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ABSTRACT 
 

In this paper we present a technique for obtaining Vocal Tract 
(VT) time functions from the acoustic speech signal. Knowledge-
based Acoustic Parameters (APs) are extracted from the speech 
signal and a pertinent subset is used to obtain the mapping between 
them and the VT time functions. Eight different vocal tract 
constriction variables consisting of five constriction degree 
variables, lip aperture (LA), tongue body (TBCD), tongue tip 
(TTCD), velum (VEL), and glottis (GLO); and three constriction 
location variables, lip protrusion (LP), tongue tip (TTCL), tongue 
body (TBCL) were considered in this study. The TAsk Dynamics 
Application model (TADA [1]) is used to create a synthetic speech 
dataset along with its corresponding VT time functions. We 
explore Support Vector Regression (SVR) followed by Kalman 
smoothing to achieve mapping between the APs and the VT time 
functions.  

Index Terms— Speech inversion, Support Vector Regression, 
vocal tract time functions, Acoustic-to-articulatory inversion. 

 

1. INTRODUCTION 
 

Acoustic-to-articulatory inversion of speech has received a great 
deal of attention from researchers for the past 35 years. Kirchhoff 
[2] has demonstrated that articulatory features can significantly 
improve the performance of an automatic speech recognition 
(ASR) system when the speech is noisy. In fact she has shown that 
this effectiveness increases with a decrease in the Signal-to-Noise 
ratio (SNR). Articulatory information is also useful for speech 
synthesis, speech therapy, language acquisition, speech 
visualization and extraction of information about vowel 
lengthening [3] and prosodic stress [4].  

Most of the current work on acoustic-to-articulatory inversion is 
based on the data acquired from Electromagnetic Mid-sagittal 
Articulography (EMMA) or Electromagnetic Articulography 
(EMA) [5]. A huge collection of data is available from the 
MOCHA [6] and the Microbeam [7] databases. Most of the 
research on acoustic-to-articulatory inversion [8, 9] has used these 
corpora. Although these databases contain natural speech and have 
various effects like speaker and gender variability, they are often 
contaminated with measurement noise and are not suitable for 
studying gestural and prosodic variability. The TAsk Dynamics 
Application model (TADA [1]), on the other hand, is completely 
free from measurement noise and is designed such that it generates 
VT time functions similar to that obtained from EMA or EMMA; 
moreover it has a greater degree of flexibility in adding gestures, 

prosodic stress etc. such that their effects on the VT time functions 
can be observed.  

Speech recognition models have suffered from poor 
performance in casual speech because of the significant increase in 
acoustic variations relative to that observed in clearly articulated 
speech. This problem can be attributed to the intrinsic limitation of 
the phone unit used in many systems. While phone units are 
distinctive in the cognitive domain, they are not invariant in the 
physical domain. Further, phone-based ASR systems do not 
adequately model the temporal overlap that occurs in more casual 
speech. In contrast to segment-based phonology and phone-based 
recognition models, articulatory phonology proposed the 
articulatory constriction gesture as an invariant action unit and 
argues that human speech can be decomposed into a constellation 
of articulatory gestures [10, 11] allowing for temporal overlap 
between neighboring gestures. Thus, in this framework, acoustic 
variations can be accounted for by gestural coarticulation and 
reduction. Recently, some speech recognition models [12] using 
articulatory gestures as units have been proposed as an alternative 
to traditional phone-based models. Also, Zhuang et. al. [13] 
proposed an instantaneous gestural pattern vector and a statistical 
method to predicting these gestural pattern vectors from VT time 
functions. The VT time functions are time-varying physical 
realizations of gestural constellations at the distinct vocal tract 
sites for a given utterance. This study aims to predict the VT 
functions from acoustic signals as a component model in a 
complete gesture-based speech recognition system. The prediction 
of the VT time function from the acoustic speech signal is 
performed by Support Vector Regression (SVR). The SVR output 
is often noisy; hence a Kalman-filter based post processor is used 
to smooth the reconstructed VT time function.  

The organization of the paper is as follows: Section 2 briefly 
describes VT time functions and how they are obtained in this 
study; Section 3 describes the proposed Support Vector Regression 
(SVR) based mapping model; Section 4 presents the results 
obtained followed by the conclusion and future work in Section 5.  

