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ABSTRACT 
 

This paper presents a deep neural network (DNN) to extract 
articulatory information from the speech signal and explores 
different ways to use such information in a continuous speech 
recognition task. The DNN was trained to estimate articulatory 
trajectories from input speech, where the training data is a corpus 
of synthetic English words generated by the Haskins Laboratories’ 
task-dynamic model of speech production. Speech parameterized 
as cepstral features were used to train the DNN, where we explored 
different cepstral features to observe their role in the accuracy of 
articulatory trajectory estimation. The best feature was used to 
train the final DNN system, where the system was used to predict 
articulatory trajectories for the training and testing set of Aurora-4, 
the noisy Wall Street Journal (WSJ0) corpus. This study also 
explored the use of hidden variables in the DNN pipeline as a 
potential acoustic feature candidate for speech recognition and the 
results were encouraging. Word recognition results from Aurora-4 
indicate that the articulatory features from the DNN provide 
improvement in speech recognition performance when fused with 
other standard cepstral features; however when tried by 
themselves, they failed to match the baseline performance. 

Index Terms— automatic speech recognition, articulatory 
trajectories, vocal tract variables, deep neural networks. 

 
1. INTRODUCTION 

 

Spontaneous speech has much variability that poses a significant 
challenge to the performance of state-of-the-art continuous 
automatic speech recognition (ASR) systems. A major source of 
such variability is coarticulation [1] and it has been suggested [2] 
that coarticulation can be effectively accounted for by 
incorporating speech production knowledge. A series of studies [3, 
4, 5, 7, 11] have demonstrated that articulatory information can 
improve the performance of ASR systems by systematically 
accounting for variability such as coarticulation. An indepth 
exploration of production features and their role in speech 
recognition systems is provided in [6]. Previous studies [8, 9, 10] 
have also demonstrated that articulatory representations can help to 
improve the noise robustness of ASR systems. 

In this work we first study a deep neural network (DNN) for 
estimating articulatory trajectories from speech signals and then 
use that network to estimate articulatory trajectories for training 
and testing an English ASR system. DNNs have been successfully 
used [12, 13] for learning the nonlinear  inverse transformation of 
acoustic waveforms to articulatory trajectories (a.k.a speech 
inversion). Studies have indicated that articulatory representation 
can improve phone recognition [13, 15, 16] and speech recognition 

performance [11, 14]. Studies [13] have demonstrated that use of 
relevance information (i.e., articulators directly relevant for 
producing a sound, e.g., tongue tip for /t/) provide lower phone 
error rates than not using relevance at all.  

Speech parameterized in the form of cepstral features was used 
in this study to train the DNN and we explored four different 
cepstral features. Based on the results we observed that while the 
performance of the features differed significantly for smaller nets, 
but with an increase in the number of hidden layers such 
differences started to reduce. The DNN was trained using a greedy 
layer-wise learning procedure where we analyzed the performance 
of the DNN as more hidden layers were added. The performance of 
the DNN increased sharply after the first few hidden layers were 
added and it was found to saturate after the 6th layer, after which 
no more significant improvement in performance was noted. 

Once trained the DNN was used to predict the articulatory 
trajectories of the training and testing data set of noisy Wall Street 
Journal (WSJ0) corpus, Aurora-4, and the estimated trajectories 
were used to train and test an ASR system for an Aurora4 
mismatched continuous speech recognition task. We also explored 
the use of the hidden variables from the DNN as possible candidate 
features for acoustic model training and the results indicate that 
they hold significant promise. 

The word recognition results on the Aurora-4 task indicate that 
the use of articulatory information in addition to standard cepstral 
features provides sufficient complementary information that helps 
to reduce the word error rates (WER) in noisy and channel-
degraded conditions.  
 

