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ABSTRACT

In this paper, we discuss a direct measure for the proportion 
of periodic and aperiodic components in speech signals.
Further, in the periodic regions, we estimate the pitch 
period. This method is particularly useful in situations 
where the speech signal contains simultaneous periodic and 
aperiodic energy, as in the case of breathy vowels and some 
voiced obstruents.  The performance of this algorithm was 
evaluated on three different natural speech databases that 
have simultaneously recorded EGG data. The results show 
excellent agreement between the periodic/aperiodic
decisions made by the algorithm presented here and the 
estimates obtained from the EGG data. To evaluate the 
efficiency of this algorithm in predicting pitch, reference 
pitch values were obtained from the EGG data using a 
simple peak-picking based algorithm. The gross error rate 
in pitch prediction was 6.1% for male subjects and 12.5% 
for female subjects. 

This work was supported by NIH grant #1 K02 DC00149-01A1
and #BCS-9729688.

1. INTRODUCTION

In this paper, we discuss a direct measure for aperiodic 
energy and periodic energy in speech signals. The purpose 
of this analysis is to determine if the excitation signal was 
periodic, if it consisted of turbulent noise, or if there were 
simultaneous strong periodic and turbulent sources.
Further, in periodic regions, we want to estimate the pitch 
period. Most measures for aperiodicity have been indirect, 
such as zero crossing rate, high-frequency energy and the 
ratio of high-frequency energy to low-frequency energy. 
Such indirect measurements will usually fail in situations 
where there is both strong periodic and aperiodic energy in 
the speech signal, as in the case of some voiced fricatives or 
when there is a need to distinguish between high-frequency
periodic versus high -frequency aperiodic energy. The
system presented here extracts the proportions of periodic 
and aperiodic energy in the speech signal based on
temporal information. We define the temporal information 
as the envelope of the output of a 60-channel gamma tone 
auditory filter bank. The structure of the system is very 
similar to a pitch detection algorithm, and includes
estimation of the pitch of the primary periodic component 
of the signal.
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stem can be used in tasks such as segmentation of 
 signals into voiced and unvoiced regions; the 
on of regions where both voiced and unvoiced
nents co-exist – e.g. in breathy vowels or voiced 
es. The system is also capable of distinguishing 

t fricatives from non-strident fricatives and voiced 
om their unvoiced counterparts based on the strength 
iodicity.

2. METHOD

depicts the various stages of the signal processing 
ed in the analysis.  The analysis filterbank was a 
nnel auditory gamma-tone filter bank [1] with
l Characteristic Frequencies (CFs) based on the 
cale (Equivalent Rectangular Bandwidth, as defined 

. The temporal envelopes )(tei of the individual

ls above 250 Hz are obtained by the function:

xi(t) is the input signal and H{xi(t)} is the Hilbert 
rm of the input signal[3]. For channels with CFs 
250Hz the channel output is used directly for further 
is.

mporal envelope in each channel was analyzed for 
city, aperiodicity and pitch. This system classifies 
nal in every channel as silence, periodic, or aperiodic. 
w pitch estimates in each band were produced using 
ort-time Average Magnitude Difference Function 
F), which is defined as: 

)(nx  is the input signal, k is the lag and )(mw  is the 

. In our case, it is a 20ms rectangular window [4]. 
riodic sounds, the AMDF function usually attains 
inima (referred to as dips hereafter) at lags roughly 

lent to the pitch period and its integer multiples.  If 
nal is aperiodic, the AMDF waveform will not show 
enly spaced dips. The AMDF is computed for each

ent channel over a 20ms window and at a rate of 

eginning of the utterance is established by starting 
s in the frame whose total energy is within 1.5% of 
ximum total energy computed across all of the 
 in the utterance.  For any given non-silent frame 
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Fig. 1. Flow of the algorithm
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within the utterance, a channel within that frame is
considered silent if its energy is at least 45 dB down from 
the maximum channel energy that has been computed up to 
that point, including the channel energies in the pre sent
frame.  If the channel is classified as silent, then no AMDF 
waveform is computed.

