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ABSTRACT 

 

Speech inversion is a way of estimating articulatory trajectories or 
vocal tract configurations from the acoustic speech signal. 
Traditionally, articulator flesh-point or pellet trajectories have been 
used in speech-inversion research; however such information 
introduces additional variability into the inverse problem given 
they are head-centered, task-neutral measures. This paper proposes 
the use of vocal tract constriction variables (TVs) that are less 
variable for speech-inversion since they are constriction-based, 
task-specific measures. TVs considered in this study consist of five 
constriction degree variables, lip aperture (LA), tongue body 
constriction degree (TBCD), tongue tip constriction degree 
(TTCD), velum (VEL), and glottis (GLO); and three constriction 
location variables, lip protrusion (LP), tongue tip constriction 
location (TTCL) and tongue body constriction location (TBCL). 
Six different flesh-point trajectories were considered that were 
measured with transducers placed on the upper lip (UL), lower lip 
(LL) and four positions on the tongue (T1, T2, T3 and T4) 
between the tongue tip and the tongue dorsum. Speech inversion 
using a simple neural network architecture shows that the TVs can 
be estimated relatively more accurately than the pellet trajectories. 
Further statistical investigation reveals that the non-uniqueness is 
reduced in the TVs compared to the pellet trajectories for phones 
which are known to appreciably suffer from non-uniqueness. 
Finally we perform word recognition experiments using the 
estimated TVs as opposed to the pellet trajectories and show that 
the former offers greater word recognition accuracy both in clean 
and noisy speech, indicating that the TVs are a better choice for 
speech recognition systems. 

Index Terms— Speech inversion, Non-uniqueness, Vocal tract 
constriction variables, Tract variable time functions, Artificial Neural 
Networks. 

 

1. INTRODUCTION 
 

Acoustic-to-articulatory inversion of speech has received a great 
deal of attention from researchers for the past 40 years. [1] 
presents a comprehensive review of the different studies that have 
demonstrated that articulatory information can potentially improve 
automatic speech recognition (ASR) performance. If estimated 
accurately, articulatory information can also be useful for speech 
synthesis, speech therapy, language acquisition, speech 
visualization, and extraction of prosodic information such as stress 
and vowel lengthening. 

Most of the current work on acoustic-to-articulatory inversion is 
based on articulator flesh-point or pellet data acquired from 
Electromagnetic Midsagittal Articulography (EMMA or EMA) [2], 
such as the MOCHA [3] and the X-ray Microbeam (XRMB) [4] 
databases. Fig. 1(a) shows the articulator flesh-points used in the 
XRMB database, which are defined as locations in a task-neutral, 
head-anchored Cartesian coordinate system. Vocal tract 
constriction or tract variables (TVs) [5], on the other hand, 
represent the geometry of vocal tract shape in terms of a set of 
task-specific, locally defined constriction degree and location 
coordinate systems, as shown in Fig. 1(b). More specifically, TVs 
are defined either by the relative position between two articulator 
points (e.g., Euclidean distance between upper and lower lips for 
LA), or by the position of an articulator point relative to a fixed 
vocal tract surface (e.g., orthogonal [TTCD] and tangential 
[TTCL] distance of the tongue tip relative to the hard palate). 

There are some advantages of using TVs as opposed to the 
flesh-point based articulatory trajectory: McGowan [6] pointed out 
that TVs specify the salient features of the vocal tract area 
functions more directly than other articulatory data. Since TVs are 
relative measures as opposed to flesh point measures, they are 
claimed to more effectively reduce the non-uniqueness problem 
with speech inversion [6, 7]. 

 
Fig. 1. (a) Eight tract variables from five distinct constriction 
locations, (b) Pellet placement locations according to [4]. 

 

In this paper, we aim to (a) present a TV estimation model 
trained with natural speech, (b) compare the estimation accuracies 
between TVs and pellet trajectories and (c) compare the TVs and 
pellet data according to a statistical non-uniqueness measure of 
articulatory-acoustic mappings, and according to their relative 
performance in ASR experiments. 

The organization of the paper is as follows: section 2 describes 
the data used in this research, section 3 describes the ANN- 
(artificial neural network) based speech inversion model; section 4 
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presents a Mixture Density Network (MDN) based statistical 
analysis framework grounded on the concepts described in [8] for 
evaluating non-uniqueness in the speech inversion task; section 5 
describes the design of our ASR word recognition experiments; 
and section 6 discusses the results from section 3, 4 and 5. 