2. DATASET FOR DNN TRAINING 
 

To train a model for estimating vocal tract constriction variable 
trajectories (a.k.a TVs) from speech, we require a speech database 
containing groundtruth TVs. Currently there are no speech 
database that contain recorded groundtruth TVs and their 
corresponding speech waveforms. As a consequence we have used 
the Haskins Laboratories’ Task Dynamic model (popularly known 
as TADA [17]) along with HLsyn [18] to generate a synthetic 
English isolated word speech corpus along with TVs. TADA along 
with HLsyn is an articulatory model based text-to-speech (TTS) 
converter that given text as input generates vocal tract constriction 
variables and corresponding synthetic speech. TVs (refer to [9, 10, 
20, 21] for more details) are continuous time functions that specify 
the shape of the vocal tract in terms of constriction degree and 
location of the constrictors. TADA defines eight TVs altogether as 
shown in Table 1. Fig. 1 shows the plot of three TVs, LA, TTCD 
and TBCD, for the utterance ‘perfect memory’ spoken in a clearly 
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articulated manner. Fig. 1 demonstrates how the TVs behave in the 
context of different sounds, for example note the dips (denoting 
constrictions) in TB (tongue body) for /k/, TT (tongue tip) for /t/ 
and LA (lip aperture) for /m/. 

In this work we have used the CMU dictionary [22], 111,929 
words were selected and their Arpabet pronunciations were input 
to TADA. TADA in turn generated their corresponding TVs (refer 
to Table 1) and synthetic speech. 80% of the data was used as the 
training set, 10% was used as the cross validation set, and the 
remaining 10% was used as the test set. Note that TADA generated 
speech signals at a sampling rate of 8 kHz and TVs at a sampling 
rate of 200 Hz.  

Table 1. Constriction organs and their vocal tract variables. 
Constriction organs vocal tract variables 
Lip Lip Aperture (LA) 

Lip Protrusion (LP) 
Tongue Tip 
 

Tongue tip constriction degree (TTCD) 
Tongue tip constriction location (TTCL) 

Tongue Body Tongue body constriction degree (TBCD) 
Tongue body constriction location (TBCL) 

Velum Velum (VEL) 
Glottis Glottis (GLO) 

 
Fig. 1. Waveform, spectrogram and TV plots for TB (tongue body 
constriction degree: TBCD), TT (tongue tip constriction degree) 
and LA (lip aperture) for a well-articulated speech saying “perfect 
memory”. The colored squares in the figure demarcates the TB, TT 
and LA gestures responsible for the /k/, /t/ and /m/ in the utterance. 

3. DATASET FOR SPEECH RECOGNITION 
EXPERIMENTS 

For English large vocabulary continuous speech recognition 
(LVCSR) experiments we used the Aurora-4 noisy Wall Street 
Journal (WSJ0) dataset. Aurora-4 contains six additive noise 
versions with channel matched and mismatched conditions. It is 
created from the standard 5K WSJ0 database and has 7180 training 
utterances of approximately 15 hours duration and 330 test 
utterances. The acoustic data (both training and test sets) comes 
with two different sampling rates (8 kHz and 16 kHz); in our 
experiments we used only the 8 kHz data. In Aurora-4, two 
training conditions were specified: (1) clean training, which is the 

full SI-84 WSJ training set without added noise; and (2) multi-
condition training, with about half of the training data recorded 
using one microphone, and the other half recorded using a different 
microphone, with different types of added noise at different signal-
to-noise ratios (SNRs). The Aurora-4 test data includes 14 test sets 
from two different channel conditions and six different added 
noises in addition to the clean condition. The SNR was randomly 
selected between 0 and 15 dB for different utterances. The six 
noise types used were: car, babble, restaurant, street, airport and 
train station. The evaluation set consists of 5K words under two 
different channel conditions. The original audio data for test 
conditions 1-7 was recorded with a Sennheiser microphone, while 
test conditions 8-14 were recorded using a second microphone 
randomly selected from a set of 18 different microphones (more 
details in [23]).  
 