 

2.  VOCAL TRACT (VT) TIME FUNCTIONS 
 

Gestures are primitive units of a produced word and represent 
constricting motions at distinct constricting devices/organs along 
the vocal tract, which are lips, tongue tip, tongue body, velum, and 
glottis. The constriction is the task goal of each gesture and can be 
described by its location and degree. Since the constriction in the 
glottis and velum are not varied in location, it is defined by degree 
only. Gestures can be defined in eight VT constriction variables as 
shown in Table 1. When a gesture is active in each VT variable, it 
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is distinctively specified by such dynamic parameters as 
constriction target, stiffness, and damping. The gestures are 
allowed to temporally overlap with one another within and across 
tract variables. Note that even when a tract variable does not have 
an active gesture, the resulting tract variable time function can be 
varied passively by another tract variable sharing the same 
articulator. For example, TTCD with no active gesture can also 
change when there is an active gesture in LA because LA involves 
jaw articulator movement and at the same time it passively changes 
TTCD since they share the jaw articulator. A priori knowledge 
about these functional dependencies along with data driven 
correlation information can be used to effectively design the 
mapping process from acoustics to VT time functions. The task-
dynamic model of speech production [14] employs a constellation 
of gestures with dynamically specified parameters, i.e. gestural 
scores, as a model input for an utterance. The model computes 
task-dynamic speech coordination among the articulators, which 
are structurally coordinated with the gestures along with the time 
function of the physical trajectories for each VT-variable. The time 
function of model articulators is input to the vocal tract model [15] 
and then the model computes the area function and the 
corresponding formants. Given English text or ARPABET, TADA 
[1] (Haskins laboratories articulatory speech production model that 
includes the task dynamic model and vocal tract model) generates 
input in the form of formants and VT time functions for HLsyn™ 
(a parametric quasi-articulator synthesizer, Sensimetrics Inc.). The 
TADA output files are then manually fed to HLsyn™ to generate 
acoustic waveform. The dataset generated for this study consists of 
VT trajectories (sampled at 5 msec) and corresponding acoustic 
signals for 363 words, which were chosen from the Wisconsin X-
ray microbeam data [7] and identical to that used in [13].  
 

3.  THE PROPOSED MAPPING ARCHITECTURE 
 

The acoustic speech signal is converted to acoustic parameters 
(APs) [16,17,18] (e.g. formant information, mean Hilbert 
envelope, energy onsets and offsets, periodic and aperiodic energy 
in subbands [19] etc.). The APs are measured at a frame interval of 
5 msec (hence synchronized properly with the VT time functions). 
The APs are then normalized to have zero mean and unity standard 
deviation. Altogether 53 APs were considered for the proposed 
task. A subset of these APs was selected for each of the VT time 
functions based upon their relevance. Relevance is decided based 
on: (1) Knowledge about the attributes of speech that is well 

 

Table 1. Constriction organ, vocal tract variables & involved 
model articulators 
Constriction organ VT variables Articulators 

Lip Aperture (LA) Lip 
Lip Protrusion (LP) 

Upper lip, 
lower lip, 
jaw 

Tongue tip constriction 
degree (TTCD) 

Tongue Tip 
 

Tongue tip constriction 
location (TTCL) 

Tongue 
body, tip, 
jaw 
 

Tongue body constriction 
degree (TBCD) 

Tongue Body 

Tongue body constriction 
location (TBCL) 

Tongue 
body, jaw 

Velum Velum (VEL) Velum 
Glottis Glottis (GLO) Glottis 

reflected by a particular AP and (2) manual observation of the 
variation of the APs with respect to each of the VTs, supported by 
their correlation information. Some APs may be uncorrelated with 
certain VT time functions.  In addition, there may be strong cross-
correlation among a certain number of APs which may render them 
as redundant for a specific VT time function. In this case, the AP 
with the strongest correlation with the respective VT time function 
was selected and the others were discarded. Moreover certain VT 
time functions (TTCL, TBCL, TTCD and TBCD) are known to be 
functionally dependent upon other VT time functions and can be 
represented by equation 1, where as the remaining four VTs (GLO, 
VEL, LA and LP) are relatively independent and can be obtained 
directly from the APs.  