 

2.  THE SPEECH DATABASE AND ITS 
PARAMETERIZATION 

 

In [9] we described a method for annotating natural speech 
utterances with TV trajectories. In our current work, we have 
applied this method to the entire XRMB database, generating eight 
TV trajectories that are defined by the location and degree of 
different constrictions in the vocal tract (see Table 1). Each TV 
trajectory is sampled at 200Hz.  

The XRMB database contains pellet trajectory (PT) data 
(sampled at 145.65Hz) recorded along with the speech waveforms 
(sampled at 21.74 kHz). The pellets were placed on the upper lip 
(ULx, ULy), lower lip (LLx & LLy), tongue tip (T1x & T1y), mid-
tongue (T2x, T2y, T3x & T3y) and tongue dorsum (T4x & T4y), 
where the subscripts x, y represent the horizontal and vertical 
coordinates of each pellet, resulting in 12 channels of flesh-point 
data. The database includes speech utterances recorded from 47 
different American English speakers, each producing at most 56 
read-speech tasks consisting of strings of digits, TIMIT sentences, 
and paragraph(s) from a book. Our work uses the acoustic data, 
TVs and PTs for the 56 tasks performed by male speaker 12 from 
the XRMB database: 76.8% of the data was used for training, 
10.7% for validation and the rest for testing. The PTs were 
upsampled to 200Hz to synchronize with the sampling rate of the 
TVs. The acoustic signals were downsampled to 16KHz and 
parameterized as (a) MFCCs, (b) LPCC and (c) PLPCC. For each 
parameterization, 20 coefficients were selected that were analyzed 
at a frame rate of 5ms with a window duration of 10ms. The 
acoustic features and the articulatory data (PT and TV) were z-
normalized. The resulting acoustic coefficients were scaled such 
that their dynamic range was confined within [-0.95, +0.95]. It has 
been observed [7, 10] that incorporating dynamic information 
helps to reduce the non-uniqueness problem for the speech 
inversion task; hence the acoustic features were temporally 
contextualized in all the experiments reported here. Specifically, 
20 acoustic coefficients were obtained from each of nine 10ms-
windows (middle window centered at the current time with 
preceding and following windows separated by 20ms intervals), 
thereby covering 170ms of speech. This acoustic information was 
concatenated into a contextualized acoustic feature vector with a 
dimensionality of 180 (= 9×20).  

The ASR experiments reported below were performed on the 
Aurora-2 [11] database that consists of connected digits spoken by 
American English speakers, sampled at 8 kHz. We used Aurora-2’s 
test set A & B that contain eight noise types at seven SNR levels.  
 

Table 1. Constriction organ, vocal tract variables 
Constriction organ VT variables 

Lip Lip Aperture (LA) 
Lip Protrusion (LP) 

Tongue Tip Tongue tip constriction degree (TTCD) 
Tongue tip constriction location (TTCL) 

Tongue Body Tongue body constriction degree (TBCD) 
Tongue body constriction location (TBCL) 

Velum Velum (VEL) 
Glottis Glottis (GLO) 

3.  THE ARTIFICIAL NEURAL NETWORK BASED 
SPEECH INVERSION MODEL 

 

Speech inversion is a transform from the acoustic domain to the 
articulatory domain. ANNs have been used by many investigators 
[10, 12, 13] for speech inversion tasks. Once trained, ANNs 
require comparatively low computational resources compared to 
other methods both in terms of memory and execution speed [10]. 
ANNs have the advantage of allowing multiple inputs (dim M) and 
outputs (dim N). Using an ANN architecture, the same hidden 
layers are shared by all N outputs, which allows the ANN to 
exploit any cross-correlation that the outputs may have among 
themselves. In our work, we trained separate FF- (feedforward) 
ANNs to learn the inverse mappings between acoustics and either 
PTs or TVs. As described in the previous section, the dimension of 
our input acoustic vector was M = 180. The dimensions of our 
output vectors were N = 8 for the TVs and N = 12 for the PTs. All 
FF-ANNs were trained with backpropagation using a scaled 
conjugate gradient algorithm.  

Since the articulatory trajectories estimated using FF-ANNs 
are noisy, we smoothed them with a Kalman smoother [7]. The 
resultant trajectories were consistent with the observation [14] that 
articulatory motions are predominantly low pass in nature with a 
cut-off frequency of 15 Hz.  