4. SPEECH INVERSION - TV ESTIMATION 
 

The task of estimating the TVs from the speech signal is a speech 
inversion problem, where the acoustic information is used to 
predict the articulatory trajectories. As an initial experiment with 
simple artificial neural networks (ANNs) we explored the role of 
acoustic feature selection in speech inversion.  

We explored standard cepstral features such as the traditional 
Mel-frequency cepstral coefficients (MFCCs) and PLP features 
using RASTA processing (RASTA-PLP) [24], from which the first 
13 cepstral features were used. We also explored acoustic features 
that are known to be robust to noise and channel degradations: 
Normalized Modulation Cepstral Coefficient (NMCC) [25] and 
Synchronized Damped Oscillator Cepstral Coefficients (SyDOCC) 
[26]. NMCC is a noise robust acoustic feature obtained from 
tracking the amplitude modulations (AM) of gammatone-filtered 
subband speech signals in time domain. The AM estimates are 
obtained using the discrete energy separation algorithm based on 
the nonlinear Teager’s energy operator. The modulation 
information after root power compression is used to create a 
cepstral feature, where the first thirteen discrete cosine transform 
(DCT) coefficients were retained. SyDOCC is a set of perceptually 
motivated features that represent auditory hair cells as a set of 
damped oscillators excited by a set of time-synchronized band-
limited speech signals. The energy of the oscillator response is 
transformed using DCT and the first 13 coefficients were retained. 

The 13 cepstral coefficients from each of the above four 
features were Z-normalized. From previous studies [27, 28] we 
noticed that incorporating contextual dynamic information helps to 
improve the speech-inversion performance and hence in this work 
the input features were contextualized by concatenating every 
other frame within a 200 ms window. This resulted in a feature 
vector of very large dimension. As a consequence dimensionality 
reduction was performed on each feature using DCT. We retained 
the first 70% of the DCT coefficients that resulted in a feature 
vector of dimension 104. Hence, the neural nets had 104 input 
neurons and 8 output neurons, corresponding to the eight TVs (see 
table 1).  

 
4. ASR SYSTEMS 

 

For the Aurora4 ASR experiments, we used SRI International’s 
DECIPHER® LVCSR system, which uses a common acoustic 
frontend that computes 13 MFCCs (including energy) and their Δs, 
Δ2s and Δ3s. Speaker-level mean and variance normalization is 
performed on the acoustic features prior to acoustic model training. 
The acoustic models were trained as crossword triphone HMMs 
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with decision-tree-based state clustering that resulted in 2048 fully 
tied states, and each state was modeled by a 32-component 
Gaussian mixture model. The model uses three  left-to-right states 
per phone and was trained with maximum likelihood estimation. 
The Aurora-4 system uses the 5K non-verbalized closed 
vocabulary set language model (LM), where a bigram LM is used 
in the initial pass of decoding. We performed a second-pass 
decoding with model space maximum likelihood linear regression 
(MLLR) speaker adaptation followed by trigram LM rescoring of 
the lattices. A detailed description of the ASR system is provided 
in [29]. 
 

5. EXPERIMENTS AND RESULTS 
 

5.1 Neural network training 
 

For the initial neural net based TV estimator training we extracted 
the four acoustic features: MFCC, RASTA-PLP, NMCC and 
SyDOCC and contextualized them as mentioned in section 4. We 
initially explored shallower neural nets with up to three hidden 
layers and compared their performance. The nets were trained with 
a greedy layer-wise learning, using back propagation with scaled 
conjugate gradient algorithm. Table 2 below shows the average 
Pearson’s product-moment correlation coefficient (rPPMC) between 
the actual or ground-truth and the estimated articulatory 
trajectories (averaged across all the TVs) from neural nets with 
different numbers of hidden layers. The number of neurons in each 
of the neural net layers used to obtain table 2 is 150. Note that for a 
given feature (say NMCC) and a given layer (say layer 1) we 
trained 3 different neural nets with 150 neurons and if one of those 
networks was stuck in a local minimum (we analyze this using 
multiple mini-batches of cross-validation set), then training would 
restart from the beginning. Table 2 shows that while the selection 
of acoustic features made some difference in performance for the 
1st layer, the differences vanished as the number of layers 
increased. In our final experiments we used NMCCs as the 
acoustic feature to train the DNN, the reason behind its selection is 
that it is a noise robust feature [25] and it demonstrated 
competitive performance (Table 2) compared to the other features. 
 