The decision regarding periodicity is based on the location 
and strength of the dips occurring in the AMDF waveform.
These dips are found by computing the convex hull of the 
AMDF and accepting only those dip locations that have 
strength greater than a pre-determined threshold. The dip 
strength is the confidence of that dip location being the 
pitch period at that instance. Figure 2(a) shows the AMDF 
and the dips for a typical periodic and a typical aperiodic 
channel. Any decision of periodicity or aperiodicity of the 
channel is deferred until the next stage. The summary 
measure of periodicity across all the channels is computed 
at a frame rate of 2.5ms. All the channel estimates that were 
computed within 10ms of the frame contribute towards the 
decision of periodicity and aperiodicity for a particular 
frame. A modified histogram of all these pitch estimates 
across all the channels  is computed.  Part (b) of Fig. 2 
shows that frames corresponding to periodic regions
exhibit tight clusters at the pitch period and its integer 
multiples whereas the frames corresponding to aperiodic 
regions are more likely to show a uniform distribution of 
the dips.  Also notice that the range of values for the 
periodic region is very high (0-28) as compared to that for 
the aperiodic region (0-1.5).

When tight clusters are formed, exponential curves are 
fitted on each side of the cluster to classify the dip locations 
as within-cluster  dip locations or spurious dip locations.  A 
weighted sum of the strengths of all the dips within a small 
neighborhood of the centroids of the clusters is computed 
and the maximum value is the summary periodicity
confidence. The corresponding centroid is the pitch period
estimate for that frame. If two or more clusters are 
comparable, then the one that yields a pitch period that is 
closer to the previous pitch period estimates is chosen.

In the case of aperiodic regions where there are no tight 
clusters, the summary periodicity confidence is low.  If 
previous frames have been judged to be periodic, then the 
centroids from previous frames are used to form cluster 
regions.  If we are at the beginning of an utterance so that 
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re no previous frames, then the dip locations with the 
um strength are taken as the centroids.  Since the 
s are not prominent, there is no curve fitting and 
 values of 0.5ms around the centroids are used to 
the cluster regions.

centroid locations are used to analyz e the channels 
iodicity and aperiodicity. If all the dips in a channel 
 the within-cluster range then that channel is

ied as periodic. Otherwise, it is called aperiodic. The 
tion of periodic energy is obtained by taking the ratio
sum of the energies in the periodic channels and the 
nergy in the frame. The proportion of aperiodic 
 is obtained in a similar way.

3. DATABASE

different corpora that consist of simultaneously 
d acoustic and electroglottograph (EGG) data were 
 test the algorithms.  The MOCHA [5] database 

s of 460 utterances, each spoken by two speakers 
ale and one female).  The MOCHA database has 
and transcribed. A subset of 20 sentences (10 from 
eaker) was used in the development of the algorithm.

cond speech database, DB2, consists of 50 utterances 
 each by one male and one female [6].  The third 
se, DB5, consists of one utterance spoken by 5 males 
emales [7].

GG data was used to demarcate the periodic and 
ic regions and to compute the pitch values in
c regions. The EGG data exhibits strong periodic 
tions during vocalized sounds with the period equal 
itch period of the speaker. A peak-picking algorithm
plemented on the band-pass filtered EGG data to 

e locations of these peaks. The average value of the 
etween consecutive peaks over a period of 10ms is 
h estimate at that location. The pitch estimates were 

ted every 2.5ms . The aperiodic regions are marked 
absence of any such regularly spaced peaks.

4. RESULTS

iodicity and Aperiodicity detection:



The periodic and aperiodic measures were evaluated using 
the three natural speech databases.  All the comparisons 
were made on a frame basis at a frame rate of 2.5ms.  We 
define the periodicity accuracy as the ratio of the number of 
non-silent frames that have both the proportion of periodic 
energy no less than 0.3 (i.e., at least 30% of the energy in 
the frame must be periodic) and the corresponding EGG 
output is non-zero, to the total number of frames that have a 
non-zero EGG output.  Similarly, the aperiodicity accuracy 
is defined as the ratio of the number of non-silent frames 
that have the proportion of aperiodic energy no less than 0.3 
and the corresponding EGG output is zero, to the total 
number of non-silent frame that have zero EGG output.
The results are tabulated in Table 1.  An example of the 
outputs from these measures is shown in Fig. 3.

One cause of the less than perfect periodicity and
aperiodicity accuracy is the boundary problem.  In
transition regions between adjacent sounds that differ in 
their manner of articulation, the frame where the switch 
between periodicity and aperiodicity occurs based on our
algorithm may be offset from the frame where the switch 
occurs based on the EGG output. These scenarios are 
manifested in Fig. 3 around 400ms where our periodicity 
detector remains on for a little longer than the EGG does, 
and around 120ms where the EGG is on for about 5 frames 
longer than our periodicity estimate.