 

4. STATISTICAL ANALYSIS OF NON-UNIQUENESS 
 

Our statistical analysis of non-uniqueness in speech-inversion is 
motivated by the work presented in [8]. In this approach the 
conditional probability function of the inversion, p(A|st) is first 
estimated, where A is the articulatory space and st is the acoustic 
vector at time instant t. We use an MDN (instead of the Gaussian 
Mixture Model (GMM) used in [8]) to estimate p(A|st) from 
acoustic and articulatory data in each phone context. MDNs [15] 
combine a conventional feedforward ANN with a mixture model 
(usually a GMM). In an MDN, the ANN maps the input vector to 
the parameters of a GMM that generates a conditional probability 
density function (pdf) of the output conditioned on the input. In a 
GMM, the probability density of the output data a conditioned on 
the input s, can be represented as 
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where i(s) is the prior probability, ki(a|s) is the conditional 
probability density given the ith Gaussian kernel, and m is the 
number of Gaussian mixtures. Each Gaussian kernel is defined by  

( )
( )

( )

( )

2

20.5

1
| exp

(2 ) 2

i
i cc

i i

a s
k a s

s s

μ

π σ σ

−
= −  (2) 

where i(x) is the center of the ith kernel, i(x) is the spherical 
covariance (this assumption can be relaxed by considering either a 
diagonal or a full covariance) for each Gaussian kernel, and c is the 
input dimension. The ANN part of the MDN is responsible for 
computing the mapping from the input space s to the control 
parameters of the mixture model (priors , means  and variances 

2) that, in turn, defines the conditional pdf of the output a 
conditioned on the input s, p(a|s), i.e., the conditional probability 
of the articulatory configuration a given the acoustic speech signal 
s. According to [8], non-uniqueness in speech inversion exists 
when the conditional probability function p(a|s) exhibits more than 
one probable articulatory configuration (by having multiple peaks) 
for a given acoustic observation. In such a case, the degree of non-
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uniqueness in the inverse mapping can be quantified using the 
deviations of the peaks of the conditional probability function 
p(a|s) from the mean peak location. We have used the unit-less 
Normalized Non-Uniqueness (NNUt) measure as proposed in [8], 
which is defined as 
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where Q is the number of local maxima (or the peaks) at locations 
Mq (1  q  Q), Pq is the normalized probability defined in (3), t  
is the mean location of the peaks and t is the variance of the 
conditional probability function. Since NNU provides a measure of 
the spread of the local peaks in the conditional pdf, p(a|s), a lower 
NNU indicates a lower degree of non-uniqueness in the mapping. 
Note that for a perfectly unique mapping, we can expect to have 
only one peak for p(a|s), indicating Mq = t, implying NNU = 0.    
 

5. ASR EXPERIMENT 
 

Finally, we evaluated the relative utility of TVs and PTs in simple 
word recognition tasks. For these ASR experiments we used the 
HTK-based speech recognizer distributed with the Aurora-2 
corpus [11]. The recognizer incorporates a hidden Markov model 
(HMM) backend that uses eleven whole word HMMs, each with 
16 states (in addition to 2 dummy states) with each state having 
three Gaussian mixture components. Two pause models, one for 
‘‘sil” and one for ‘‘sp”, are used; the ‘‘sil” model has three states 
and each state has six mixtures, while the ‘‘sp” model has only a 
single state with three mixtures. Training in the clean condition 
and testing in the noisy scenario is used in all of our experiments. 
The HMMs were trained with three different observation sets (a) 
MFCC, (b) MFCC + estimated TVs, (c) MFCC + estimated PTs. 
Note that the sampling rate for the Aurora-2 database is 8KHz; 
hence, both the TV estimator and the PT estimator had to be 
retrained with 8KHz sampled XRMB data. 

 

6. RESULTS 
 

Feedforward ANN architectures (FF-ANNs) with 3 hidden layers 
and with tanh-sigmoid activation functions were implemented for 
the inversion models. Six different FF-ANN architectures were 
used, according to the particular combination of acoustic feature 
inputs (MFCC, LPCC or PLPCC) and articulatory outputs (TVs or 
PTs) that were investigated. Each FF-ANN architecture had as 
many output nodes as there were articulatory channels (8 channels 
for TVs and 12 for PTs). The optimal number of nodes in each 
hidden layer was obtained by maximizing the Pearson product-
moment correlation (PPMC) coefficient (rPPMC) between the actual 
or groundtruth (t) and the estimated (e) articulatory trajectories for 
the development set. Note that the groundtruth PTs were simply 
taken from the XRMB corpus; the groundtruth TVs were 
generated using the method in [9] applied to the XRMB acoustic 
data. PPMC coefficients were computed using equation (4) 
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2 2
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We refrained from adding any additional hidden layer beyond the 
3rd as with increase in the number of hidden layers: (a) the error 
surface became more complex with a large number of spurious 
minima; (b) the training time as well as the network complexity 
increased; and (c) no appreciable improvement was observed. The 
ANNs were trained with a training epoch of 4000 and their outputs 
were processed with a Kalman smoother.  