Table 2. Average overall   from neural nets with different 
number of hidden layers 

 

#Layer MFCC RASTA-PLP NMCC SyDOCC 
1 0.913 0.909 0.901 0.894 
2 0.937 0.939 0.937 0.924 
3 0.949 0.949 0.950 0.937 

 

For the DNN training we used the greedy layer-wise learning 
as specified before, where we trained one hidden layer at a time 
with different numbers of neurons three times and computed the 
average performance. The number of neurons in each layer was 
varied from 75 to 200 and the optimal number of neurons was 
selected based upon the network performance on the cross-
validation set (note that the cross validation set and the test set are 
completely non-overlapping). A final training pass for all the 
layers was performed after the individual layer-wise learning. We 
tried pre-training the network but that did not make any difference 
compared to random initialization of the network. There were 
altogether six hidden layers with number of neurons - 150, 200, 
100, 80, 60 and 40 neurons. We observed that average overall  

 

Table 3.   for each TV obtained from the DNN 
 

 GLO VEL LA LP TTCD TTCL TBCD TBCL 
0.956 0.956 0.926 0.938 0.951 0.939 0.946 0.967 

 increased with addition of hidden layers, i.e., 0.914 after the 
1st hidden layer, 0.941 after the 3rd hidden layer and finally became 
0.95 after the 6th hidden layer. The networks had tan-sigmoid 
activation function with a learning rate of 0.01. Table 3 shows the 
rPPMC values for each of the TVs from the DNN. 
 

5.2 Acoustic model training 
 

The trained DNN was used to generate the TV estimates for 
Aurora-4 train and test speech data sets. The TV estimates were 
used in different ways as input to the acoustic model. Our 
experiments showed the following.  
(1) The 8 estimated TVs by themselves are not sufficient for 

training an acoustic model; the word error rates were very 
high (~70% at clean) compared to the baseline system.  

(2) Combining TVs with MFCC features almost always improved 
MFCC performance. 

(3) Combining TVs with NMCCs showed slight improvement in 
performance over the NMCC-only system.  

(4) The hidden variables from the DNN can also act as features 
for training an acoustic model, but initial results indicate that 
their performance is worse compared to the baseline. 
 

We trained an MFCC-based acoustic model as our baseline system. 
52 dimensional MFCCs containing 13 cepstral coefficients and 
their Δs, Δ2s and Δ3s were used. The features were computed using 
an analysis window of 25.6 ms with 10 ms frame rate. We also 
used the NMCC features [25] in our experiments. The NMCCs 
used 30 gammatone filterbanks equally spaced in the ERB scale 
between 250 to 3750 Hz and analyzed speech using a 25.6 ms 
hamming window with 10 ms frame rate. They consists of 13 
cepstral features which were concatenated with their Δs, Δ2s and 
Δ3s, resulting in a 52 dimensional feature set. For the Aurora-4 
ASR experiments we used only the mismatched conditions (i.e., 
train with clean data and test on data from different noisy 
backgrounds and the same or different channels) at 8 kHz. We 
used mismatched condition training as it is harder than the multi-
condition training in Aurora-4 experiments. 

We first tried using the hidden variables from the first three 
hidden layers of the DNN as observations for training the acoustic 
model. Note that the dimension of these hidden variables was very 
high, so we performed principal component analysis (PCA) on 
them and reduced their dimension to 40, where we observed that 
more than 90% of the information was retained within these forty 
dimensions. Table 4 shows the word error rates for the mismatched 
channel testing condition of Aurora-4.  