                           
: ( , )

: ( , )

: ( , , , )

: ( , , )

TTCL

TBCL

TTCD

TBCD

f TTCL AP LA

f TBCL AP LA

f TTCD AP TTCL TBCL LA

f TBCD AP TBCL LA

←

←

←

←

      (1) 

where AP denotes the set of pertinent APs for that specific VT 
time function. The -SVR [20] (which is a generalization of the 
Support Vector Classification algorithm) works for only single 
output. -SVR uses the parameter  (the unsusceptible coefficient) 
to control the number of support vectors. The main advantage of 
SVR is that it projects the input data into a high dimensional space 
via non-linear mapping and then performs linear regression in that 
space. For the 8 VT time functions, 8 different -SVRs were 
created and equation 1 suggests that some -SVRs need to be 
created before the other. For example, LA needs to be created first 
followed by TTCL, TBCL and finally followed by TTCD and 
TBCD. Based upon the knowledge-based information regarding 
the VT time functions GLO, VEL and LP can be considered 
relatively independent of the others. Each of the VT time functions 
are centered at zero and scaled by 4 times the standard deviation so 
that most of them fall in the interval (-1,1) (this processing is 
similar to [8] and is pertinent for LibSVM -SVR implementation). 
Table 2 shows the number of pertinent APs for each VT, their 
optimal context and the input dimension of their corresponding -
SVRs. For each of the VT time function 5 different -SVRs were 
created for 5 different contextual windows: 5, 6, 7, 8 and 9.  

 

Table 2. Pertinent APs for each VT 
VT time  
function 

Number of  
APs 

Optimal 
Context  

Input Dimension 
(d) 

GLO 15 6 195 
VEL 20 7 300 
LP 15 6 195 
LA 23 8 391 

TTCL 22 7 345 
TTCD 22 5 275 
TBCL 18 5 209 
TBCD 18 6 260 

 
The optimal contextual window is obtained for the case where the 
least mean square error (MSE) is obtained from the -SVR. For a 
context-window of length N, N frames are selected before and after 
the current frame with a frame shift of 2 (time shift of 10 msec) 
between the frames giving rise to a vector of size (2N+1)d, where d 
is the dimension of the input feature space. It should be noted that 
d is different for TTCL, TBCL, TTCD and TBCD. For example in 
the case of TTCD, d is the sum of the number of pertinent APs 
(=22) and the number of VTs (=3) upon which TTCL is 
dependent, (refer to equation 1) which is 25. Prior research [8] has 
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shown that the Radial basis function (RBF) kernel with  = 1/d, 
and C = 1 [21] is near optimal for the proposed task. However, 
given that the optimal context window is known, C is varied 
between 0.5, 1 and 1.5, to select the best configuration based upon 
the MSE from -SVR. The final -SVR configuration is evaluated 
against three separate training-test sets to obtain cross-validation 
performances and error bounds for the proposed system. The 
dataset is split into 5:1 for training and test sets. The overall 
hierarchical system is shown in Fig. 1, where independent VT time 
functions are obtained first and the dependent ones are obtained 
later. The output from the -SVR are noisy due to estimation error. 
An averaging filter using a window of 7 samples was initially used 
to smooth the reconstructed VT time functions. 

 

 
Fig. 1. -SVR architecture for generating the VT time functions 
 

It was observed that smoothing the estimated VT time functions 
improved estimation quality and reduces root mean square error 
(RMSE). This led to the use of a Kalman Smoother as the post 
processor for the reconstructed VT time functions from -SVR. 
Since articulatory trajectories are physical quantities, they can be 
approximately modeled as the output of a dynamic system. For the 
proposed architecture, we selected the following state-space 
representation      

1 1k k k

k k k

x Fx w

y Hx v
− −

= +

= +

  (2)  
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 (3) 

T is the time difference (in ms) between two consecutive 
measurements, xk=[xk

p  xk
v]T is the state vector and contains the 

position and velocity of the VT time function at time instant k. yk is 
the output of the -SVR estimator which is considered as noisy 
observation of the first element of the state xk. The variables wk and 
vk are process and measurement noise, which have zero mean, 
known covariance Q and R, and they are considered to be 
Gaussian. The goal is to find the smoothed estimate of the state 

|k Nx given the observation sequence Y = {y1,…,yn}, i.e, 

| 1[ | ,..., ]k N k Nx E x y y= . Although, F and H are known parameters 

of the state space representation, the unknown parameter set 

{ }0 0, , ,Q R xΘ = Σ   should be learnt from the training dataset. 

After learning the unknown parameter set { }0 0, , ,Q R xΘ = Σ  the 

smoothed state 
|k Nx is estimated by the Kalman Smoother in 

optimal sense. It is observed that smoothing reduces the RMSE of 
the reconstructed VT time functions. 

