
Automatic Speech Codec Identification with Applications to Tampering
Detection of Speech Recordings

Jingting Zhou, Daniel Garcia-Romero, Carol Espy-Wilson

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD
jingtingzhou@hotmail.com, dgromero@umd.edu, espy@umd.edu

Abstract
In this paper we explored many versions of CELP codecs and
studied different codebooks they use to encode noisy part of
residual. Taking advantage of noise patterns they generated,
an algorithm was proposed to detect GSM-AMR,EFR,HR and
SILK codecs. Then it’s extended to identify subframe offset to
do tampering detection of cellphone speech recordings.
Index Terms: forensic,compression,CELP

1. Introduction
The objective of speech media authentication (SMA) is to estab-
lish the validity of a speech recording as a true ”acoustic repre-
sentation” of an event that occurred at a certain time and place.
Particular applications of this process are embodied in the an-
swers to the following common questions: (i) is the recording
original or a copy; (ii) has the recording been edited or modi-
fied since its creation; (iii) does it come from the alleged source;
and (iv) is the content consistent with what is known or alleged.
The most general framework towards SMA is the blind-passive
approach. Algorithms based on this approach do not rely on
the presence of a watermark or extrinsic fingerprint, but on the
traces left behind by the generating process and signal modifi-
cations. Two different types of information can be targeted for
SMA: (i) source dependent, where the extracted information is
directly tied to the intrinsic fingerprint of the source; and (ii)
source independent, where the information is not directly re-
lated to the source (i.e., background noise, electric network in-
terference, etc). Once this information has been automatically
extracted, a consistency test or anomaly detection procedure can
be used to extract evidence relevant for the authentication task
at hand.

The focus of this work is on source dependent techniques.
In particular, we are interested in performing speech media au-
thentication following a two step process. The first step involves
detecting the type of speech codec used to generate the signal.
The second step uses known properties of the detected codec to
perform media authentication. Our focus will be on recordings
of speech signals that have been encoded with members of the
CELP family of speech codecs [2,3,4,5].

Scholz [1] developed an algorithm to detect a wide range
of state-of-the-art speech codecs. By subtracting the harmonic
structure, the noise spectrum was obtained and served as input
to a SVM, support vector machine, classifier to determine which
of five different codecs was used. Yang [7] examined the com-
pression mechanism of mp3 files, when an mp3 file is encoded,
the audio samples are divided into frames, each frame has its
own frame offset after encoding. By examining the trace left
by quantization process, the frame offset can be detected with
high accuracy. Forgeries will break the original frame grids,

thus leave us evidence.
In this paper, we studied various speech codecs in today’s

digital communication system. By examining different noise
patterns generated in each codec, we proposed a framework
to detect 4 different codecs, GSM-Adaptive Multi-Rate(AMR)
[2] in 5.9kbps, GSM-Enhanced Full Rate(EFR) [3] in 12.2kbps,
GSM-Half Rate(HR)[4] in 5.6kbps, and SILK [5](speech codec
used in Skype) in 5kbps.

2. CELP Family of Speech Codecs
Spanias [6] presented a good summary on speech codecs. The
Code Excited Linear Prediction(CELP) codec is the most pop-
ular one in the cellphone network. There are many versions of
CELP.

Fig.1 shows a block diagram of the decoding process of a
CELP codec. Vfixed is a vector from a fixed codebook stored in
the memory of the decoder, and it captures the aperiodic portion
of the residual signal, so its energy is high in unvoiced regions.
Vadap is a vector copied from an adaptive codebook and it con-
tains previous reconstructed residuals, and it captures periodic
portions so the energy is high in voiced regions. The weighted
sum of these two vectors, reconstructed residual r, is fed into
the inverse LPC filter. The corresponding weights for Vadap

and Vfixed are aadap and afixed, respectively. The output of
the post-processor is the decoded speech.

Different versions of CELP have different codebooks, i.e.
different kinds of Vfixed. We want to take advantage of this
difference to detect which CELP codec has been used on the
speech signal. Thus, we need to extract Vfixed from the
weighted sum and this requires an estimate of Vadap.During
encoding, Vadap is computed from the reconstructed residual
of previous frames, hence it is not easy to estimate from the
decoded speech. Mostly because:

1. It is difficult to accurately estimate the LPC coeffi-
cients,i.e. a1 to a10.

2. The post-processing is adaptive and we are not able to
undo the process. What the post-processing is doing is
dependent on the codec, but the major things are for-
mant enhancement filtering and tilt compensation filter-
ing. The coefficients are dependent on the speech signal
so we can not perfectly invert the post-filtering.

So we chose to only use the unvoiced part of the speech
signal, where the energy of Vfixed is much higher than that of
Vadap. A typical sentence will contain some unvoiced regions
due to the fricatives and stop consonants.