Table 4 shows an interesting trend, where the WERs increased 
as a higher layer is chosen to train an acoustic model. Note that 
DNN performs a series of nonlinear transformations (owing to the 
nonlinear activation function sandwiched between the layers) of 
the acoustic feature to generate the TVs. So within the first few 
layers the result of such nonlinear transformation would generate a 
space more similar to the acoustic space and then as we propagate 
through the layers that space becomes more warped to the output 
TV space. As we know from our previous experiments [11] and 
also from the current experiment, the articulatory features by 
themselves are not complete and sufficient to train a full blown 
acoustic model, hence we can assert that the articulatory space 
learnt through the DNN is also not complete for acoustic model 
training. This may justify why the WERs increase as we traverse 
the DNN pipeline from left to right.  However note that the hidden 
variables from layers 1 and 2 did improve the WER slightly 
compared to the baseline system for street and train noise 
conditions.  
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In our next set of experiments we explored the use of TVs by 
themselves and in their time contextualized form. The latter 
provided better performance as the dynamic information of the TV 
trajectories seems to have a role in the performance of the 
articulatory features. The contextualization of TVs was performed 

Table 4. WER for clean training mismatched channel condition 
MFCC Hidden-1 Hidden-2 Hidden-3 

1 Clean 15.0 27.0 27.3 38.2 
2 Car 20.6 33.2 34.0 46.1 
3 Babble 44.7 47.7 49.7 58.6 
4 Restaurant 48.3 53.9 55.0 68.0 
5 Street 52.9 51.3 51.9 62.8 
6 Airport 39.8 48.3 51.0 61.2 
7 Train 51.4 51.1 50.3 61.4 
 Avg. (2-7) 42.9 47.6 48.7 59.7 

 

using a context of 13 frames that contained ~120 ms of temporal 
information. This yielded a feature vector of 104 dimensions. To 
reduce the dimension of the contextualized TVs, DCT was 
performed on each of the eight TV dimensions and their first seven 
coefficients were retained, resulting in a 56 dimensional feature, 
which captures the modulation of TVs (and called them the 
ModTVs). We trained acoustic models with only the 8 TVs, the 56 
dimensional modTVs and the modTVs after  heteroscedastic linear 
discriminant analysis (HLDA) based transform to 10 dimensions 
(modTV_hlda10). The modTVs provided better results followed 
by modTV_hlda10 and TVs, indicating that dynamic information 
is useful for ASR. In all these experiments the results from using 
only the articulatory features were much worse than the baseline 
system and hence those results are not reported here. 

From our previous work [9, 11] we learnt that the articulatory 
features work the best when they are combined with one of the 
standard acoustic features. We concatenated the 56 dimensional 
ModTV features with 52 dimensional MFCC features, resulting in 
a 108 dimensional feature set. We then performed PCA on these 
108 dimensional MFCC+ModTV features and noticed that the first 
30 dimensions retain more than 90% of the information. Based on 
this, we reduced the dimension of 108 dimensional 
MFCC+ModTV features to 30 and call this feature  
MFCC+ModTV_pca30. 

As an alternative we also fused the ModTV features with 52 
dimensional NMCC features using the same approach as the 
MFCCs. PCA was performed on the resulting features and we 
noticed that the meaningful information resided within the top 30 
dimensions after PCA transform. We call the resulting feature 
NMCC+ModTV_pca30. Tables 5 and 6 show the WERs obtained 
from the baseline (MFCC) system, NMCC system and the systems 
trained with MFCC+ModTV_pca30 and NMCC+ModTV_pca30 
features. 