 

4. RESULTS 
 

The parameters of the -SVR and the optimal context window were 
obtained using a single test-train set and then the remaining 2 test-
train sets were used with the same configuration to obtain the error 
bounds. The results obtained from -SVR, after the averaging filter 
and Kalman smoothing is shown in Table 3. It should be noted that 
for GLO and VEL, the VT time function values are in terms of 
abstract numbers; hence the RMSE doesn’t have a unit. The values 
of LP, LA, TBCD and TTCD are in terms of mm, hence the RMSE 
is in terms of mm, and finally TTCL and TBCL are in degrees, 
hence the RMSE is in terms of degree. In Table 3, the entries 
correspond to the average RMSE across the three test-train sets 
and (+N / -M) entries in the lower row depict the maximum and 
the minimum deviation from the average RMSE. Table 3 shows 
that Kalman smoothing offered better RMSE than average 
smoothing. The Kalman smoothing is also found to offer a tighter 
bound in most of the cases and, on average offers a 9.44% 
reduction in the RMSE over the unprocessed -SVR output. This 
RMSE reduction is significantly better than the 3.94% offered by 
the averaging filter. Table 4 presents the correlation coefficient of 
the -SVR reconstructed VT time functions, which indicates the 
similarity in shape and trajectory between the actual and the 
reconstructed VT time functions. Fig. 2 shows the plot of the 
actual and reconstructed (Kalman smoothed) VT time function. 
RMSE of GLO and VEL are found to be very low, to analyze their 
result, the fraction of cases where open/close is missed or falsely 
detected for GLO and VEL was obtained and it was found to be 
4.6% for GLO and 2.9% for VEL. 

 

Table 3. Average RMSE for the different VTs 
RMSE VT time  

function -SVR after averaging 
filter  

after Kalman 
smoothing 

GLO 0.039 
(+0.004/-0.002) 

0.040 
(+0.003/-0.002) 

0.036 
(+0.004/-0.003) 

VEL 0.025 
(+0.002/-0.003) 

0.025 
(+0.002/0.003) 

0.023 
(+0.002/-0.003) 

LP 0.565 
(+0.007/-0.007) 

0.536 
(+0.011/-0.012) 

0.508 
(+0.018/-0.016) 

LA 2.361 
(+0.091/-0.063) 

2.227 
(+0.107/-0.084) 

2.178 
(+0.115/-0.091) 

TTCD 3.537 
(+0.075/-0.118) 

3.345 
(+0.089/-0.067) 

3.253 
(+0.073/-0.079) 

TBCD 1.876 
(+0.129/0.139) 

1.749 
(+0.138/-0.158) 

1.681 
(+0.141/-0.162) 

TTCL 8.372 
(+0.263/-0.0.257) 

8.037 
(+0.285/-0.329) 

7.495 
(+0.221/-0.266) 

TBCL 14.292 
(+1.319/-1.895) 

13.243 
(+1.465/-1.921) 

12.751 
(+1.313/-1.829) 
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Table 4. Correlation coefficient for each VT obtained from -SVR  
GLO VEL LP LA TTCD TBCD TTCL TBCL 
0.951 0.944 0.754 0.745 0.889 0.857 0.849 0.849 
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Fig. 2. Overlaying plot of the actual VT along with the -SVR 

output followed by Kalman smoothing for TBCL and LA 
 

5. CONLUSION 
 

This paper demonstrated the use of -SVR algorithm to obtain VT 
time functions from the acoustic signal. The -SVR parameters are 
optimized for each VT time functions. It is observed from Tables 3 
and 4 that the -SVR corresponding to the independent VT time 
functions GLO and VEL offered the least RMSE and best 
correlation coefficient, indicating best estimation. RMSE of TTCL 
and TBCL may seem to be high compared to the others; however 
they represent the RMSE in degrees. LP, LA, TTCD and TBCD 
are measured in millimeters; hence their RMSE is in mms. On 
average, the Kalman smoothing reduced the RMSE of the 
reconstructed data by 9.44%. 

 Future work should consider improving the performance of the 
SVR by using a data driven Kernel. Currently, TADA outputs are 
fed manually to HLsyn to obtain the synthetic speech.  Future 
research should automate the process so that more data can be 
generated to appropriately estimate the robustness of the proposed 
architecture. The mapping should also be evaluated in noisy 
scenarios, where noise at different signal-to-noise ratios is added to 
the speech signal and the effect of the noise on the reconstructed 
VT time functions is observed and evaluated in terms of RMSE. 
Spectral parameters like MFCCs have been used for a similar task 
in [22], however SVRs were not used in such a setup. Future 
research should compare such features with APs using the same 
SVR framework to see the difference in performance. 
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