The codebooks used for Vfixed in AMR, EFR and HR are
described in [2], [3] and [4]. For SILK, in its low-bitrate modes,
normally two to three pulses are encoded per subframe, each
having an amplitude of +1 or -1. Since the pulse sequence is

post−processing 1/A(z)

a
fixed

a
adap V

adapt

 V
fixed

reconstruced reisdual

encoded
bitstream

Figure 1: diagram of CELP decoder.

too sparse to be used as Vfixed, an interesting mechanism was
introduced in [5] to convert a pulse sequence into Vfixed. Af-
ter adding a small amount of offset to the pulse sequence, an
overflow-based pseudo random sequence is generated accord-
ing to sequence, and the sign of Vfixed may be flipped based on
the pseudo random sequence.

Since Vfixed is generated in this particular way, we can
show that although there might be many possibilities of the sign
pattern of the pulse sequence, the sign pattern of Vfixed is much
more limited. This limitation can be used to identify if a frame
has been compressed by SILK, as will be explained in the fol-
lowing section.

3. Algorithm of the Codec Detector
The codec detector can work in 4 modes: HR, EFR, AMR, and
SILK. For modes HR, EFR and AMR,the framework is similar,
but some part of the algorithm should be tailored to the partic-
ular codec at hand. Mode SILK is different from the other 3
modes, so it will be discussed in a separate subsection.

3.1. Algorithm for Mode HR, EFR and AMR

3.1.1. Algorithm outline

• extract unvoiced part of speech

• linear prediction filtering to get the residual r

• remove Vadap from residual

• search for the best vector to fit Vfixed

• get error measurement

3.1.2. Extract unvoiced part of speech

The unvoiced part of speech needs to be extracted since our goal
is to see how closely Vfixed can be represented by a particular
codebook. We want the voiced/unvoiced partition as close to the
original partition in the compression process as possible. Con-
sequently, the same voiced/unvoiced decision algorithm is used
as in the HR standard. Since it is important that we do not rec-
ognize a voiced frame as unvoiced, we use a stricter requirement
than the standard.

3.1.3. Linear prediction filtering to get the residual

Here a 10 order linear prediction analysis is performed, and the
autocorrelation method is used.

3.1.4. Remove Vadap from residual

In mode HR, for the unvoiced part of speech, the residual is
the sum of two vectors both from Vfixed. Thus, we don’t have
to remove Vadap. In both the EFR and AMR modes, removal
of Vadap is an optional step. In the unvoiced part of speech,
the energy of Vadap is already very small. As such, it may not
be necessary to remove this part. In fact, our experiments in

the AMR mode showed that removal of Vadap degraded perfor-
mance. Thus, we only performed this step in the EFR mode
only.

We followed the procedure in [2] and [3] to get the Vadap,
except that final post-processed speech is filtered with A(z) as
the adaptive codebook for the next frame. Even though exactly
the same search algorithm and interpolation method is used as
in [2] and [3], the adaptive codebook is not very accurate. Sub-
tracting Vadap from the residual should give us ˆVfixed.

3.1.5. Search for the best vector to fit Vfixed

Now that we know ˆVfixed and the fixed codebook, we are ready
to search for the best fitted vector in the codebook. For every
vector v in the codebook, we find a gain v∗ that minimizes

v∗ = argminv(I − v(vTv)−1vT)Vfixed (1)

3.1.6. Get error measurement

The objective function in the fitting part is normalized as our
error measure.

err =
∥Vfixed − v∥2

∥r∥2 (2)

3.2. Algorithm for Mode SILK

3.2.1. Algorithm outline

• preparation of sign pattern book

• extract unvoiced part of speech

• linear prediction filtering to get the residual

• search for the most likely sign pattern

• get error measurement

3.2.2. Preparation of sign pattern codebook

As mentioned in section II, the sign pattern of Vfixed is very
limited in SILK and we want to use this sparsity to detect if
the SILK was used. The first step in this process is to build
a representative and efficient sign pattern codebook. To do an
exhaustive search over all possible sign patterns is impractical
and we can reduce the search space by answering the following
two questions.

1. Do we need the sign pattern to be of length 160? The
pseudo random sequence is generated every frame, and
Vfixed is of length 160.

2. What are the most frequent sign patterns? Every pulse
sequence p may have a different Vfixed sign pattern, and
the number of pulses in one frame is not fixed, even in the
low bitrate mode of SILK. Thus, when we construct the
sign pattern book, enumerating all possible sign patterns
can be inefficient.

