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ABSTRACT 

This paper presents acoustic parameters ( AP’s) that  
were motivated by phonetic feature theory and em- 
ployed as a signal representation of speech in a Hidden 
Markov Model (HMM) recognition framework. Presen- 
tly, the phonetic features considered are the manner 
features: sonorant, syllabic, nonsyllabic, noncontinu- 
ant and fricated. The objective of the parameters is to  
directly target the linguistic information in the signal 
and to  reduce the speaker-dependent information that 
may yield large speech variability. To achieve these 
goals, the AP’s were defined in a relational manner 
across time or frequency. For evaluation, broad-class 
recognition experiments were conducted comparing the 
AP’s to  cepstral-based parameters. The results of the 
experiments indicate that the AP’s are able to capture 
the phonetically relevant information in the speech sig- 
nal and that ,  in comparison to  the cepstral-based pa- 
rameters, they are more able to reduce the interspeaker 
variability. 

1. INTRODUCTION 

In our research, we seek acoustic parameters (AP’s) 
that  target the phonetically distinctive information in 
the speech signal and reduce speaker-dependent infor- 
mation (e.g. gender). The objective is to  employ 
these acoustic parameters as a signal representation for 
speaker-independent speech recognition. Employing 
such parameters in the recognition process has two ad- 
vantages: (1) it  allows incorporation of speech knowl- 
edge (2) it serves as a tool for understanding acoustic- 
phonetics and contextual variability. 

In order to  achieve our goal, the AP’s are (1) based 
on phonetic-features [l] and (2) defined in a relational 
manner. Phonetic features describe the manner and 
place of speech production. They are the minimal 
speech units needed to distinguish among the most sim- 
ilar sounds of language (e.g. the phonetic feature voiced 
distinguishes the labial stops /b /  and /p/) .  The rele- 
vance of phonetic features to speech recognition is that  
they have correlates in the speech signal (e.g. [2]) that  
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play an important role in speech perception (e.g. [3]). 
These correlates can be reliably extracted from the sig- 
nal and used in recognition [4]. In addition, the use of 
phonetic features as a basis for developing the acous- 
tic parameters could lead to  better understanding of 
contextual variability since this variability, although it 
may appear large a t  the acoustic level, involves change 
in one or two phonetic features (e.g. phonological rules 
in [5]). Such understanding may lead to  building better 
and more economical contextual speech models than 
triphones, for instance. 

In this paper, we consider the problem of embed- 
ding speech knowledge represented by phonetically mo- 
tivated acoustic parameters in the signal representa- 
tion for HMM-based recognition. Namely, we consider 
a set of acoustic parameters that  capture the acous- 
tic properties of the manner-of-articulation phonetic 
features: sonorant, syllabic, nonsyllabic, noncontinu- 
ant and fricated. These acoustic parameters were de- 
veloped in earlier research [6] and fitted here to  the 
frame-based HMM framework. Today’s state-of-the- 
art  speech recognition systems generally use a signal 
representation consisting of Mel-cepstral coefficients 
and their time derivatives. Such a signal representa- 
tion contains linguistic and extralinguistic information. 
Consequently, in building speaker-independent speech 
models, statistical algorithms and large amounts of 
training data  are relied upon to  capture the phonetic 
message and smooth out all other information. The 
training data  and statistical algorithms could be used 
more efficiently if the signal representation focuses on 
the phonetic information in the speech signal. Our ob- 
jective in this paper is to  (1) test the performance of the 
AP’s, when used in the HMM framework (2) compare 
them to cepstral parameters and (3)  test their robust- 
ness to  speaker differences such as gender. To achieve 
this objective, the task of recognizing speech into the 
broad classes: syllabic, sonorant consonant, noncontin- 
uant, fricative and silence was undertaken. 

2. ACOUSTIC PARAMETERS 

Table 1 shows the phonetic features, their correspond- 
ing acoustic correlates and acoustic parameters used 
in this study. The selection of the acoustic param- 
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Table 1: The phonetic features, their acoustic correlates 
and the corresponding acoustic parameters. 

Feature 
Sonorant 

Syllabic 

Nonsyllab. 

Fricat ed 

Noncont. 

Correlate 
strong 
low-freq. 
energy 
periodic 
strong 
mid-freq. 
energy 

weak 
mid-freq. 
energy 
turbulence 
in mid to 
high freq. 
range 

Closure 
followed by 
an abrupt 
spectral 
change 

normalized with 
utterance. 

respect 1 

Acoustic Parameter 
EO.l-0.4: 100-400 Hz eng. ’ 
EO-2-2-8 : 
eng(0-2 KHz)-eng(Z-8 KHz) 
Voicing-probabilitv [91 “ -  ” L A  

ptd0.64-2.8: peak in 

ptd2-3: peak in 

dtp0.64-2.8: dip in 

dtp2-3: dip in 2-3 kHz eng. 
zcr: zero-crossing rate 
EO- 2 -2-8 
R1: first autocorr. coeff. 
normalized by the zeroth. 
dtp-R1: dip-to-peak values 

0.64-2.8 kHz eng. 