Table 2 presents the overall rPPMC between the groundtruth 
and the estimated articulatory data averaged across all 12 channels 
for PT data and across 6 channels for TV data (note: GLO and 
VEL TVs are excluded for the comparison because there are no 
counterparts in the pellet data), that was obtained using each of the 
different acoustic parameterizations. rPPMC for the estimated TVs 
were higher overall than for the estimated PTs, demonstrating that 
TVs were estimated more accurately by the FF-ANNs. The rPPMC 
of TV estimates obtained from the different parameterizations were 
quite similar to each other, indicating the invariance of the TV 
estimation accuracies for different acoustic parameters considered; 
which was not found to hold so strongly for the PTs. Table 3 
compares the obtained rPPMC between individual TV and pellet 
estimates. Taken together, Tables 2 and 3 indicate that TVs can be 
estimated more accurately than PTs from the speech signal.  

McGowan [6] suggested that, since TVs are relative 
measures, they can be expected to suffer less from non-uniqueness 
than PTs, which can be the reason why the former are estimated 
more accurately than the latter. To analyze and quantify non-
uniqueness in the speech inversion models using TVs and PTs as 
outputs, we used the approach described in section 4. Since [8, 16] 
showed that non-uniqueness is commonly observed mostly for 
consonants, we selected the six consonants (/r/, /l/, /p/, /k/, /g/ and 
/t/) that these studies showed to be most affected by non-
uniqueness. A single MDN with 100 hidden layers and 16 mixture 
components with spherical Gaussian mixtures, was trained for 
2500 iterations for each articulatory channel in each phone 
context, where the acoustic observations were parameterized as  
 

Table 2. rPPMC averaged across all trajectories for TV and Pellet 
data using different acoustic parameterization. The numbers in the 
parentheses denote the number of neurons used in each of the 3 
hidden layers. 

 MFCC PLPCC LPCC 
TV trajectory 0.819 

(250-150-225) 
0.817 

(175-100-125) 
0.817 

(150-100-225) 
Pellet trajectory 0.758 

(250-125-75) 
0.745 

(200-75-150) 
0.703 

(150-125-225) 
 

Table 3. Comparison of rPPMC between relevant articulatory pellet 
and TV data using MFCC as the acoustic parameterization.  

TVs rPPMC Pellets rPPMC 
LP 0.852 LLx 0.822 

ULx 0.773 
LA 0.786 LLy 0.844 

ULy 0.676 
TTCL 0.814 T1y 0.903 

T1x 0.887 
TTCD 0.794 T2y 0.918 

T2x 0.883 
TBCL 0.838 T3y 0.775 

T3x 0.491 
TBCD 0.831 T4y 0.706 

T4x 0.422 
Avg 0.819 Avg 0.758 
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contextualized MFCCs (as specified in section 2). We computed 
the Normalized Non-uniqueness (NNU) measure for the data in the 
testing set. As shown in Fig. 3, the NNU score of TVs is almost 
always lower than that of the PTs, indicating that the inverse 
mapping between acoustics and TVs is less non-unique compared 
to that between acoustics and PTs. Fig. 4 compares the word 
recognition accuracy obtained from the word recognition 
experiments using the Aurora-2 database, where the accuracies at a 
given SNR are averaged across all the noise types. Fig. 4 shows 
that adding the estimated TVs or the PTs to the MFCCs improved 
the word recognition accuracy compared to the system using 
MFCCs only. However, the improvement is higher for TVs, which 
further emboldens the strength of TVs. 
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Fig. 2. Plot of the actual and estimated TVs (LA, LP, TBCD & TTCD) 

for utterance “across the street” 
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Fig. 3. Graph comparing the Normalized Non-uniqueness measure 

(NNU) for speaker 12 in XRMB database across 6 different phonemes 
(/r/, /l/, /p/, /k/, /g/ & /t/) for Lips, Tongue-Tip (TT) and Tongue-Body 

(TB) pellet-trajectories and TVs. 
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Fig. 4. Average word recognition accuracy (averaged across all the 
noise types) for MFCC only, MFCC+TV and MFCC+PT  

 

7. CONLUSION 
 

We have demonstrated that TVs can be estimated more accurately 
than PTs using three different speech parameterizations. While the 

TV-based inverse model was relatively independent of the 
differences in speech parameterization, the pellet-based model was 
not. Further, using a model-based statistical paradigm, we showed 
that non-uniqueness in the TV-based inverse model was 
comparatively lower than the pellet-based model for six 
consonants. We also showed in a word recognition experiment that 
TVs perform better than PTs when used along with MFCCs, 
indicating that TVs provide a better representation for ASR than 
PTs. Future work should consider performing non-uniqueness 
analyses across other phone contexts and across multiple speakers.  
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