To help us answer these 2 questions, let’s define a binary
pattern BP, for 10 consecutive samples from Vfixed,

BP =

10∑
p=1

2p−1s(p) (3)

s(p) =

{
1 : if pth sample is positive
0 : if pth sample is negative

(4)

BP is just a way to describe a sign pattern using a num-
ber. Fig. 2 shows the histogram of BP for a SILK compressed

0 200 400 600 800 1000
0

5

10

15
binary pattern of the first set of 10 samples

binary pattern
0 200 400 600 800 1000

0

5

10

15
binary pattern of the second set of 10 samples

binary pattern

0 200 400 600 800 1000
0

5

10

15
binary pattern of the third set of 10 samples

binary pattern
0 200 400 600 800 1000

0

5

10

15
binary pattern of the fourth set of 10 samples

binary pattern

Figure 2: histogram of binary pattern of a SILK sentence.

speech sentence. We can see several peaks in the histogram of
the first 10 samples. There are fewer and smaller peaks with
the second and third histograms. Finally, the fourth histogram
is almost flat. As it goes along the sequence, the sign pattern
becomes more and more random. In our sign pattern codebook,
the first 30 samples of a frame are included. Thus our first ques-
tion is answered.

Another observation is, for every 10 positions in a frame,
the number of nonzero pulses is less than 3 most of the time.
So the sign pattern book is designed to include just the sign
patterns generated by these pulses. This is the answer to our
second question.

3.2.3. Search for the most likely sign pattern

Denote Vshort as a vector containing the first 30 samples of
Vfixed. For every sign pattern s in the codebook, search for the
ŝ which maximize the correlation,

corr = sTVshort/(∥s∥∥Vshort∥) (5)

3.2.4. Get error measurement

The error is defined as the number of inconsistent signs between
Vshort and ŝ.

err =

30∑
i=1

sign(i) (6)

sign(i) =

{
1 : if Vshort(i)× ŝ(i) < 0
0 : if Vshort(i)× ŝ(i) ≥ 0

(7)

3.3. Experiments of Codec Detector

We took speech sentences from the TIMIT database, 100 sen-
tences, from 10 different microphones, and it includes both
male and female speakers. For every sentence, we encoded and
decoded using GSM-HR, GSM-EFR, GSM-AMR(5.9kb mode)
and SILK. So we now have 5 kinds of dataset, dataorigin,
dataAMR, dataEFR, dataHR, and dataSILK . A total of
16296 × 5 frames are used, about 27 minutes, of which ap-
proximately one third are unvoiced. We ran the detector in its
4 modes on every dataset, which means each time the detector
is asked if the frame is previously compressed by, for exam-
ple, HR, and it tells us the result for all the sentences in the 5
datasets.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
dataset

error level for mode AMR

er
r

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
dataset

er
r

error level for mode EFR

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
dataset

er
r

error level for mode HR

0

10

20

30

1 2 3 4 5
dataset

er
r

error level for mode SILK

Figure 3: Error Level for the whole 5 datasets: dataset 1 is
for AMR coded speech, dataset 2 is EFR coded, dataset 3 is
HR coded, dataset 4 is for the original speech, and dataset 5 is
SILK encoded.

Fig.3 shows the error distribution for the detectors. Every
plot corresponds to one of the 4 modes, and in each plot, every
box represents one of the 5 datasets. The lines at the center of
the box are the mean normalized error, the edges of the box are
the 25th and 75th percentiles, and the red crosses are outliers.

As we can see from Fig.3, for a specific mode, error is the
lowest for the data using that codec. A threshold is set for every
mode to tell if a specific codec is used, i.e, a threshold for each
plot in Fig.3. HR has the best performance with a detection rate
around 93% and a false alarm rate around 1%. EFR and AMR
have detection rates around 80% and a false alarm rate around
5% and 10%, respectively. Keep in mind this is frame by frame
performance and for a speech sentence, we can always combine
all the unvoiced frames and take the majority votes as a final
result. During the experiment, the detection rate is 100% at the
sentence level, when we use majority vote.

For mode SILK, the performance is not as good as the other
three, with detection rate around 80% and false alarm around
20%. But during the experiment, we found that for dataorigin,
dataAMR, dataEFR, dataHR, none of the frames have zero
error (error in SILK is defined in section 3.2.5). In other words,
there is no perfectly consistent sign pattern in those datasets.
For the 100 SILK compressed speech sentences, there are al-
ways some portion of the unvoiced frames that have a perfectly
matching sign pattern. So taking advantage of this observation,
we can also achieve a 100% detection rate in SILK at the sen-
tence level.

4. Applications to Tampering Detection

In this section we introduce a tampering detection algorithm.
For real world scenarios, we often encounter files whose be-
ginning parts have been chopped so we don’t know the original
frame grid. So for them, we had to not only detect the coder, but
also the original frame grid. We first introduce the tampering
detection algorithm and then show the results in a subsection.