2-3 kHz eng. 

0.64-2.8 kHz eng. 

of R1 
Closure: 
€30.2-3: 0.2-3 kHz eng. t .  
E3-6: 3-6 kHz eng. ’ 
R1. 
U: 
sum of positive first 
difference values across 
the STFT channels 
its maximum value across the 

eters was guided by the feature hierarchy of Fig. 1. 
Such hierarchical organization of phonetic features 
is advocated in modern phonology (e.g. [7]). As 
Fig. 1 indicates, the considered phonetic features, and 
consequently the corresponding parameters, allow for 
the recognition of the broad classes: syllabic (vow- 
els, syllabic nasals and syllabic /l/’s), sonorant con- 
sonant (nasals and semivowels), fricative, noncontinu- 
ant (stops and affricates) and silence (silence, pauses, 
epenthetic silence and stop closures). 

Fig. 2 depicts an  example of the AP’s computed 
from the utterance “biblical ~ c h o l a r ~ ”  extracted from 
the TIMIT database. As this figure shows, the AP’s 
capture important characteristics of the speech signal. 
For instance, the burst parameter in part (a) of the 
figure shows the highest values at the onset of the stop 
consonants /b/ and /k/. The voicing probability, the 
0 - 2-2 - 8 kHz energy measure and the 100-400 He 
energy measure in parts (k),(l) and (m) of the figure, 
respectively, have their highest values during sonorant 
segments. Further, the peak-to-dip measures in parts 
( f )  and (g) have their maximum values during the syl- 
labic segments: /ih/, /el/, /a./ and /er/. Thus, the 
peak-to-dip parameters coupled with those related to 
sonorancy will help identifying syllabic segments (c.f. 
Fig. 1). 

Vowels, syllabic nasals fricated fricatrd stops niid affiicates 

and syllabic 1 yrsk 

Figure 1: The hierarchy of feature organization. 

The acoustic parameters for the manner phonetic- 
features were developed in previous work [6] based on 
acoustic studies and acoustic-phonetic knowledge (c.f. 
[8]). The philosophy adopted in defining the param- 
eters was that they must be relative in time and/or 
frequency to  reduce interspeaker variability. Such rel- 
ative measures also take into account the relationship 
between different speech sounds occurring within the 
same utterance and spoken by the same speaker. For 
instance, the nonsyllabic measures are intended to  mea- 
sure the energy minimum in a sonorant consonant rel- 
ative to  the energy maximum in the preceding and/or 
succeeding vowel. As another example, the 100-400 Hz 
energy measure, being normalized with respect to  the 
maximum in that  frequency band across the utterance, 
accounts for the fact that the sonorant speech segments 
involve the voicing source of the same speaker. 

3. EXPERIMENTS 

In the current work, two sets of experiments were per- 
formed to  evaluate the acoustic parameters and com- 
pare them to  cepstral-based parameters. The task 
was broad-class recognition of speech into the classes: 
syllabic, sonorant consonant, fricative, noncontinuant 
and silence. For speech modeling and recognition, the 
HMM framework was used. All experiments were 
conducted using the TIMIT database. 

In the first set of experiments, HMM models for the 
broad classes were built using the TIMIT SI and SX 
training sentences (3573 sentences)’. Recognition tests 
were carried out using the TIMIT SI test sentences (504 
sentences). In the second set of experiments, to  ex- 
amine robustness to  interspeaker variability and more 
specifically to  gender differences, HMM models were 
built using the TIMIT SI and SX training sentences 
spoken by females from the New England dialect re- 
gion (drl). For testing, recognition was performed on 
the SI and SX training sentences spoken by males from 
dr  1. All broad-class models were context-independent 

‘implemented with HTK toolkit V1.5 
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3-state HMMs with diagonal-covariance Gaussian mix- 
tures. Speech was sampled at 16 kHz and analyzed 
with a 5 m s  frame rate for both AP’s and cepstra. En- 
ergy measures in the AP’s were computed from the 
short-time Fourier transform. 

Signal Representation 
M F C C E  
MFCC-E61-62  
A P  
A P-6 1-62 
A P  + M F C C E  

4. RESULTS A N D  DISCUSSION 1 mix 8 mix 
68.2161.8 73.3165.2 
73.5163.7 82.8171.5 
75.2163.9 77.5166.3 
78.5168.1 84.1171.5 
75.2163.9 78.1166.7 

Table 2 summarizes the experimental results where the 
signal representation was varied while the modeling and 
recognition strategy remained the same. The results 
for 1 and 8 mixtures show that the acoustic param- 
eters, relative to  the cepstral parameters, are better 
able to  reduce speaker variability and target the lin- 
guistic information in the speech signal. This is de- 
duced by comparing the small improvement in results 
going from 1 to 8 mixtures in the case of the AP’s to  
the substantial improvement in case of the cepstral- 
based parameters. Furthermore, by comparing the A P  
results and the M F C C Z  results to  those obtained us- 
ing A P  + M F C C - E ,  one can argue that the acoustic 
parameters contain more relevant information than the 
cepstral parameters. In addition, the results show that 
adding the first and second derivatives to  the acoustic 
parameters improves results substantially. Preliminary 
analysis shows that this improved performance is due 
in large part to  better modeling of speech dynamics, 
especially in the case of the stop consonants (improve- 
ment by 11% with 8 mixtures). 