Tables 5 and 6 show that the articulatory features helped to 
reduce the relative WER by 6.8% and 2.6% under matched and 
mismatched channel clean condition for MFCC, and by 3.1% and 
1.1% under the same conditions for NMCC. They also helped to 
reduce the WER in noisy conditionz. The effectiveness of the 
articulatory features is more pronounced under mismatched 
channel conditionz where they reduced the relative overall WER 
by 9.1% and 2.2% for MFCC and NMCC respectively. While 
under matched channel condition we did not observe any reduction 
in WER for NMCC+ModTV_pca30 features compared to the 
NMCCs we did observe a relative overall WER reduction 9.8% in 
the MFCC+ModTV_pca30 features compared to the MFCCs. Note 
that we have also explored HLDA instead of PCA for reducing the 
dimensions of the MFCC+ModTV and NMCC+ModTV features, 
but the results were not as promising as the PCA ones. We also 

explored reducing the dimension of the MFCC baseline features to 
30 using HLDA (MFCC_hlda30) in order to have a direct 
comparison with the 30 dimensional MFCC+ModTV_pca30 
features. We observed that the MFCC_hlda30 demonstrated an 
overall relative WER reduction of 4.4% compared to the MFCCs, 
but the MFCC+ModTV_pca30 still gave lower WERs than the 
MFCC_hlda30 features. The relative WER reduction from 
MFCC+ModTV_pca30 features were 6.4% and 6.5% under 
matched and mismatched noisy conditions respectively, compared 
to the MFCC_hlda30 features. 

 

Table 5. WER for clean training matched channel condition 
 

MFCC 
MFCC+ModTV

_pca30 NMCC 
NMCC+ModTV_

pca30_ 
1 Clean 11.7 10.9 13.4 13.0 
2 Car 16.6 16.5 17.3 18.3 
3 Babble 37.9 33.8 32.6 32.9 
4 Restaurant 41.5 37.6 35.3 37.0 
5 Street 45.1 38.8 34.7 33.5 
6 Airport 33.2 29.9 30.1 30.6 
7 Train 45.7 42.0 34.8 33.9 
 Avg. (2-7) 36.7 33.1 30.8 31.0 

 

Table 6. WER for clean training mismatched channel condition 
 

MFCC 
MFCC+ModTV

_pca30 NMCC 
NMCC+ModTV_

pca30_ 
1 Clean 15.0 14.6 17.4 17.2 
2 Car 20.6 19.9 21.7 20.8 
3 Babble 44.7 39.7 37.0 35.1 
4 Restaurant 48.3 43.9 41.4 42.1 
5 Street 52.9 47.9 40.3 40.2 
6 Airport 39.8 35.6 35.7 34.3 
7 Train 51.4 46.7 39.2 38.3 
 Avg. (2-7) 42.9 39.0 35.9 35.1 

 
6. CONCLUSION 

 

In this work we presented a DNN for estimating articulatory 
trajectories from the speech signal and demonstrated that with 
deeper networks we can improve the performance of the TV 
estimation compared to shallower nets. We explored different 
acoustic features for speech inversion and noticed that for deeper 
nets the selection of features does not have a major impact. We 
also demonstrated that the hidden variables from the deep net can 
be used as acoustic features; however their performance was not up 
to the mark compared to the baseline system; this is expected as 
the network was trained with clean synthetic speech. Also another 
constraint in our DNN training was the fact that the articulatory 
data used to train the DNN was obtained from a single speaker 
model. In future we intend to use data artificially corrupted with 
different noise types as well as different speaker models to train 
the DNN. In such a case the hidden variables from the DNN can be 
a competitive candidate compared to the baseline. We are also 
exploring ways by which we can transform recorded articulatory 
data in the form of pellet (or flesh-point) trajectories to TV 
(constriction variables) trajectories and hence train the DNN using 
natural speech. Our results indicate that though articulatory 
features by themselves may not be a standalone feature for speech 
recognition, when combined with other features they help in 
improving speech recognition performance under clean as well as 
noise/channel degraded conditions.  
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