4.1. Tampering Detection Algorithm

For a short speech segment, we define the original index in the
original subframe grid of the first sample as the subframe off-
set. If nothing is done, the subframe offset is 1. If the speech
is chopped in a way that first n samples are thrown away, the
subframe offset for this segment is n+1, since the first sample in
the chopped file is the (n+ 1)th originally.

For a speech sentence we extract all the unvoiced parts. Say
we have a total of N unvoiced frames, then we divide them into
M segements, so every speech segment has k = N

M
unvoiced

frames, and k is defined as unit size. For every segment, we
detect the subframe offset, so if two consecutive segments have
inconsistent offsets, we claim there’s tampering in the later seg-
ment. We want the unit length to be as small as possible since
we can locate the tampering more accurately. Next we introduce
how to detect subframe offset for a segment.

4.1.1. Subframe offset detection algorithm

The basic idea is that if, after throwing away the first n samples,
the resulting subframe grid is the same as the original subframe
grid, then the error will be very low. Here’s the way to detect
subframe offset, the unit size is k.
for offset = 1 : 160

• throw away first (offset − 1) samples and run the al-
gorithm in mode m for k frames, so we have k errors,
err1:k.

• merr(offset) = mean(err).

end
If 3 or 4 dips can be observed in the merr curve, and the index
difference between two dips is 40, i.e. one dip is at offset i and
the next dip is at offset i + 40, we claim the index of the first
dip as the subframe offset.

During the experiment, we found that for the k errors, the
lowest extreme data point that were not considered outliers (de-
note it as ENO for short), is more sensitive to offset than mean,
so it’s also included. Of course, the offset detection algorithm
will work only if the codec detector is working in the correct
mode, otherwise we can not find any dip.

4.2. Experiment on Real Cellphone Data and Detection of
Subframe Offset

We tested the algorithm on a cellular dataset. These are record-
ings directly from cellphone conversations, where they may un-
dergo channel distortion and a cellphone enhancement process.
We know nothing about what coding standard was used, except
that it’s within the GSM family. The beginning parts of the
speech signals were chopped.

Fig.4 shows the mean curve and ENO curve for a segment
from cellular and a segment from a microphone recording. The
microphone recording is for comparison, which has not under-
gone any speech coding process. We can observe in the solid
line a dip every 40 samples, i.e. the subframe length. The sub-
frame offset is 20, since the first dip appears at offset 20. We’ve
run 5 files from the cellular database and we observed a similar
dip pattern. The codec detector was working in mode EFR here.

We found a unit size of 200 is enough and the algorithm is
robust to filtering, but not to additive noise (both filtering and
additive noise applied to the decoded signal). It is not surpris-
ing since what we are taking advantage of is the codec noise
pattern. Once the shape of the noise is destroyed by additive
noise, the algorithm stops working. Accuracy and robustness is

0 20 40 60 80 100 120 140 160
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

offset

er
ro

r
le

ve
l

results of cellular data, mode EFR

microphone mean
microphone extreme not outlier
cellphone mean
cellphone extreme not outlier

Figure 4: mean and ENO error for every offset,both for cellular
file and microphone file.

often a trade off in a forensic task, so in future work, long term
dependence and properties of the voiced part the speech signal
should be explored to see if it can improve robustness.

5. Conclusion
In this paper we proposed an algorithm to do media authenti-
cation in two steps. The first step involves detecting the type
of speech codec used to generate the signal. The second step
uses known properties of the detected codec to perform media
authentication. We focused on codecs in CELP family and we
just use the unvoiced part of speech. We are planning to extend
to voiced part and outside CELP family in future work.

6. References
[1] Scholz,K.,Leutelt,L.,Heute,U., “Speech-Codec Detection by

Spectral Harmonic-Plus-Noise Decomposition”, Systems and
Computers, 2295 - 2299 Vol.2 2004.

[2] “ETSI GSM 06.90 Digital cellular telecommunications system
(Phase 2+); Adaptive Multi-Rate (AMR) speech transcoding”,
2000.

[3] ”ETSI GSM 06.60 Digital cellular telecommunications system
(Phase 2+); Enhanced Full Rate (EFR) speech transcoding”, 1999.

[4] ”ETSI GSM 06.20 Digital cellular telecommunications system
(Phase 2+); Half Rate (HR) speech; Part 2: Half rate speech
transcoding”, 1998.

[5] SILK Speech Codec draft-vos-silk-02, www.ietf.org/id/draft-vos-
silk-02.txt

[6] Spanias,A., “Speech coding: a tutorial review”, Proceedings of
the IEEE, volume 82 issue 10 pp 1541 - 1582, 1994.

[7] Yang,R.,Qu,Z.,Huang,J. “Detecting Digital Audio Forgeries by
Checking Frame Offsets”, MM and Sec08,September 22C23,
2008, Oxford, United Kingdom.