We expect the performance of the HMM system 
with acoustic parameters to  improve further once other 
parameters including those related to  place of articu- 
lation are added. Preliminary analysis suggests that  
this additional information will aid recognition in two 
ways. First, adjacent sounds that share the same man- 
ner of articulation can be distinguished based on place 
information. At present, two adjacent fricatives such 
as /sg/ are often recognized as one long fricative. In 
scoring, since timing information is not fully accounted 
for, one of the fricatives is considered deleted. Second, 
sounds whose manner-of-articulation features change 
from their canonical form due to context, may still be 
correctly recognized if other features are not altered. 
For example, it is often the case that voiced obstru- 
ents such as the weak voiced fricative /v/ are realized 
as sonorants when they occur in an intervocalic posi- 
tion [lo]. Presently, the HMM system with acoustic 
parameters is constrained to  recognize such a /v/ as 
a sonorant consonant. Although such a classification 
is correct, it is scored as incorrect because sonorant 
/VI ’S  are not distinguished from the fricated /VI ’S  in 
the TIMIT labels and they are all considered as frica- 
tives in scoring. In any case, when a full feature-based 
representation is used so that  phone recognition is per- 
formed, it is expected that  1.1 will be correctly recog- 
nized despite its change in manner. 

Signal Representation 
M F C C - E d l d 2  
A P -6 1-62 

Table 2: Recognition results. MFCC-E refers to 12 Mel- 
cepstral coefficients & log energy, MFCC-E-61-62 refers 
to M F C C X  & their 1st and 2nd derivatives, AP refers 
to acoustic parameters, AP-61-62 refers to AP and their 
1st and 2nd derivatives. Each entry contains % correct/% 
accuracy. 

%correct/%accurate 
81.13166.75 

83.3170.7 

Table 3: Recognition results using 8 mixtures. Training 
done with speech produced by females. Recognition done 
with speech produced by males. 

Table 3 summarizes the experimental results ob- 
tained when the recognizers were trained on speech 
produced by females and tested on speech produced by 
males. Compared to  the results obtained with the cep- 
stral parameters, the results obtained with the acous- 
tic parameters are much closer to the corresponding 
results listed in Table 2, indicating more robustness t o  
gender variability. Additional experiments were con- 
ducted with the AP’s and their derivatives. In the first 
experiment, a 1 mixture system, instead of 8 mixtures, 
was trained using all SI and SX female sentences in the 
TIMIT training set and tested on all SI male sentences 
in the TIMIT test set. A 1% performance degradation 
was observed compared t o  the system trained on both 
males and females. In the second experiment, the same 
system was trained on all SI and SX male sentences in 
the TIMIT training set and tested on the SI female 
sentences in the test set. No degradation in perfor- 
mance was observed. These experiments indicate the 
robustness of the AP’s to  gender differences. 

5. CONCLUSION 

The recognition results show that,  compared to 
cepstral-based parameters, the phonetically-based 
acoustic parameters are better able to  target lin- 
guistic information. This ability to  emphasize 
phonetically-relevant information while discarding the 
extra-linguistic speech properties is highlighted by the 
better results obtained from the gender experiment and 
by comparing the results obtained using 1 mixture to  
those obtained with 8 mixtures. 

In this research, we considered manner-of- 
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articulation phonetic features and related acoustic pa- 
rameters. Currently, we are studying the acoustic prop- 
erties related to  place of articulation and developing 
parameters that  capture these properties. Once these 
parameters are developed, phoneme recognition exper- 
iments will be conducted. In addition, methods that 
optimize the selection of acoustic parameters based on 
objective criteria, as opposed to  our currently adopted 
histogram analysis method, are being examined. Fur- 
ther, as it may be clear from this paper, the number 
of acoustic parameters needed for phoneme recognition 
will increase the dimensionality of the signal represen- 
tation in comparison to  the cepstral-based representa- 
tion. Thus, reducing the parameters to  the phonetic 
feature dimensions they represent will be considered as 
a way of dealing with the dimensionality increase if i t  
proves to  be a problem. 
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Figure 2: This figure illustrates the set of parameters listed 
in Table 1. These parameters are: (a) burst, (b) E3-6, (c) 
E0.2-3, (d) ptd-0.64-2.8, (e) dtp-0.64-2.8, ( f )  ptd-2-3, (g) 
dtp-2-3, (h) d t p 3 1 ,  (i) RI ,  (j) zcr, (k) voicing-probability, 
(1) EO-2-2-8 and (m) EO.l-0.4. 
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