Table 2 shows results for the percentage of frames in the 
different broad classes that showed only strong periodicity, 
strong aperiodicity, or both strong aperiodicity and
periodicity. For these results, the EGG data was not used as 
a reference. As expected, a much larger percentage of the 
sounds exhibiting both strong periodic and aperiodic
components are voiced obstruents. Further, a large
percentage of the voiced obstruents show only strong 
periodicity.  Altogether, over half of the voiced obstruents 

Table 1

Table 2
only st
detecte
detected
each ca

Sono
(540
Vo

obst
(116
Unv
obst
(199

exhibit
studies
that the
percen
energy
showin
placem

B. Pitc

The es
the EG
peak-p
the EG
the pit
value a
of our 
the vic
deviati
establi
said to
of the 

The gr
The ha
pitch w
value g
instanc
twice t
not fit 

Fig. 2. Part (a) shows the AMDF and the prominent dips for a 
typical aperiodic channel (top) and for a typical periodic channel
(bottom). Part (b) shows the AMDF dips clustered across all the 
channels in a typical aperiodic frame (top) and a typical periodic
frame (bottom). Notice that the maximum value of the dip 
strength over the range of dip locations is 1.4 in the aperiodic 
frame whereas it is 28 in the case of the periodic frame.

b)a)
: Performance of Periodicity and Aperiodicity Measures

Mocha

Male Female Overall
Per. Accuracy 95.6 92.1 93.7

Aper. Accuracy 94.0 89.0 90.0

DB2

Per. Accuracy 90.9 86.6 88.8
Aper. Accuracy 94.1 91.8 92.7

DB5

Per. Accuracy 90.9 91.4 91.2
Aper. Accuracy 84.6 85.5 85.0

: Percentage of frames in different broad classes where 
rong periodicity was detected, strong aperiodicity was 
d and both strong periodicity and aperiodicity were
. Numbers in parenthesis show the total no. of frames in 

tegory.

only strong 
Periodic
energy

only strong 
Aperiodic

energy

strong Periodic 
and Aperiodic 

energy
rants
501) 83.66 9.75 6.88

iced
ruents
117)

33.29 44.62 22.09

oiced
ruents
403)

3.80 96.09 0.11

 strong periodicity. This finding supports previous 
 that show that voiced obstruents can be lenited so 
y are realized as sonorant consonants [8]. The small 

tage of aperiodic sounds that show strong periodic 
 and the small percentage of periodic sounds
g strong aperiodicity are probably due to boundary 
ent between sonorants and obstruents.

h Detection:

timates from the pitch detect or were compared with 
G-derived pitch values on a frame basis. A simple 
icking algorithm was used to estimate the pitch from 
G data.  A temporal tolerance was incorporated in 
ch matching procedure.  The EGG-derived pitch 
t each frame was compared with the pitch estimates 
algorithm obtained over a small range of frames in 
inity of the particular frame and the minimum 
on was chosen as the offset value. Using the standard 
shed in previous studies [6], the pitch values were 
 be in agreement if the offset value was less than 20% 
EGG-derived pitch value. 

oss errors were split into three different categories. 
lving  errors are defined as the instances where the 
as detected to be within 20% of half of the pitch 
iven by the EGG data. The doubling errors are the 
es where the pitch was detected to be within 20% of 
he actual pitch.  Finally, the error instances that did 
either of the above criteria ar e grouped as others.



Table 3: Gross errors in pitch prediction

Half Double Other

Mocha

Male 3.54 0.35 2.08
Female 12.32 0.02 0.26
Overall 9.10 0.05 0.37

DB2

Male 3.08 0.73 3.25
Female 11.12 0.02 0.15
Overall 8.34 0.13 0.64

DB5

Male 4.62 0.32 1.99
Female 12.08 0.02 0.24
Overall 8.81 0.09 0.65

Table 3 gives the details of the gross errors for the three 
databases. The results are given separately for males and 
females since the performance was consistently higher for 
male speakers.

5. DISCUSS ION

We have presented a novel and efficient method to calculate 
direct measures of periodic and aperiodic energies in a 
speech signal that can distinguish high frequency periodic 
energy from high frequency aperiodic energy. The system 
also outputs a pitch estimate in regions that are judged to be 
periodic.  One application of the periodicity/aperiodicity 
measures and pitch will be in our speech recognition 
algorithms [9,10]. These parameters also form a part of a 
landmark detection system [11] where the main emphasis is 
broad classification of speech signals using strictly
temporal cues.
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