS), (2) the Log-Area-Ratio (LAR) measure and (3) the
Log-Likelihood Ratio (LLR) measure. Tables 1, 2 and 3 com-
pare the increase in the IS, LAR and LLR measures as the SNR
drops from ∞ dB to 20, 10 and 5 dB. Note that as the SNR re-
duces, the MPO-enhanced speech shows the lowest increase in the
distortion values especially at lower SNRs. The distortion values
for MPO-processed speech are relatively high in clean (i.e. when
clean unprocessed speech is compared with MPO-processed clean
speech) as the MPO processing attenuates the spectral valleys in
the speech signal thus increasing the dissimilarities between the
LP coefficients computed on clean speech and the LP coefficients
computed on the MPO-processed clean speech. The second reason
for the dissimilarities is that the MPO processing does not maintain
most of the obstruent information. Fig. 7(a,b) shows that the MPO
processing retains almost all of the sonorant speech information
when operating on clean speech.

Table 1: Increase in the IS distortion measure as the SNR reduces

type clean 20 dB 10 dB 5 dB
MMSE[3] 0.353 0.597 2.001 3.473

MMSE-logSTSA[4] 0.721 1.416 5.776 14.839
MMSE-logSTSA-SNR[5] 0.285 0.820 4.690 18.747

GSS[2] 0.959 3.446 3.993 3.010
MPO 3.056 2.697 1.157 2.759

Fig. 7 demonstrates the efficiency of the MPO method in en-
hancing the speech signal when the level and the type of the back-
ground noise are varying over time. Fig. 7(a) and 7(b) show the
spectrogram of the clean utterance and MPO-processed clean ut-



Table 2: Increase in the LAR measure as the SNR reduces

type clean 20 dB 10 dB 5 dB
MMSE[3] 0.923 1.656 3.446 4.549

MMSE-logSTSA[4] 1.089 1.913 3.880 4.920
MMSE-logSTSA-SNR[5] 0.760 1.516 3.559 4.987

GSS[2] 2.186 2.156 3.294 3.905
MPO 3.164 1.535 1.937 3.226

Table 3: Increase in the LLR measure as the SNR reduces

type clean 20 dB 10 dB 5 dB
MMSE[3] 0.071 0.211 0.551 0.855

MMSE-logSTSA[4] 0.094 0.243 0.601 0.912
MMSE-logSTSA-SNR[5] 0.054 0.205 0.579 0.923

GSS[2] 0.116 0.318 0.635 0.898
MPO 0.425 0.333 0.430 0.713

terance respectively. As is obvious from the figure, MPO process-
ing loses very little of the sonorant information when the input is
clean speech. Listening tests confirm that there is very little differ-
ence between the clean speech and MPO-processed clean speech.
Fig. 7(c) shows the spectrogram of the noisy speech where each
digit is corrupted by one of the three different noise types: (a) sub-
way (b) exhibition hall and (c) car noise at different SNRs. The
digit sequence is ’nine four two eight five six’ and the SNR order
is 5, 20, 0, 15, -5, 10 dB. Fig. 7(d-g) show the spectrograms of the
speech signal enhanced by the MMSE-STSA method, the MMSE-
logSTSA-SNR method, the GSS method and the MPO method re-
spectively. Notice that the MPO method is able to enhance the
weak higher formants (around 700 ms and 2000 ms) while passing
very little noise. It is also worth pointing out that only the MPO
method was able to process the digit corrupted by the most noise
(digit ’five’ at -5 dB SNR) whereas the other methods pass it with
little or no enhancement. Informal listening tests reveal that the
MPO enhanced speech is of better quality than the output of the
other methods.

In a companion paper [12] submitted as part of the speech sep-
aration challenge, we show that the accuracy of automatic speech
recognition increases when the noisy speech signals are replaced
by MPO-enhanced speech signals.

Work is in progress to study the phenomenon of musical noise
and to propose algorithms to eliminate or minimize the musical
noise effect and to evaluate the performance of the MPO-processed
speech on robust speech recognition using the Aurora database.
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